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Abstract

Is it possible to label the edges of K, with distinct integer weights so that every
Hamilton cycle has the same total weight? We give a local condition character-
izing the labellings that witness this question’s perhaps surprising affirmative an-
swer. More generally, we address the question that arises when “Hamilton cycle”
is replaced by “k-factor” for nonnegative integers k. Such edge-labellings are in
correspondence with certain vertex-labellings, and the link allows us to determine
the growth rate of the maximum edge-label in a “most efficient” injective metric
trivial-TSP labelling.

1 Introduction

Recall the Travelling Salesman Problem (TSP): given a labelling A : E(K,) — Z* of
the edges of K, determine a Hamilton cycle H (a TSP-tour) minimizing Y-, sy A(A).
Of course, TSP is notoriously difficult; its decision version is NP-complete—see [6]—and
even the restricted case MTSP for metric A (definitions to follow) is intractable. In this
paper we focus on the other extreme, when all TSP-tours, or MTSP-tours, have equal
length.

Any constant function on the edge set provides a simple example of a labelling with

this property; a more complicated example appears in Fig. 1. We are primarily interested
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Figure 1: An injective trivial-MTSP edge-labelling of Kj.

in labellings with distinct edge-labels, i.e., ones for which X is injective, as in Fig. 1. But
most of our results apply to non-injective A as well.

We call the function A : E(K,) — Z trivial-TSP whenever the value of 3 ;) A(A4)
is independent of the Hamilton cycle H. Being trivial-TSP is a global property of A in the
sense that naive verification requires inspection of every Hamilton cycle, each of which
spans K,. A main contribution of this paper is the identification of a local property,
called Cy-matching, that characterizes the trivial-TSP edge-labellings.

Using the Cy-matching property allows us to establish a connection between those
A which are trivial-TSP and certain vertex-labellings v; namely, there is a function F
such that each edge ij of K, satisfies A(ij) = F(v;,v;). That such a connection exists
brings our study into the (overwhelming) realm of graph labellings; the extensive survey
[5] contains over 400 references. Our graph labellings are related to, but different from,
several other labelling methods studied previously. We explore a few of these connections

after introducing the basic definitions.
Notation and terminology

Sets

We write Z, Z", N and R*, respectively, for the sets of integers, positive integers,
nonnegative integers and positive real numbers. For n € Z", we use [n] to denote the set

{1,...,n}, and Z, to denote the ring of integers modulo n.
Graphs

Most of our graph-theoretic notation and terminology is relatively standard; see, e.g.,
[2] or [24] for any omitted definitions. For graphs G, H, we write H =2 G when H is
isomorphic to G and H < G when H is a subgraph of G. If G and H have identical
vertex sets and disjoint edge sets, then G & H denotes the graph on the common vertex
set with edge set F(G) U E(H). If A is an edge with ends z, y, then we write A = zy.
The vertex set of K, is usually [n]. We use § = 6(G) for the minimum degree of a graph

G. A cycle visiting the vertices xy,xs,..., 2, in this order and then returning to z; is
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denoted by (x1,29,...,x,). For a nonnegative integer k, a k-factor of G is a k-regular
spanning subgraph of G. A 1-factor is often called a perfect matching. See [14, 22] for

more specifics on the theory of matchings and factorizations.
Labellings

An edge-labelling (resp. vertez-labelling) of a graph G = (V| E) is a function A : E — S
(resp. v : V — S) into some set S of labels. For edges, we use the label sets S = Z and Z;
for vertices, we use variously S = Z, N, %Z and %N. If X is an edge-labelling and A € F|
then A(A) is called the label of A. We use analogous terminology for vertex-labellings v,
but the label of a vertex i is always denoted by v;. In discussing edge-labellings, it is often
convenient to view the edge labels as “weights”. The (total) weight of a subgraph H of
G means simply the sum M(H) = >_ ,ppy A(A).

We say that an edge-labelling A of G has constant-weight on k-factors if each k-factor
of G has the same total weight. For G = K,,, we call A metric if it satisfies the triangle-
inequality: A(zy) < AMzz) + A(zy) for every triple z,y,z € V(K,). For trivial-TSP A,
we call the common weight of all Hamilton cycles the Hamilton-weight of A. If X is both
metric and trivial-TSP, then A is trivial-MTSP.

