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tIs it possible to label the edges of Kn with distin
t integer weights so that everyHamilton 
y
le has the same total weight? We give a lo
al 
ondition 
hara
ter-izing the labellings that witness this question's perhaps surprising aÆrmative an-swer. More generally, we address the question that arises when \Hamilton 
y
le"is repla
ed by \k-fa
tor" for nonnegative integers k. Su
h edge-labellings are in
orresponden
e with 
ertain vertex-labellings, and the link allows us to determinethe growth rate of the maximum edge-label in a \most eÆ
ient" inje
tive metri
trivial-TSP labelling.1 Introdu
tionRe
all the Travelling Salesman Problem (TSP): given a labelling � : E(Kn) ! Z+ ofthe edges of Kn, determine a Hamilton 
y
le H (a TSP-tour) minimizingPA2E(H) �(A).Of 
ourse, TSP is notoriously diÆ
ult; its de
ision version is NP-
omplete|see [6℄|andeven the restri
ted 
ase MTSP for metri
 � (de�nitions to follow) is intra
table. In thispaper we fo
us on the other extreme, when all TSP-tours, or MTSP-tours, have equallength.Any 
onstant fun
tion on the edge set provides a simple example of a labelling withthis property; a more 
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Figure 1: An inje
tive trivial-MTSP edge-labelling of K4.in labellings with distin
t edge-labels, i.e., ones for whi
h � is inje
tive, as in Fig. 1. Butmost of our results apply to non-inje
tive � as well.We 
all the fun
tion � : E(Kn)! Z trivial-TSP whenever the value ofPA2E(H) �(A)is independent of the Hamilton 
y
le H. Being trivial-TSP is a global property of � in thesense that naive veri�
ation requires inspe
tion of every Hamilton 
y
le, ea
h of whi
hspans Kn. A main 
ontribution of this paper is the identi�
ation of a lo
al property,
alled C4-mat
hing, that 
hara
terizes the trivial-TSP edge-labellings.Using the C4-mat
hing property allows us to establish a 
onne
tion between those� whi
h are trivial-TSP and 
ertain vertex-labellings �; namely, there is a fun
tion Fsu
h that ea
h edge ij of Kn satis�es �(ij) = F (�i; �j). That su
h a 
onne
tion existsbrings our study into the (overwhelming) realm of graph labellings; the extensive survey[5℄ 
ontains over 400 referen
es. Our graph labellings are related to, but di�erent from,several other labelling methods studied previously. We explore a few of these 
onne
tionsafter introdu
ing the basi
 de�nitions.Notation and terminologySetsWe write Z, Z+, N and R+ , respe
tively, for the sets of integers, positive integers,nonnegative integers and positive real numbers. For n 2 Z+, we use [n℄ to denote the setf1; : : : ; ng, and Zn to denote the ring of integers modulo n.GraphsMost of our graph-theoreti
 notation and terminology is relatively standard; see, e.g.,[2℄ or [24℄ for any omitted de�nitions. For graphs G, H, we write H �= G when H isisomorphi
 to G and H � G when H is a subgraph of G. If G and H have identi
alvertex sets and disjoint edge sets, then G�H denotes the graph on the 
ommon vertexset with edge set E(G) [ E(H). If A is an edge with ends x, y, then we write A = xy.The vertex set of Kn is usually [n℄. We use Æ = Æ(G) for the minimum degree of a graphG. A 
y
le visiting the verti
es x1; x2; : : : ; xr in this order and then returning to x1 is2



denoted by (x1; x2; : : : ; xr). For a nonnegative integer k, a k-fa
tor of G is a k-regularspanning subgraph of G. A 1-fa
tor is often 
alled a perfe
t mat
hing. See [14, 22℄ formore spe
i�
s on the theory of mat
hings and fa
