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Abstract

We study the function f(G) defined for a graph G as the smallest
integer k such that the join of G with a stable set of size k is not |V (G)|-
choosable. This function was introduced recently in order to describe
extremal graphs for a list-coloring version of a famous inequality due
to Nordhaus and Gaddum [1]. Some bounds and some exact values for
f(G) are determined.

1 Introduction

We consider undirected, finite, simple graphs. A coloring of a graph G =
(V,E) is a mapping ¢: V — {1,2,...} such that ¢(u) # ¢(v) for every edge
wv € E. If |e(V)| <k, then c is also said to be a k-coloring. The chromatic
number x(G) is the smallest integer k such that G admits a k-coloring. A
graph is k-colorable if it admits a k-coloring.

Vizing [4], as well as Erdés, Rubin and Taylor [2] introduced a variant of
the coloring problem as follows. Suppose that each vertex v is assigned a list
L(v) € {1,2,...} of allowed colors; we then want to find a coloring ¢ such
that c¢(v) € L(v) for all v € V. If such a coloring exists, we say that G is
L-colorable and that c¢ is an L-coloring of G. The graph is k-choosable if G
is L-colorable for every assignment L that satisfies |L(v)| > k for all v € V.
The choice number or list-chromatic number Ch(G) of G is the smallest k
such that G is k-choosable. Clearly, every graph satisfies Ch(G) > x(G).

Let G1, G be two vertex-disjoint graphs. The graph G xGe = (V(G1)U
V(G2), E(G1) UE(Gy) U{zy | € V(G1),y € V(G2)}) is called the join
of G; and Gy. It is easy to see that x(G1 * G2) = x(G1) + x(G2) for
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any two vertex-disjoint graphs G1,Gs. So, the chromatic number has a
straightforward behavior with respect to the join operation. On the other
hand, the choice number does not behave so simply. For instance, if G; and
G2 are edgeless graphs on n and n”™ vertices, respectively, then obviously
Ch(G1) = Ch(G2) = 1, but it is known (see [3]) that Ch(G1 x G2) = n + 1,
i.e., the complete bipartite graph K, ,» is not n-choosable (indeed, to see
this, assign to the i-th vertex on the “left” side (the stable set of size n) of
Kppe thelist L = {(i —1)n+1,...,(i—1)n+n} (i=1,...,n). Assign to
the vertices on the “right” side, one-to-one, all the lists of size n obtained
by picking one element from each L;, i = 1,...,n; clearly there are n™ such
possibilities; this produces a list assignment L where all lists have size n and
for which there is no L-coloring).

Let us denote by Sy the edgeless graph on k vertices. Since the complete
bipartite graph K, ,» is not n-choosable, if H is any graph on n vertices
then Ch(H % Spn) > n. We can therefore define f(H) as the smallest integer
k such that Ch(H * S;) > |V(H)|. The fact from [3] that K, ,» is not
n-choosable and is minimal with that property means that f(S,) = n". It
is easy to see that f(K) = 1 for every complete graph K. Obviously, if
e € E(G), then f(G —e) > f(G). This implies:

If G is any graph on n vertices, then 1 < f(G) < n™. (1)

The definition of f(G) was motivated by the determination of extremal
graphs for the inequality Ch(G) + Ch(G) < |V(G)| + 1 (see [1]). Here
we would like to examine in more detail the problem of evaluating and
computing f(G).

An alternative definition for f(G) can be given as follows. Let G =
(V,E) be a graph on n vertices, and let £(G) be the set of assignments

L:V —P({1,2,...}) that satisfy:
(i) |L(v)] >n,Vv eV, and
(i) L(u)NLw)=0ifu,v eV, uv ¢ E.

Clearly, for every L € L(G), there exists at least one L-coloring of G, because
of (i). Moreover, by (ii) every L-coloring ¢ of G uses exactly n colors; we
denote by ¢(V') the set of n colors used by ¢. We now write:

C(L) = {c(V) | ¢ is an L-coloring of G}. (2)

Now define f/(G) = min{|C(L)|: L € L(G)}.