As suggested above, we enter the realm of graph labelling when some function F

connects a pair A, v of edge- and vertex-labellings of G via
A(ij) = F(v;,v;) foreachij € E.

In this case we say that A is induced from v (via F). The two examples of such functions
under study in this paper are F(z,y) = v +y and F(z,y) = (r + y)/2. Starting from a
vertex-labelling v : V' — R*, the first of these was considered by Deuber and Zhu [4] in
their study of circular colourings of weighted graphs. The following subsection compares

trivial-T'SP labelling with three other common labelling notions.
Sequences

A (finite or infinite) sequence (z;) of integers has constant-parity if x; = x; (mod 2)
for all ¢, j. Following Kotzig [11], we call (x;) well-spread if all the pairwise sums z; + ;,
for i < j, are different; see also [16]. Finally, (z;) is a Sidon sequence if all the sums z; +x;,
for i < j, are distinct. In connection with his studies in Fourier theory, Sidon [18, 19|
considered these sequences under the name Bsy-sequence. Every Sidon sequence is well-
spread, but not conversely: (1,2,3) is well-spread but not Sidon. See [10] for a basic

reference on Sidon sequences.

Other graph labelling notions

To put the present paper into context, we compare trivial-MTSP labelling with three
other labelling schemes that have received considerable attention: graceful, harmonious,

and magic labellings. See [5] for details. A graceful labelling of G = (V, E) is an injective
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vertex-labelling v : V' — {0,1,...,|E|} such that the edge-labelling induced from v via
F(z,y) = | — y| is also injective. This term was suggested by Golomb [7], though the
idea was introduced by Rosa a few years earlier. Since |z — y| # |z — w| implies that
x + w # y + z, every graceful labelling of K, is a well-spread, N-sequence.

Graham and Sloane [8] called a graph G harmonious if it admits a vertex-labelling
v : V. — Zg such that both v and the edge-labelling induced from v via F(z,y) =
x +y (mod |E]) are injective. For example, in Fig. 1, if we label the vertices u, v, z and
y respectively with 0, 1, 2 and 4 (and reduce the edge labels modulo 6), then we obtain a
harmonious labelling of K. Note that the vertex labels of harmonious complete graphs
are also well-spread, N-sequences.

Kotzig and Rosa [12] introduced the notion of a magic labelling of G, i.e., a bijection
A:VUE — [|[VUE]|] such that for each ij € E, the value A(7) + A(ij) + A(j) is the same,
say k. (These are now called edge-magic total labellings; see [23] for a short survey and
some recent results.) It is illusory if this labelling scheme appears ill-fitted for the present
framework. As observed in [23], since Y. p A(i5)+D ;e A(D) = ([VIHE(|V]+]E|+1)/2
and \(ij) = kK — A7) — A(j), we see that k is determined by the vertex labels, so that
Aly induces A|g. Again, it is easy to see that the vertex labels of a magic labelling of K,
comprise a well-spread, N-sequence.

As we shall see (Corollary 4.2), the injective trivial-MTSP edge-labellings \ are in-
duced via F(z,y) = (x + y)/2 from constant-parity, well-spread, N-sequences of vertex
labels. Comparing these properties with those observed for the vertex labels of graceful,
harmonious, and magic labellings of complete graphs, one might expect a strong connec-
tion between these labellings and injective trivial-MTSP A. Indeed, each scheme labels the
vertices of K, with a well-spread, N-sequence, say v, ..., ,. So the sequence 2vy, ..., 2v,
satisfies the requirements of a vertex-labelling inducing our desired A. If we now replace
the graceful, harmonious, or magic edge-labels by A(ij) = v; + v;, then X is injective and
trivial-MTSP. The simplest case of the transformation just described was illustrated in
reverse when we indicated how to convert the labelling in Fig. 1 to a harmonious labelling.

Unfortunately, the connection discussed in the preceding paragraph is rather limited
because the definitions of graceful, harmonious, and magic labellings are too restrictive to
allow many complete graphs to enjoy these properties. The results are easily summarized:
K, is graceful if and only if n < 4 ([7], [20]); K, is harmonious if and only if n < 4 ([8]);
K, is magic if and only if n € {1,2,3,5,6} ([13]; see also [23] for a listing of all magic
labellings of K,). On the other hand, since the constant-parity, well-spread, N-sequences
may be extended indefinitely, we easily obtain injective trivial-MTSP edge-labellings of
K, for all n > 1.
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Figure 2: An edge-labelled graph satisfying the K,~-MP but not the C;-MP.