torizations.LabellingsAn edge-labelling (resp. vertex-labelling) of a graph G = (V;E) is a fun
tion � : E ! S(resp. � : V ! S) into some set S of labels. For edges, we use the label sets S = Z and Z+;for verti
es, we use variously S = Z, N , 12Z and 12N. If � is an edge-labelling and A 2 E,then �(A) is 
alled the label of A. We use analogous terminology for vertex-labellings �,but the label of a vertex i is always denoted by �i. In dis
ussing edge-labellings, it is often
onvenient to view the edge labels as \weights". The (total) weight of a subgraph H ofG means simply the sum �(H) := PA2E(H) �(A).We say that an edge-labelling � of G has 
onstant-weight on k-fa
tors if ea
h k-fa
torof G has the same total weight. For G = Kn, we 
all � metri
 if it satis�es the triangle-inequality: �(xy) � �(xz) + �(zy) for every triple x; y; z 2 V (Kn). For trivial-TSP �,we 
all the 
ommon weight of all Hamilton 
y
les the Hamilton-weight of �. If � is bothmetri
 and trivial-TSP, then � is trivial-MTSP.As suggested above, we enter the realm of graph labelling when some fun
tion F
onne
ts a pair �, � of edge- and vertex-labellings of G via�(ij) = F (�i; �j) for ea
h ij 2 E:In this 
ase we say that � is indu
ed from � (via F ). The two examples of su
h fun
tionsunder study in this paper are F (x; y) = x + y and F (x; y) = (x + y)=2. Starting from avertex-labelling � : V ! R+ , the �rst of these was 
onsidered by Deuber and Zhu [4℄ intheir study of 
ir
ular 
olourings of weighted graphs. The following subse
tion 
omparestrivial-TSP labelling with three other 
ommon labelling notions.Sequen
esA (�nite or in�nite) sequen
e (xi) of integers has 
onstant-parity if xi � xj (mod 2)for all i, j. Following Kotzig [11℄, we 
all (xi) well-spread if all the pairwise sums xi + xj,for i < j, are di�erent; see also [16℄. Finally, (xi) is a Sidon sequen
e if all the sums xi+xj,for i � j, are distin
t. In 
onne
tion with his studies in Fourier theory, Sidon [18, 19℄
onsidered these sequen
es under the name B2-sequen
e. Every Sidon sequen
e is well-spread, but not 
onversely: (1; 2; 3) is well-spread but not Sidon. See [10℄ for a basi
referen
e on Sidon sequen
es.Other graph labelling notionsTo put the present paper into 
ontext, we 
ompare trivial-MTSP labelling with threeother labelling s
hemes that have re
eived 
onsiderable attention: gra
eful, harmonious,and magi
 labellings. See [5℄ for details. A gra
eful labelling of G = (V;E) is an inje
tive3



vertex-labelling � : V ! f0; 1; : : : ; jEjg su
h that the edge-labelling indu
ed from � viaF (x; y) = jx � yj is also inje
tive. This term was suggested by Golomb [7℄, though theidea was introdu
ed by Rosa a few years earlier. Sin
e jx � yj 6= jz � wj implies thatx + w 6= y + z, every gra
eful labelling of Kn is a well-spread, N-sequen
e.Graham and Sloane [8℄ 
alled a graph G harmonious if it admits a vertex-labelling� : V ! ZjEj su
h that both � and the edge-labelling indu
ed from � via F (x; y) =x+ y (mod jEj) are inje
tive. For example, in Fig. 1, if we label the verti
es u, v, x andy respe
tively with 0, 1, 2 and 4 (and redu
e the edge labels modulo 6), then we obtain aharmonious labelling of K4. Note that the vertex labels of harmonious 
omplete graphsare also well-spread, N-sequen
es.Kotzig and Rosa [12℄ introdu
ed the notion of a magi
 labelling of G, i.e., a bije
tion� : V [E ! [jV [Ej℄ su
h that for ea
h ij 2 E, the value �(i)+�(ij)+�(j) is the same,say �. (These are now 
alled edge-magi
 total labellings; see [23℄ for a short survey andsome re