Lemma 1 For every graph G, we have f(G) = f'(G).

Proof. Assume G has n vertices, and write f(G) = k. By the definition
of f(G), we have Ch(G * S) > n + 1. Thus there exists a list assignment
L on V(G % Sy) with |L(v)| > n (Vv € V(G % Si)) and such that G * Sy, is
not L-colorable. Suppose there were non-adjacent vertices u,v € V(G) such
that L(u) N L(v) # 0. We could then do the following: assign a color from
L(u) N L(v) to uw and v; for all vertices x of G — {u,v} taken successively,
assign to x a color from L(x) different from the colors already assigned to the
preceding vertices (this is possible because L(x) is large enough); likewise
for every vertex y of Sy assign to y a color from L(y) different from the
colors assigned to the vertices of G. Thus we would obtain an L-coloring of
G * Sk, a contradiction. It follows that the restriction of L to G satisfies (i)
and (ii). Furthermore, whenever ¢ is an L-coloring of G, the set ¢(V(G))
must appear as L(s) for at least one s € Sy, for otherwise this L-coloring ¢
of G could obviously be extended to an L-coloring of G * S}, a contradiction.
Hence |C(L)| < k. The definition of f’ implies f'(G) < k, i.e., f'(G) < f(G).

Conversely, assume that L is a list assignment on G such that L €
L(G) and |C(L)| = f(G) = j. Write C(L) = {C1,...,C;} and let S; =
{s1,...,5;} be a stable set of size j. Let L’ be the list assignment defined by
L'(v) = L(v) for all v € V(G) and L'(s;) = C; (i =1,...,7). Observe that,
by (ii), |L'(u)| > n for all u € V(G % S;). Clearly G = S; is not L’-colorable,
s0 f(G) < j.ie, (G) < F(G). 0

Using Lemma 1, it is possible to compute f(G) for some small graphs,
but in general the computation is difficult even for graphs with a simple
structure. For example, one can establish that f(C4) = 36, but we need a
tedious case analysis to show that f(Cs) = 500.

Theorem 1 If G has n vertices and is not a complete graph, then f(G) >

n?.

Proof. We will prove, by induction on n, that if u,v are non-adjacent
vertices of G and L € L(G), then f'(G) > |L(u)||L(v)|. This statement
clearly implies the theorem. For n = 2, the statement is obvious. Now,
assume that n > 3, and write ny = |L(u)| and ny = |L(v)|. Pick any
z € V \ {u,v} and pick any color, say 1, in L(z). We may assume by (ii)
that 1 ¢ L(v). Define:

Ci(L) =A{c(V) | ¢ is an L-coloring of G with ¢(z) = 1},



C1(L) = {c(V) | ¢ is an L-coloring of G with 1 & ¢(V)}.

Clearly, C(L) 2 Ci(L) UCy(L) and C1(L) N Cy(L) = @. Thus |C(L)| >
|C1(L)| + |C1(L)|. Let us now evaluate these numbers.

On one hand, we have |C1(L)| > (n1 — 1)ng by the induction hypothesis
applied to the graph G —z with the list assignment L; € £(G—z) determined
by Li(w) = L(w) \ {1} for each w € V(G — 2).

On the other hand, we claim that |C1(L)| > ng. Indeed, fix an L-coloring
~v of the subgraph G'\ {u, v} that does not use color 1. Such a coloring exists
because that subgraph has n—2 vertices while L1 assigns lists of size at least
n—1 by (i). Write t; = |L(u) Ny(V \ {u,v})| and ta = |L(v) Ny (V \ {u, v})].
Write Ay = n1 — (t1 + 1) and Ay = ng — to. Since color 1 is not in L(v) (but
possibly is in L(u)), v can be extended to an L-coloring of G in at least A A2
ways, and each of these uses a different set of colors (V) € Ci(L). Since
A1 >0, Ay >0, and A\{ + Ay > ng + 1, we have |61(L>‘ > A A2 > no.