Outline

The rest of the paper is organized as follows. The next section characterizes the trivial-
TSP edge-labellings by the Cj-matching property. There, we also prove that such la-
bellings have constant-weight on 2-factors. Section 3 re-proves the latter result and ex-
tends it to 1-factors (provided n is even) without reference to the Cy-matching property.
In Section 4, we establish our fundamental connection between these edge-labellings and
vertex-labellings. The main result (Theorem 4.1) and its corollaries tie together some
of the earlier results and—as suggested above—provide an essential link between edge-
labellings and well-spread sequences. This link eventually allows us (in Section 5) to
determine the growth-rate of the maximum label in the “most efficient” injective trivial-
MTSP edge-labelling scheme.

2 Local conditions

An edge-labelling A : E(G) — Z of a graph G has the Cy-matching property if, for each 4-
cycle in G, say with consecutive edges A, B, C, D, the relation A(A)+\(C) = A\(B)+\(D)
holds. We shall abbreviate this property by Cy-MP.

Another way to formulate the Cy-MP for A is to require that in each 4-cycle H of G,
the total A-weight of every perfect matching of H is the same. With this view in mind, we
introduce a related local property. An edge-labelling \ : E(G) — Z has the Ky-matching
property (K4-MP) if, for each 4-clique H of GG, the total weight assigned by A to each
perfect matching of H is identical.

If an edge-labelling A of a general graph G satisfies the C,~-MP, then it necessarily
satisfies the K;-MP, but the converse is not true. Fig. 2 depicts a graph with edge labels
{1,2,...,9} satisfying the K4;-MP but not the C;-MP. We are mainly interested in edge-
labellings of complete graphs, for which the two local properties are easily seen to be

equivalent:



Proposition 2.1 An edge-labelling of K, satisfies the Cy-MP if and only if it satisfies
the K4-MP. |

It is perhaps surprising that the edge-labellings of K, that are trivial-TSP can be

recognized by verifying local conditions only.

Theorem 2.2 An edge-labelling of K, is trivial-TSP if and only if it satisfies the Cy-
matching property.

Proof. The result is vacuously true for n = 1,2 and trivial for n = 3, so we will assume
that n > 4.

For the necessity of the C,-MP, suppose that A is a trivial-TSP edge-labelling of
G = K, and consider a 4-cycle of G with consecutive edges A = zu, B = uv, C' = vw
and D = wx. Let H; denote a Hamilton cycle of G' that visits the vertices x, u, w, v
consecutively in this order; thus A, C are edges of H; while B, D are not. Let Hy be
obtained from H; by deleting the edges A, C' and adding the edges B, D; clearly H, is
also a Hamilton cycle of G. Since H; \ {A,C} = Hy \ {B, D} and A is trivial-TSP, we
must have A\(A4) + A(C') = A(B) + A(D), and since the 4-cycle was arbitrary, this shows
that A\ satisfies the C;-MP.

In proving the converse, it is convenient to consider more carefully the operation lead-
ing from H; to Hs, which we call a Cy-exchange. Notice that the Cy-exchange described
above transposes the adjacent vertices u, w in the visiting order of the initial Hamilton cy-
cle, while preserving the visiting order of the remaining vertices. It is clear that any given
pair of adjacent vertices on a Hamilton cycle of G' can be transposed by a Cj-exchange.

Now suppose that A satisfies the C;,-MP. We will argue that \(H;) = A(Hs) for any
two Hamilton cycles Hy, Hy of G. If H; visits the vertices of G in the order vy, vy, ..., v,,
then H, visits them in the order o(vy),o(v3),...,0(v,) for some permutation o of V.
By a sequence of transpositions of adjacent vertices, it is possible to shuffle the H;-order
of V into the Hs-order. Since this transposition sequence corresponds to a sequence of
Cy-exchanges, each preserving the total weight of the resulting Hamilton cycle (by the
Cy-MP), it follows that A(H;) = A(Hs). |

Theorem 2.2 reduces the complexity of the problem of recognizing the trivial-TSP
edge-labellings of K, from what on the surface appears to be super-exponential in n
(check all TSP-tours) to polynomial in n (verifying the Cy-MP requires only O(n*) time).
In Section 4, we outline an O(n?)—hence optimal—algorithm for this recognition problem.