ent results.) It is illusory if this labelling s
heme appears ill-�tted for the presentframework. As observed in [23℄, sin
ePij2E �(ij)+Pi2V �(i) = (jV j+jEj)(jV j+jEj+1)=2and �(ij) = � � �(i) � �(j), we see that � is determined by the vertex labels, so that�jV indu
es �jE. Again, it is easy to see that the vertex labels of a magi
 labelling of Kn
omprise a well-spread, N-sequen
e.As we shall see (Corollary 4.2), the inje
tive trivial-MTSP edge-labellings � are in-du
ed via F (x; y) = (x + y)=2 from 
onstant-parity, well-spread, N-sequen
es of vertexlabels. Comparing these properties with those observed for the vertex labels of gra
eful,harmonious, and magi
 labellings of 
omplete graphs, one might expe
t a strong 
onne
-tion between these labellings and inje
tive trivial-MTSP �. Indeed, ea
h s
heme labels theverti
es of Kn with a well-spread, N-sequen
e, say �1; : : : ; �n. So the sequen
e 2�1; : : : ; 2�nsatis�es the requirements of a vertex-labelling indu
ing our desired �. If we now repla
ethe gra
eful, harmonious, or magi
 edge-labels by �(ij) = �i + �j, then � is inje
tive andtrivial-MTSP. The simplest 
ase of the transformation just des
ribed was illustrated inreverse when we indi
ated how to 
onvert the labelling in Fig. 1 to a harmonious labelling.Unfortunately, the 
onne
tion dis
ussed in the pre
eding paragraph is rather limitedbe
ause the de�nitions of gra
eful, harmonious, and magi
 labellings are too restri
tive toallow many 
omplete graphs to enjoy these properties. The results are easily summarized:Kn is gra
eful if and only if n � 4 ([7℄, [20℄); Kn is harmonious if and only if n � 4 ([8℄);Kn is magi
 if and only if n 2 f1; 2; 3; 5; 6g ([13℄; see also [23℄ for a listing of all magi
labellings of Kn). On the other hand, sin
e the 
onstant-parity, well-spread, N-sequen
esmay be extended inde�nitely, we easily obtain inje
tive trivial-MTSP edge-labellings ofKn for all n � 1.
4
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Figure 2: An edge-labelled graph satisfying the K4-MP but not the C4-MP.OutlineThe rest of the paper is organized as follows. The next se
tion 
hara
terizes the trivial-TSP edge-labellings by the C4-mat
hing property. There, we also prove that su
h la-bellings have 
onstant-weight on 2-fa
tors. Se
tion 3 re-proves the latter result and ex-tends it to 1-fa
tors (provided n is even) without referen
e to the C4-mat
hing property.In Se
tion 4, we establish our fundamental 
onne
tion between these edge-labellings andvertex-labellings. The main result (Theorem 4.1) and its 
orollaries tie together someof the earlier results and|as suggested above|provide an essential link between edge-labellings and well-spread sequen
es. This link eventually allows us (in Se
tion 5) todetermine the growth-rate of the maximum label in the \most eÆ
ient" inje
tive trivial-MTSP edge-labelling s
heme.2 Lo
al 
onditionsAn edge-labelling � : E(G)! Z of a graph G has the C4-mat
hing property if, for ea
h 4-
y
le inG, say with 
onse
utive edges A, B, C, D, the relation �(A)+�(C) = �(B)+�(D)holds. We shall abbreviate this property by C4-MP.Another way to formulate the C4-MP for � is to require that in ea
h 4-
y
le H of G,the total �-weight of every perfe
t mat
hing of H is the same. With this view in mind, weintrodu
e a related lo
al property. An edge-labelling � : E(G)! Z has the K4-mat
hingproperty (K4-MP) if, for ea
h 4-
lique H of G, the total weight assigned by � to ea
hperfe
t mat
hing of H is identi
al.If an edge-labelling � of a general graph G satis�es the C4-MP, then it ne