Now, |C1(L)| > (n1 — 1)ng and |C1(L)| > ng imply |C(L)| > nina. O

We observe that the bound given in the preceding theorem is tight, i.e.,
for any n > 2, there exists a graph G on n vertices with f(G) = n?. Indeed,
consider the graph K, — E(K;;) obtained from a complete graph on n
vertices by removing ¢ edges incident to one given vertex u (1 <i <n—1):

Claim 1 f(K, — E(K1;)) = n?.

Proof. By Theorem 1, we have f(K,, — E(Kj;)) > n?, so we need only to
prove that f(K,—F(K;)) < n?. For this purpose, assign to the vertex u the
list {1,2,...,n} and to all other vertices of the graph the list {n+1,...,2n}.
This yields a list assignment L € £(G). It is easy to check that |C(L)| = n?,
hence f(G) < n?. O

We do not know of any graph G other than K,, — E(K; ;) that satisfies
F(G) = V(G
2 The significance of clique partitions
Given a graph G = (V, E), a clique partition of G is a set Q = {Q1,...,Qp}

of pairwise disjoint, non-empty cliques such that V' = Q1 U---U Q). Let
n=|V|and ¢ = |Q;|, i =1,...,p. Then we write

wa=11()
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and
w(@) = min{w(Q) | @ is a clique partition of G}.

Theorem 2 For every graph G, we have f(G) < w(G).

Proof. Write n = |V|. Consider a clique partition @ = {Q1,...,Qp} of
G, and make a list assignment L as follows: to each vertex of @); assign a
list L; of n colors, so that Ly N L; = () whenever 1 < i < j < p. Clearly,
L € L(G). Moreover, any L-coloring of G consists in assigning |(Q)1| colors
from L; to the vertices of @1, |Q2| colors from Lo to the vertices of Q2, etc.
It follows that |C(L)| = w(Q). Therefore, f'(G) < w(Q). Since @ is an
arbitrary clique partition, Lemma 1 implies that f(G) = f'(G) < w(G). O

Claim 2 If G is a disjoint union of cliques, then f(G) = w(G).

Proof. By the preceding theorem, we need only prove f(G) > w(G). As-
sume G is the union of cliques @1,...,Q,. Consider any list assignment
L € L(G). Let us denote by L’ the restriction of L to the subgraph of G
induced by Q; (i = 1,...,p). Note that the colors assigned by L’ to any
vertex in ; are different from the colors assigned by L7 to any vertex in Qj
whenever i # j, by (ii). Thus |C(L)| = [C(LY)]---|C(LP)|. Every Li-coloring
of (); can be obtained by choosing among at least n colors for the first vertex
of QQ;, then among at least n — 1 available colors for the second vertex, etc.
This way, a given set of |@;| colors used in such a coloring occurs at most
|Q;]! times. Thus,

1)@+ 1) [ n
e = Qul - (@I)'

Consequently, |C(L)| > w(Q) > w(G). Since L was an arbitrary element of
L(G), the result follows. O

The preceding fact shows that the inequality in Theorem 2 is best pos-
sible and motivates the following conjecture.

Conjecture 1 For every graph G, we have f(G) = w(G).

We note that if G is a triangle-free graph on n vertices, a clique partition
@ consists of some cliques of size two (which form a matching) and some
cliques of size one. If ps is the number of cliques of size two, we see that
w(Q) = (5)"*n™~2P2; this number is minimized when py is maximized, i.e.,
when the cliques of size two in @ form a matching of G of maximum size.
We denote by p(G) the size of a maximum matching. This leads us to:



Conjecture 2 For every triangle-free graph G, f(G) = (g)“(G)n"_QM(G).