As we shall see (cf. Theorems 3.2, 3.4, and all of Section 4), besides being trivial-
TSP, there are a number of other equivalent properties of edge-labellings of K,, which can
therefore be recognized via the Cy-MP. As a first illustration, we offer the next result.
Although it is a special case of Corollary 4.3—which itself has a short proof—we provide

a separate proof here because of its completely different flavour.
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Theorem 2.3 An edge-labelling \ of K, has constant-weight on 2-factors if and only if
it satisfies the Cy-matching property.

Proof. The necessity of the C',-MP is immediate from Theorem 2.2 since Hamilton cycles
are 2-factors. For the sufficiency, suppose that A satisfies the Cy-MP. Theorem 2.2 shows
that we need only establish that each 2-factor F' in K, has the same weight as some

Hamilton cycle. Write F' as

(xla s 7xm1)(xm1+17 s 71‘m2) e ('rmk_l—l—la .- '7xn)7

with each cycle of length at least three.

Given a cycle C' = (y1,Y2,. .., Ym), with m > 6 and 3 < i < m — 3, the split of C at
y; yields the disjoint cycles C; = (y1,...,v;) and Cy = (Yit1,-..,Ym). The total weight of
the new cycles is A\(C1) +A(C2) = A(C) +[Ayiy1) + AMYmYit1) — AWivi+1) — A(Ymy1)]. Since
the C4-MP implies that the bracketed expression is zero, we see that a split preserves the
A-weight of C.

Starting with the Hamilton cycle H := (z,...,z,)—the concatenation of the cycles
of F—and successively applying the split operation at @,,,, Zm,, ..., Tm,_, yields F, and
we have A\(F) = \(H). |

3 One-factors and two-factors

Theorems 2.2 and 2.3 together establish the equivalence of an edge-labelling of K, being
trivial-T'SP and having constant-weight on 2-factors. Eventually we will extend the scope
of this equivalence to replace ‘2’ by ‘k’, for all-—and indeed any—Fk € [n — 2]; see Corol-
lary 4.3 and Theorem 4.4. In this section, we prove the special case kK = 1 of the general
result and take another look at the £ = 2 case. Though these results are subsumed in

Section 4, the proofs here may be of independent interest.

Lemma 3.1 For any two 1-factors F', G of K,,, there exists a 1-factor H of K,, such that
both FU H and G U H are Hamilton cycles in K,.

Proof. Suppose the components of F'U G are C,C,,...,C;. Then the C; are disjoint
subgraphs whose union spans K, and each is either an edge (common to F’ and G) or an
even cycle (with edges alternately in F' and G).

If C; is an edge, call one endpoint x; and the other y;.

If C; is a cycle of length 2m, label its vertices sequentially as a;1,a;2, ..., @;2m, where
@; 1042, Q; 30,4, . .. arein F' and a; 2a; 3, @; 40, 5, . . . are in G; then a; ; is labelled x; and a@; ;;,41
is labelled y;. For each such cycle Cj, all the edges a;2ai2m, @i3@io2m—1, - - - @i m@im+o Of

K, are allocated to H. Adding the edges y122, y2x3,..., y;_12; to H yields a suitable
1-factor. |



Theorem 3.2 For every even positive integer n, an edge-labelling A of K, s trivial-TSP
(with Hamilton-weight k) if and only if it has constant-weight on 1-factors (with weight

k/2).

Proof. First suppose that A is trivial-TSP, and let F' be a 1-factor of K,. Select any
1-factor G of K,,, and find a 1-factor H such that both FFU H and G U H are Hamilton
cycles in K,,. Then

AMF)+AMH)=r=AG)+ A\H),

so M(F) = A(G); i.e., A has constant-weight on 1-factors. In particular, A(F') = A(H), so
2\(F) = k.
The converse is trivial since, with n even, each Hamilton cycle is a disjoint union of

two 1-factors. [ ]

Lemma 3.3 If G is a union of two disjoint cycles of length m and m+t, with 0 <t < m,
then there exists a Hamilton cycle H in Kopyy ~ E(G) such that G & H can be factored

into two Hamilton cycles.
Proof. Suppose G = (x1,%2, ..., Tm) U (Y1, Y2, - - - Ymt)- =0, let