essarilysatis�es the K4-MP, but the 
onverse is not true. Fig. 2 depi
ts a graph with edge labelsf1; 2; : : : ; 9g satisfying the K4-MP but not the C4-MP. We are mainly interested in edge-labellings of 
omplete graphs, for whi
h the two lo
al properties are easily seen to beequivalent: 5



Proposition 2.1 An edge-labelling of Kn satis�es the C4-MP if and only if it satis�esthe K4-MP.It is perhaps surprising that the edge-labellings of Kn that are trivial-TSP 
an bere
ognized by verifying lo
al 
onditions only.Theorem 2.2 An edge-labelling of Kn is trivial-TSP if and only if it satis�es the C4-mat
hing property.Proof. The result is va
uously true for n = 1; 2 and trivial for n = 3, so we will assumethat n � 4.For the ne
essity of the C4-MP, suppose that � is a trivial-TSP edge-labelling ofG = Kn, and 
onsider a 4-
y
le of G with 
onse
utive edges A = xu, B = uv, C = vwand D = wx. Let H1 denote a Hamilton 
y
le of G that visits the verti
es x, u, w, v
onse
utively in this order; thus A, C are edges of H1 while B, D are not. Let H2 beobtained from H1 by deleting the edges A, C and adding the edges B, D; 
learly H2 isalso a Hamilton 
y
le of G. Sin
e H1 r fA;Cg = H2 r fB;Dg and � is trivial-TSP, wemust have �(A) + �(C) = �(B) + �(D), and sin
e the 4-
y
le was arbitrary, this showsthat � satis�es the C4-MP.In proving the 
onverse, it is 
onvenient to 
onsider more 
arefully the operation lead-ing from H1 to H2, whi
h we 
all a C4-ex
hange. Noti
e that the C4-ex
hange des
ribedabove transposes the adja
ent verti
es u, w in the visiting order of the initial Hamilton 
y-
le, while preserving the visiting order of the remaining verti
es. It is 
lear that any givenpair of adja
ent verti
es on a Hamilton 
y
le of G 
an be transposed by a C4-ex
hange.Now suppose that � satis�es the C4-MP. We will argue that �(H1) = �(H2) for anytwo Hamilton 
y
les H1, H2 of G. If H1 visits the verti
es of G in the order v1; v2; : : : ; vn,then H2 visits them in the order �(v1); �(v2); : : : ; �(vn) for some permutation � of V .By a sequen
e of transpositions of adja
ent verti
es, it is possible to shu�e the H1-orderof V into the H2-order. Sin
e this transposition sequen
e 
orresponds to a sequen
e ofC4-ex
hanges, ea
h preserving the total weight of the resulting Hamilton 
y
le (by theC4-MP), it follows that �(H1) = �(H2).Theorem 2.2 redu
es the 
omplexity of the problem of re
ognizing the trivial-TSPedge-labellings of Kn from what on the surfa
e appears to be super-exponential in n(
he
k all TSP-tours) to polynomial in n (verifying the C4-MP requires only O(n4) time).In Se
tion 4, we outline an O(n2)|hen
e optimal|algorithm for this re
ognition problem.As we shall see (
f. Theorems 3.2, 3.4, and all of Se
tion 4), besides being trivial-TSP, there are a number of other equivalent properties of edge-labellings of Kn whi
h 
antherefore be re
ognized via the C4-MP. As a �rst illustration, we o�er the next result.Although it is a spe
ial 
ase of Corollary 4.3|whi
h itself has a short proof|we providea separate proof here be
ause of its 
ompletely di�erent 
avour.6



Theorem 2.3 An edge-labelling � of Kn has 
onstant-weight on 2-fa
tors if and only ifit satis�es the C4-mat
hing property.Proof. The ne
essity of the C4-MP is immediate from Theorem 2.2 sin
e Hamilton 
y
lesare 2-fa
tors. For the suÆ
ien
y, suppose that � satis�es the C4-MP. Theorem 2.2 showsthat we need only establish that ea
h 2-fa
tor F in Kn has the same weight as someHamilton 
y