This conjecture suggests that the computation of f(G) should be tractable
for triangle-free graphs. We have not been able to prove this second conjec-
ture, not even in the case of trees. The following lemma will help us settle
a special case.

For a graph G = (V,E) and two adjacent vertices u,v of G, define

v,
‘Cuv(G) = {L € ‘C(G) ’ L(u) - L(U)}'

Lemma 2 Let G be a graph and wv an edge of G such that u is of degree
1 and v is of degree at most 2 in G. Then, for each L € L(G), there
exists L' € Ly(G) such that L'(x) = L(z), for every x € V' \ {u,v} and
IC(LY)| < [C(L)]-

Proof. Write U = U{L(z) | + € V \ {u,v}} and observe that L(u) is
disjoint from U. If L(v) too is disjoint from U, we set L'(u) = L'(v) = L(u),
and we set L'(z) = L(z) for z € V' \ {u,v}. Then it is easy to check that
c(L)| < [e(L).

Now assume that L(v) is not disjoint from U. Since L satisfies (ii), this
means that v has another neighbour w, and that L(v) N U = L(v) N L(w).
Write B = L(u) N L(v) and C' = L(v) N L(w), and then A = L(u) \ B,

= Lv)\ (BUC), and D = L(w) \ C. Thus we have L(u) = AU B,
L(v)=BUCUP, L(w) = CUD, with ANB=BNC=BNP=CNP=
CND=0,and C # 0.

We can assume that |A| < |CUP|. Indeed, if |A| > |C'UP|, we replace L
by the assignment L* obtained by removing |A| —|C'U P| elements of A from
L(u) and by setting L*(z) = L(z) for x € V' \ {u}. Clearly, |C(L*)| < |C(L)].
The corresponding sets A*, C*, P* of L* satisfy |A*| = |C* U P*| so we can
work with L* instead of L.

We fix a mapping a — a from A to C' U P.

Define L' by L'(u) = L'(v) = L(u) = AU B and L'(z) = L(x) if z €
V\ {u,v}. We claim that L’ satisfies the conclusion of the lemma. Clearly,
L' € L,,(G).

Let v/ be an L’-coloring of G. We denote elements of A and B by the
corresponding lowercase letters, and we write, e.g., v'(u,v) = (a,b) as a
shorthand for v'(u) = a € A, 7/(v) = b € B. Observe that for 7/ (u,v), there
are four possibilities: (a1, a2), (a,b), (b,a), and (b1, bs). Define a mapping ~y
by v(x) = +/(z) for all z € V' \ {u,v}. We extend 7 to an L-coloring of G as
follows:

If ' (u,v) is either (a,b) or (b,a), set y(u,v) = (a,b).



If 7/ (u,v) = (b1, ba), set y(u,v) = (b1, ba).

(a1,a2), set y(u,v) = (a1,az) if as # +'(w); otherwise set

)
If 7/ (u,v)
= (ag, (Ll).

v(u, v)

Clearly, v is an L-coloring. Moreover, it is a routine matter to check that
whenever 7/, §’ are two L'-colorings with 7/ (V) # §'(V') then the correspond-
ing L-colorings v, 0 satisfy (V') # 6(V'). This implies that [C(L")| < |C(L)].
Ul

As an application, consider the class B of trees obtained from the trees
on one or two vertices by iterating the following operation: add a vertex v
of degree one, and then add a vertex u adjacent only to v.

n—2u(G)

n)u(G)n )

Corollary 1 If G is an n-vertex graph in B, then f(G) = (3

Proof. Let vi,uq,...,vg, ug be the vertices used in the recursive contruc-
tion of G. Note that uy is pendant in G, hence viuy belongs to a maximum
matching of G. Recursively this implies that M = {vjuq,...,vpux} is a
maximum matching of G, hence k = u(G). Consider any L € L(G). Ap-
plying the preceding lemma repeatedly, we obtain an assignment L' € £L(G)
which satisfies [C(L')| = (2)"n"~2F < |C(L)]. O
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