H:= ($17y27x27 e L1 Yiy Ty - - - 7xm7y1)-

Ift=1, let

H:= ('rlaymay%x% s i1 Yis Ly - - 71‘m—17ym+171‘may1)‘

Finally, if ¢ > 2, let

H:= (Ila Y2, Y2445 T2, Y35 Y34ty - -« 5 Tty Ytt15 Y2441, Ti415 Y2042, L2y - - - s Tm—15 Ym+t, Tm, yl)
In each case, define

L = GU UZplmes N T1Tm N Y1Ymit; (1)
M = HUz1Zp UY1Ymast N T1Y1 N TinYmat-

Then L and M are Hamilton cycles, and G & H = L & M. |

Now we are ready to give the promised second proof of the equivalence established by
Theorems 2.2 and 2.3.

Theorem 3.4 An edge-labelling A of K, is trivial-TSP (with Hamilton-weight r) if and
only if it has constant-weight on 2-factors (with weight k).
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Figure 3: Two small cases for Theorem 3.4

Proof. The sufficiency is immediate since Hamilton cycles are 2-factors. For the necessity,
suppose A is trivial-TSP, and let G be a 2-factor of K,. If G is Hamiltonian, there is
nothing to prove. So assume that G consists of at least two cycles. We shall prove that
for every such G there exist a 2-factor L such that A(L) = x and two Hamilton cycles H,
M such that G® H = L @ M. Tt will then follow from A\(G) + A(H) = A(L) + \(M) that
AMG) = k.

Assume the result is true for all 2-factors with fewer components (cycles) than G.
Denote by m = m(G) the size of the smallest cycle of G. If n —m < 6, then G consists
of two cycles, the larger being of size n — m < 2m (since m > 3), and the required H,
L and M exist by Lemma 3.3. If n — m = 6, Lemma 3.3 applies in every case except
G = C3UCg or C3U C3 U3, and suitable H, L and M are shown in Fig. 3. (In these
cases A\(L) = k because L is Hamiltonian.)

Now we assume n — m > 6. Denote by Ci = (21, ,...,%,) a component of G of
length m, and write G’ for the graph derived from K, by deleting all the edges of G and
all the vertices of C;. Then G' has n — m vertices, is regular of degree n — m — 3, and
hence satisfies

0(G) =z (VG +1). (2)
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From a theorem of Ore [15], a graph satisfying (2) has a spanning path whose endpoints
are any specified pair of vertices. Select two vertices, y1, ¥n_m, that are adjacent in G}
say the path y1, s, . .., Yn_m is a Hamilton path in G'. Then consider the Hamilton cycle
(in K,)

H:= (y17 T1,Y92, -5 Ym—1, Tm—1, Ym> Ym+1, Ym+25 - - - s Yn—m,» $m),

notice that G and H are edge-disjoint.

Now define L, M from G, H by the construction (1), with n — m in the role of
m + t. Then L and M are edge-disjoint, and M is a Hamilton cycle. Since L has fewer
components than G, by hypothesis we have A\(L) = k. Moreover G® H = L & M. |

Remark. Theorem 3.4 also follows from the fact that, given any 2-factor G of K,,, there
exist Hamilton cycles H, L and M such that G @ H = L & M (with the obvious small

exceptions). However, a proof of that fact would be longer than the proof given. |

4 FEdge labels from vertex labels

Theorem 4.1 and Corollary 4.2 below establish the connection between trivial-TSP edge-
labellings and vertex-labellings mentioned in the introduction. This link provides the key
to generalizing Theorems 2.3, 3.2 and 3.4 to include k-factors for & > 0; see Corollary 4.3
and Theorem 4.4. It also brings constant-parity and well-spread sequences into the fold,
gives an easy algorithm for producing trivial-T'SP edge-labellings of K,,, and finally yields

an optimal algorithm for recognizing these labellings.

Theorem 4.1 Forn > 3 and G = K, an edge-labelling A : E(G) — Z satisfies the
Cy-matching property if and only if there is a vertex-labelling v : V(G) — %Z such that

Aij) = v; + v; for each edge ij of G. (3)

The sequence (v;)?_, is uniquely determined by \, is nonnegative if and only if X is metric,

and 1s well-spread if and only if X is injective.