le. Write F as(x1; : : : ; xm1)(xm1+1; : : : ; xm2) � � � (xmk�1+1; : : : ; xn);with ea
h 
y
le of length at least three.Given a 
y
le C = (y1; y2; : : : ; ym), with m � 6 and 3 � i � m � 3, the split of C atyi yields the disjoint 
y
les C1 = (y1; : : : ; yi) and C2 = (yi+1; : : : ; ym). The total weight ofthe new 
y
les is �(C1)+�(C2) = �(C)+[�(yiy1)+�(ymyi+1)��(yiyi+1)��(ymy1)℄. Sin
ethe C4-MP implies that the bra
keted expression is zero, we see that a split preserves the�-weight of C.Starting with the Hamilton 
y
le H := (x1; : : : ; xn)|the 
on
atenation of the 
y
lesof F|and su

essively applying the split operation at xm1 ; xm2 ; : : : ; xmk�1 yields F , andwe have �(F ) = �(H).3 One-fa
tors and two-fa
torsTheorems 2.2 and 2.3 together establish the equivalen
e of an edge-labelling of Kn beingtrivial-TSP and having 
onstant-weight on 2-fa
tors. Eventually we will extend the s
opeof this equivalen
e to repla
e `2' by `k', for all|and indeed any|k 2 [n � 2℄; see Corol-lary 4.3 and Theorem 4.4. In this se
tion, we prove the spe
ial 
ase k = 1 of the generalresult and take another look at the k = 2 
ase. Though these results are subsumed inSe
tion 4, the proofs here may be of independent interest.Lemma 3.1 For any two 1-fa
tors F , G of Kn, there exists a 1-fa
tor H of Kn su
h thatboth F [H and G [H are Hamilton 
y
les in Kn.Proof. Suppose the 
omponents of F [ G are C1; C2; : : : ; Ct. Then the Ci are disjointsubgraphs whose union spans Kn, and ea
h is either an edge (
ommon to F and G) or aneven 
y
le (with edges alternately in F and G).If Ci is an edge, 
all one endpoint xi and the other yi.If Ci is a 
y
le of length 2m, label its verti
es sequentially as ai;1; ai;2; : : : ; ai;2m, whereai;1ai;2; ai;3ai;4; : : : are in F and ai;2ai;3; ai;4ai;5; : : : are inG; then ai;1 is labelled xi and ai;m+1is labelled yi. For ea
h su
h 
y
le Ci, all the edges ai;2ai;2m; ai;3ai;2m�1; : : : ; ai;mai;m+2 ofKn are allo
ated to H. Adding the edges y1x2, y2x3,: : :, yt�1xt to H yields a suitable1-fa
tor. 7



Theorem 3.2 For every even positive integer n, an edge-labelling � of Kn is trivial-TSP(with Hamilton-weight �) if and only if it has 
onstant-weight on 1-fa
tors (with weight�=2).Proof. First suppose that � is trivial-TSP, and let F be a 1-fa
tor of Kn. Sele
t any1-fa
tor G of Kn, and �nd a 1-fa
tor H su
h that both F [H and G [H are Hamilton
y
les in Kn. Then �(F ) + �(H) = � = �(G) + �(H);so �(F ) = �(G); i.e., � has 
onstant-weight on 1-fa
tors. In parti
ular, �(F ) = �(H), so2�(F ) = �.The 
onverse is trivial sin
e, with n even, ea
h Hamilton 
y
le is a disjoint union oftwo 1-fa
tors.Lemma 3.3 If G is a union of two disjoint 
y
les of length m and m+t, with 0 � t < m,then there exists a Hamilton 
y
le H in K2m+t r E(G) su
h that G �H 
an be fa
toredinto two Hamilton 
y
les.Proof. Suppose G = (x1; x2; : : : ; xm) [ (y1; y2; : : : ; ym+t). If t = 0, letH := (x1; y2; x2; : : : ; xi�1; yi; xi; : : : ; xm; y1):If t = 1, let H := (x1; ym; y2; x2; : : : ; xi�1; yi; xi; : : : ; xm�1; ym+1; xm; y1):Finally, if t � 2, letH := (x1; y2; y2+t; x2; y3; y3+t; : : : ; xt; yt+1; y2t+1; xt+1; y2t+2; xt+2; : : : ; xm�1; ym+t; xm; y1):In ea
h 
ase, de�ne L := G [ x1y1 [ xmym+t r x1xm r y1ym+t;M := H [ x1xm [ y1ym+t r x1y1 r xmym+t: (1)Then L and M are Hamilton 
y
les, and G�H = L�M .Now we are ready to give the promised se
ond proof of the equivalen
e established byTheorems 2.2 and 2.3.Theorem 3.4 An edge-labelling � of Kn is trivial-TSP (with Hamilton-weight �) if andonly if it has 
onstant-weight on 2-fa
tors (with weight �).
8
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MFigure 3: Two small 
ases for Theorem 3.4Proof. The suÆ
ien
y is immediate sin
e Hamilton 
y
les are 2-fa
tors. For the ne
essity,suppose � is trivial-TSP, and let G be a 2-fa
tor of Kn. If G is Hamiltonian, there isnothing to prove. So assume that G 
onsists of at least two 
y
les. We shall prove thatfor every su
h G there exist a 2-fa
tor L su
h that �(L) = � and two Hamilton 
y
les H,M su
h that G�H = L�M . It will then follow from �(G) + �(H) = �(L) + �(M) that�(G) = �.Assume the result is true for all 2-fa
tors with fewer 
omponents (
y
les) than G.Denote by m = m(G) the size of the smallest 
y
le of G. If n �m < 6, then G 
onsistsof two 
y
les, the larger being of size n � m < 2m (sin
e m � 3), and the required H,L and M exist by Lemma 3.3. If n � m = 6, Lemma 3.3 applies in every 
ase ex
eptG = C3 [ C6 or C3 [ C3 [ C3, and suitable H, L and M are shown in Fig. 3. (In these
ases �(L) = � be
ause L is Hamiltonian.)Now we assume n � m > 6. Denote by C1 = (x1; x2; : : : ; xm) a 
omponent of G oflength m, and write G0 for the graph derived from Kn by deleting all the edges of G andall the verti
es of C1. Then G0 has n � m verti
es, is regular of degree n � m � 3, andhen
e satis�es Æ(G0) � 12(jV (G0)j+ 1): (2)
9



From a theorem of Ore [15℄, a graph satisfying (2) has a spanning path whose endpointsare any spe
i�ed pair of verti
es. Sele
t two verti
es, y1, yn�m, that are adja
ent in G;say the path y1; y2; : : : ; yn�m is a Hamilton path in G0. Then 
onsider the Hamilton 
y
le(in Kn) H := (y1; x1; y2; : : : ; ym�1; xm�1; ym; ym+1; ym+2; : : : ; yn�m; xm);noti
e that G and H are edge-disjoint.Now de�ne L, M from G, H by the 
onstru
tion (1), with n � m in the role ofm + t. Then L and M are edge-disjoint, and M is a Hamilton 
y
le. Sin
e L has fewer
omponents than G, by hypothesis we have �(L) = �. Moreover G�H = L�M:Remark. Theorem 3.4 also follows from the fa
t that, given any 2-fa
tor G of Kn, thereexist Hamilton 
y
les H, L and M su
h that G � H = L �M (with the obvious smallex
eptions). However, a proof of that fa
t would be longer than the proof given.4 Edge labels from vertex labelsTheorem 4.1 and Corollary 4.2 below establish the 
onne
tion between trivial-TSP edge-labellings and vertex-labellings mentioned in the introdu
tion. This link provides the keyto generalizing Theorems 2.3, 3.2 and 3.4 to in
lude k-fa
tors for k � 0; see Corollary 4.3and Theorem 4.4. It also brings 
onstant-parity and well-spread sequen
es into the fold,gives an easy algorithm for produ
ing trivial-TSP edge-labellings of Kn, and �nally yieldsan optimal algorithm for re
ognizing these labellings.Theorem 4.1 For n � 3 and G �= Kn, an edge-labelling � : E(G) ! Z satis�es theC4-mat
hing property if and only if there is a vertex-labelling � : V (G)! 12Z su
h that�(ij) = �i + �j for ea
h edge ij of G: (3)The sequen
e (�i)ni=1 is uniquely determined by �, is nonnegative if and only if � is metri
,and is well-spread if and only if � is inje
tive.Proof. If su
h a vertex-labelling exists, then ea
h Hamilton 
y
le H of G satis�esXij2E(H)�(ij) = Xij2E(H)(�i + �j) = 2 nXi=1 �i;sin
e H is a 2-fa
tor of G. Thus � is a trivial-TSP labelling, and Theorem 2.2 impliesthat � satis�es the C4-MP.We prove the 
onverse by indu
tion on n.
10



Any edge-labelling � of K3 va
uously satis�es the C4-MP, so we must establish theexisten
e of a unique half-integer vertex-labelling � satisfying (3). In this 
ase (n = 3),this system takes the form0� 1 1 01 0 10 1 1 1A0� �1�2�3 1A = 0� �(12)�(13)�(23) 1A ;and sin
e this 
oeÆ
ient matrix is nonsingular with inverse 12 0� 1 1 �11 �1 1�1 1 1 1A, we seethat (�1; �2; �3) is indeed uniquely determined by (3) and has half-integer entries.Now �x n > 3, assume the result is true in 
ase G �= Kn�1, and suppose that � :E(Kn)! Z satis�es the C4-MP. Let G be the subgraph of Kn indu
ed by the verti
es in[n�1℄. Then G �= Kn�1 and �jE(G) satis�es the C4-MP for G, so our indu
tive hypothesisimplies that there is a unique vertex-labelling � : V (G)! 12Z su
h that�(ij) = �i + �j for ea
h edge ij of G: (4)We 
omplete the proof by arguing that � extends uniquely and unambiguously to [n℄,subje
t to (3). For an appropriate 
hoi
e of �n, the equations in (3) still to be satis�edare �(in) = �i + �n for 1 � i � n� 1: (5)The only way to satisfy the �rst of these is to set �n := �(1n) � �1. To show that thisvalue satis�es the remaining equations, we �x i, 1 < i < n, and derive the ith equation in(5). Sin
e n > 3, there is an index j 2 [n℄r f1; i; ng, so that (1; j; i; n) is a 4-
y
le. Sin
e� satis�es the C4-MP, we have�(1j) + �(in) = �(ij) + �(1n);whi
h by (4) yields (�1 + �j) + �(in) = (�i + �j) + �(1n);or �(in) = �i + (�(1n)� �1) = �i + �n:Therefore, our 
hoi
e of �n indeed satis�es (5).Finally, noti
e that nonnegative vertex-labels 
orrespond exa
tly to trivial-MTSPedge-labellings, sin
e, for any three verti
es x, y, z, we have�(xy) � �(xz) + �(zy) , �z � 0.