Proof. If such a vertex-labelling exists, then each Hamilton cycle H of G satisfies
ijEE(H) ijeE(H) i=1

since H is a 2-factor of G. Thus A is a trivial-TSP labelling, and Theorem 2.2 implies
that A satisfies the Cy-MP.

We prove the converse by induction on n.

10



Any edge-labelling A of K3 vacuously satisfies the C'y-MP, so we must establish the
existence of a unique half-integer vertex-labelling v satisfying (3). In this case (n = 3),

this system takes the form

1 10 2 A(12)
1 01 v | =1 A13) |,
011 Vs A(23)
1 1 -1
and since this coefficient matrix is nonsingular with inverse % 1 =1 1 |, wesee
-1 1 1

that (v, v, v3) is indeed uniquely determined by (3) and has half-integer entries.

Now fix n > 3, assume the result is true in case G = K,_;, and suppose that A :
E(K,) — Z satisfies the C4;-MP. Let G be the subgraph of K, induced by the vertices in
[n—1]. Then G = K,,_; and A|g(q) satisfies the Cy-MP for G, so our inductive hypothesis
implies that there is a unique vertex-labelling v : V/(G) — %Z such that

A(ij) = v; + v; for each edge ij of G. (4)

We complete the proof by arguing that v extends uniquely and unambiguously to [n],
subject to (3). For an appropriate choice of v,, the equations in (3) still to be satisfied
are

A(in) =vi+ v, for1 <i<n-—1. (5)

The only way to satisfy the first of these is to set v, := A(1n) — v4. To show that this
value satisfies the remaining equations, we fix 7, 1 < 4 < n, and derive the ith equation in
(5). Since n > 3, there is an index j € [n] \ {1,7,n}, so that (1,7,4,n) is a 4-cycle. Since
A satisfies the C,-MP, we have

A1) + A(in) = A(i7) + A(1n),

which by (4) yields
(1 + 13) + Alim) = (34 + ) + A(1n),

or
A(in) = v+ (A(1n) — 1) = v + vy,

Therefore, our choice of v, indeed satisfies (5).
Finally, notice that nonnegative vertex-labels correspond exactly to trivial-MTSP

edge-labellings, since, for any three vertices x, y, z, we have

AMzy) < Mzz) + AMzy) < v, >0. n

11



Corollary 4.2 For n > 3, an edge-labelling \ : E(K,) — Z satisfies the Cy-matching
property if and only if there is a vertez-labelling v : V(K,) — Z such that

Vi+Vj

A(ij) = for each edge ij of K,. (6)

The sequence (v;)P_, is uniquely determined by X\, has constant-parity, is nonnegative if

and only if X is metric, and is well-spread if and only if X is injective.
Proof. Double the vertex labels in Theorem 4.1. |

Remarks. Corollary 4.2 (or Theorem 4.1) suggests an algorithm for producing trivial-
TSP edge-labellings: start with a constant-parity integral sequence (v;)?, for which the
mean of any two terms is positive, and define A : E(K,) — Z by (6). We can arrange for
A to be injective (or metric) by starting with a well-spread (or nonnegative) v.

With one further observation, we can use these results to obtain the algorithm alluded
to following the proof of Theorem 2.2, namely, an optimal algorithm to check if a given
edge-labelling \ of K, is trivial-TSP. Notice that any fixed spanning tree T" of K, allows
us to obtain, in O(n) time, solutions (v;)?_; to (6)—with 7" in place of K,—with one
degree of freedom. For any edge A € K,, \ T, the value of A(A) then uniquely determines
all the v;. By Corollary 4.2 (and Theorem 2.2), to decide whether A is trivial-TSP, it
remains only to verify (6) for all remaining edges. Since this can be done in O(n?) time,
and this decision problem obviously requires examining every edge of K, this algorithm

is indeed optimal. [ |
The next result generalizes Theorems 2.3, 3.2 and 3.4.

Corollary 4.3 For n > 3, an edge-labelling A of K, satisfies the Cy-matching property
if and only if it has constant-weight on k-factors, for all k > 0.