11



Corollary 4.2 For n � 3, an edge-labelling � : E(Kn) ! Z satis�es the C4-mat
hingproperty if and only if there is a vertex-labelling � : V (Kn)! Z su
h that�(ij) = �i + �j2 for ea
h edge ij of Kn: (6)The sequen
e (�i)ni=1 is uniquely determined by �, has 
onstant-parity, is nonnegative ifand only if � is metri
, and is well-spread if and only if � is inje
tive.Proof. Double the vertex labels in Theorem 4.1.Remarks. Corollary 4.2 (or Theorem 4.1) suggests an algorithm for produ
ing trivial-TSP edge-labellings: start with a 
onstant-parity integral sequen
e (�i)ni=1 for whi
h themean of any two terms is positive, and de�ne � : E(Kn)! Z by (6). We 
an arrange for� to be inje
tive (or metri
) by starting with a well-spread (or nonnegative) �.With one further observation, we 
an use these results to obtain the algorithm alludedto following the proof of Theorem 2.2, namely, an optimal algorithm to 
he
k if a givenedge-labelling � of Kn is trivial-TSP. Noti
e that any �xed spanning tree T of Kn allowsus to obtain, in O(n) time, solutions (�i)ni=1 to (6)|with T in pla
e of Kn|with onedegree of freedom. For any edge A 2 KnrT , the value of �(A) then uniquely determinesall the �i. By Corollary 4.2 (and Theorem 2.2), to de
ide whether � is trivial-TSP, itremains only to verify (6) for all remaining edges. Sin
e this 
an be done in O(n2) time,and this de
ision problem obviously requires examining every edge of Kn, this algorithmis indeed optimal.The next result generalizes Theorems 2.3, 3.2 and 3.4.Corollary 4.3 For n � 3, an edge-labelling � of Kn satis�es the C4-mat
hing propertyif and only if it has 
onstant-weight on k-fa
tors, for all k � 0.Proof. For the suÆ
ien
y of the k-fa
tor 
ondition, take k = 2 and apply Theorem 2.3 (orTheorem 2.2). For the ne
essity, suppose that � satis�es the C4-MP, and �x an integerk � 0. By Theorem 4.1, there is a vertex-labelling � satisfying (3). Now any k-fa
tor Fof Kn, provided it exists, satis�esXij2E(F )�(ij) = Xij2E(F )(�i + �j) = k nXi=1 �i.We 
an weaken the 
ondition in Corollary 4.3 
onsiderably, provided n and k arerestri
ted to avoid trivially satisfying the weakened 
ondition. This statement is madepre
ise in part (e) of the following result, whi
h also summarizes our various 
hara
teri-zations of trivial-TSP edge-labellings.Theorem 4.4 If n � 4 and � is an edge-labelling of Kn, then the following statementsare equivalent: 12



(a) � is trivial-TSP;(b) � satis�es the C4-mat
hing property;(
) � satis�es the K4-mat
hing property;(d) for every k, 0 � k � n� 1, the labelling � has 
onstant-weight on k-fa
tors;(e) there exists an integer k, 1 � k � n� 2, su
h that � has 
onstant-weight onk-fa
tors, and k is even if n is odd.Proof. We know (
f. Proposition 2.1, Theorem 2.2 and Corollary 4.3) that (a){(d) areequivalent. Moreover, Theorem 2.3 shows that (b) implies (e), with k = 2.To see that (e) implies (b), �x k 2 [n � 2℄, and assume that � has 
onstant-weighton k-fa
tors. Sin
e k is even if n is odd, there exists a k-fa
tor F of Kn. Sin
e the
omplement F of F is an (n� k� 1)-fa
tor, and �(F ) = �(Kn)��(F ), we see that � has
onstant-weight on (n � k � 1)-fa