Proof. For the sufficiency of the k-factor condition, take & = 2 and apply Theorem 2.3 (or
Theorem 2.2). For the necessity, suppose that A\ satisfies the Cy-MP, and fix an integer
k > 0. By Theorem 4.1, there is a vertex-labelling v satisfying (3). Now any k-factor F

of K,,, provided it exists, satisfies

ijEB(F) ijEB(F)

We can weaken the condition in Corollary 4.3 considerably, provided n and k are
restricted to avoid trivially satisfying the weakened condition. This statement is made
precise in part (e) of the following result, which also summarizes our various characteri-

zations of trivial-T'SP edge-labellings.

Theorem 4.4 If n > 4 and X is an edge-labelling of K,, then the following statements

are equivalent: 12



(a) X\ is trivial-TSP;

(b) X satisfies the Cy-matching property;

(c) X satisfies the Ky-matching property;

(d) for every k, 0 < k <n —1, the labelling X has constant-weight on k-factors;
(e) there exists an integer k, 1 < k < n — 2, such that A has constant-weight on

k-factors, and k is even if n is odd.

Proof. We know (cf. Proposition 2.1, Theorem 2.2 and Corollary 4.3) that (a)—(d) are
equivalent. Moreover, Theorem 2.3 shows that (b) implies (e), with k = 2.

To see that (e) implies (b), fix k& € [n — 2], and assume that A has constant-weight
on k-factors. Since k is even if n is odd, there exists a k-factor F' of K,. Since the
complement F of F is an (n— k — 1)-factor, and \(F) = \(K,,) — \(F), we see that \ has
constant-weight on (n — k — 1)-factors. Therefore, after possibly interchanging the roles
of k and n — k — 1, we may assume that £ < (n —1)/2.

Since k < (n — 1)/2 < n — 2, there exist vertices x, y that are nonadjacent in F.
Let zy be a neighbour of x in F. Since y and x; both have degree £ in F', and since
x1 is adjacent to x while y is not, there exists a neighbour y; of y in F' that is different
from, and nonadjacent with z;. Now, a Cy-exchange (see the proof of Theorem 2.2)
on the 4-cycle (x,z1,y1,y) produces another k-factor F'. Since A(F) = A(F"), we have
Azz1) + Ayyr) = Azy) + Mzyr).-

Now let C' = (u,uy,v1,v) be any 4-cycle of K, and let m be a permutation of [n]
with m(z) = u, 7(y) = v, 7(x1) = uy and 7(y;) = v;. Then 7(F) and 7 (F')—defined in
the natural way—are k-factors which differ by a C;-exchange on C'. As in the preceding
paragraph, this implies that C' does not violate the Cy-MP, and since C' was arbitrary, we
conclude that (b) holds. |

5 Edge label growth-rate

Recall from Theorem 4.1 that an injective, metric edge-labelling corresponds to a well-
spread, nonnegative, half-integer sequence of vertex labels. With its first term deleted,
the Fibonacci sequence furnishes one example of such a sequence; see, e.g., [3] for related
background.

Now we consider the rate of growth of the maximum label of the most efficient injective
trivial-MTSP edge-labelling scheme. We shall prove that the function

U(n):= min Aer%?%n) A(A)

(the minimum being taken over all injective trivial-MTSP edge-labellings A) exhibits

quadratic growth. This should be compared with the growth rate of the edge labels

13



induced by the Fibonacci numbers as vertex labels. Here, if ¢ is the golden ratio, then
maxscp(k,) A(A) € O(¢™), so these labels grow exponentially.
Define S, W, W, : N — Z* and v, 0., : Z" — N by

S(N) := max{n:3 Sidon sequence 0 < x; < --- <z, < N};
W(N) = max{n:3 well-spread sequence 0 < z; < --- <z, < N};
Wep(N) = max{n : 3 constant-parity well-spread sequence 0 < z; < -+ < x, < N};
Yep(n) = min{x, | + x, : 3 constant-parity well-spread N-sequence z; < --- < z,,};
oep(n) = min{x, : 3 constant-parity well-spread N-sequence z; < --- < z,}.

A celebrated result of Erdds and others is that S(N) ~ v/N; i.e.,

(1 . 0(1))\/ﬁ < S(N) < (1 + 0(1))¢N as N — oo, (7)

Remarks. The upper bound in (7) was proved by Erdés and Turan, who also established
the lower bound (1/v/2 — o(1))V/N; later Erdés and Chowla applied a theorem of Singer
to improve the lower bound to that in (7). See [1, 21] for further discussion and references.
It remains open—and was given a price tag by Erdés—to decide whether, for every ¢ > 0,
the inequality S(N) < v/N + o(N¢) holds; see [9] for related material.

Recall (Corollary 4.2) that the set of edge labels of an injective trivial-TSP labelling
takes the form {(v;+v;)/2 | i # j} for some constant-parity, well-spread, integer sequence
(v;)?_,. For Sidon sequences (z;) with z; € [N], similar “sum-sets” {z; + =, | i < j} have

been studied considerably; see [17] for recent results and further references. [

1.

Notice that W, is surjective and nondecreasing, while o, is increasing; thus o, :

range(o.,) — Z" exists, as does the following approximate inverse for W,
W_(n):= min{N : W, (N) =n}, forneZ".
Then W_ is a right inverse for W, but when composed on the left yields the weaker
W, oWy (N) < N.
Since every Sidon sequence is well-spread, we have

W(N) > S(N) for each N € N. (8)

Of the myriad connections between the seven functions just defined, we shall need only a

few more, enumerated as Lemmas 5.1-5.5.

Lemma 5.1 Every n € Z* satisfies tey(n) < 2W o, (n).

14



Proof. Since t.,(1) = W_ (1) = 0, the assertion holds for n = 1. For n > 2, let
N = W_(n). Since W, (N) = n, we can choose a constant-parity well-spread sequence

0<x <--- <z, <N. By definition, 1., satisfies

Yep(n) < wpy + 25 <2N =2 =2W_ (n) — 2. n

Lemma 5.2 Each N € range(o,,) satisfies W, (N) > o} (N).

Proof. Let n = o_'(N). Since o.,(n) = N, there exists a constant-parity well-spread

p
sequence 0 < 2y < --- <z, = N. Hence, W,(N) >n = ac_pl(N). n

Lemma 5.3 For every N € N, if k = W,,(N), then (k) < N.

2

Proof. If 0 < 2y < --- <z, < N is a constant-parity well-spread sequence, then the (’2“)

sums x; + x;, @ < j, are distinct and belong to the set {0,2,...,2(N —1)}. n

Lemma 5.4 Fach n > 2 satisfies 1o, (n) > 0¢p(n) + 0ep(n — 1).

Proof. Choose a constant-parity well-spread sequence z; < .-+ < z, so that ¢.,(n) =

Tp—1 + Tp. Since o.(n) <z, and oy (n — 1) < x,_1, the assertion follows. |

Lemma 5.5 Every N € N satisfies W, (N) > W (| N/2]).

Proof. If n = W(N)and 0 < z; < --- < x, < N is well-spread, then y; := 2x; defines
a constant-parity well-spread sequence of length n contained in {0,1,...,2N}. Thus,
Wep(2N +1) > W, (2N) > n = W(N). |

Theorem 5.6 ¥(n) € O(n?); in particular, we have

(n—1)°
2

U(n) > forn > 2, (9)

and
U(n) < 2n? (1 + 0(1)) as n — oo. (10)

Proof. For the lower bound, let n € N, N = o.,(n), and k = W,(N). Lemma 5.2 shows

that n = o_'(N) < k, while Lemma 5.3 gives () < N, so that

n(n —1)

5
If n > 2, then Lemma 5.4 gives ., (n) > 0¢(n)+0e(n—1) > (n—1)% Now Corollary 4.2
shows that

Ocp (n) >

W(n) = L, (11)



yielding (9).
For the upper bound, given a (large) n € N, let N = W, (n). Lemma 5.5, (8) and (7)
give

n=Wa(N) 2 W(N/2]) = S(IN/2)) = [N/2] 2 (1 - o(1)),
whence N < 2n%(1 4 o(1)) as n — oo. Now Lemma 5.1 shows that
Vep(n) < 2W5(n) = 2N < 4n2<1 + 0(1)),
and (11) gives (10). n

With the upper and lower bounds on ¥(n) differing only by a factor of four, Theo-
rem 5.6 goes a long way in determining the growth-rate of ¥(n). In the spirit of (7), we

close with

Conjecture 5.7 The function ¥(n) = m}nAm%X ))\(A), the minimum being taken over
€E(Kn

all injective trivial-MTSP edge-labellings A of K,,, satisfies

U(n) ~ 2n? asn — oo.
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