tors. Therefore, after possibly inter
hanging the rolesof k and n� k � 1, we may assume that k � (n� 1)=2.Sin
e k � (n � 1)=2 � n � 2, there exist verti
es x, y that are nonadja
ent in F .Let x1 be a neighbour of x in F . Sin
e y and x1 both have degree k in F , and sin
ex1 is adja
ent to x while y is not, there exists a neighbour y1 of y in F that is di�erentfrom, and nonadja
ent with x1. Now, a C4-ex
hange (see the proof of Theorem 2.2)on the 4-
y
le (x; x1; y1; y) produ
es another k-fa
tor F 0. Sin
e �(F ) = �(F 0), we have�(xx1) + �(yy1) = �(xy) + �(x1y1).Now let C = (u; u1; v1; v) be any 4-
y
le of Kn, and let � be a permutation of [n℄with �(x) = u, �(y) = v, �(x1) = u1 and �(y1) = v1. Then �(F ) and �(F 0)|de�ned inthe natural way|are k-fa
tors whi
h di�er by a C4-ex
hange on C. As in the pre
edingparagraph, this implies that C does not violate the C4-MP, and sin
e C was arbitrary, we
on
lude that (b) holds.5 Edge label growth-rateRe
all from Theorem 4.1 that an inje
tive, metri
 edge-labelling 
orresponds to a well-spread, nonnegative, half-integer sequen
e of vertex labels. With its �rst term deleted,the Fibona

i sequen
e furnishes one example of su
h a sequen
e; see, e.g., [3℄ for relatedba
kground.Now we 
onsider the rate of growth of the maximum label of the most eÆ
ient inje
tivetrivial-MTSP edge-labelling s
heme. We shall prove that the fun
tion	(n) := min� maxA2E(Kn)�(A)(the minimum being taken over all inje
tive trivial-MTSP edge-labellings �) exhibitsquadrati
 growth. This should be 
ompared with the growth rate of the edge labels13



indu
ed by the Fibona

i numbers as vertex labels. Here, if ' is the golden ratio, thenmaxA2E(Kn) �(A) 2 �('n), so these labels grow exponentially.De�ne S, W , W
p : N ! Z+ and  
p , �
p : Z+ ! N byS(N) := maxfn : 9 Sidon sequen
e 0 � x1 < � � � < xn � Ng;W (N) := maxfn : 9 well-spread sequen
e 0 � x1 < � � � < xn � Ng;W
p(N) := maxfn : 9 
onstant-parity well-spread sequen
e 0 � x1 < � � � < xn � Ng; 
p(n) := minfxn�1 + xn : 9 
onstant-parity well-spread N-sequen
e x1 < � � � < xng;�
p(n) := minfxn : 9 
onstant-parity well-spread N-sequen
e x1 < � � � < xng:A 
elebrated result of Erd}os and others is that S(N) � pN ; i.e.,�1� o(1)�pN � S(N) � �1 + o(1)�pN as N !1: (7)Remarks. The upper bound in (7) was proved by Erd}os and Tur�an, who also establishedthe lower bound (1=p2� o(1))pN ; later Erd}os and Chowla applied a theorem of Singerto improve the lower bound to that in (7). See [1, 21℄ for further dis
ussion and referen
es.It remains open|and was given a pri
e tag by Erd}os|to de
ide whether, for every " > 0,the inequality S(N) � pN + o(N ") holds; see [9℄ for related material.Re
all (Corollary 4.2) that the set of edge labels of an inje
tive trivial-TSP labellingtakes the form f(�i+�j)=2 j i 6= jg for some 
onstant-parity, well-spread, integer sequen
e(�i)ni=1. For Sidon sequen
es (xi) with xi 2 [N ℄, similar \sum-sets" fxi + xj j i � jg havebeen studied 
onsiderably; see [17℄ for re
ent results and further referen
es.Noti
e that W
p is surje
tive and nonde
reasing, while �
p is in
reasing; thus ��1
p :range(�
p)! Z+ exists, as does the following approximate inverse for W
p:W�
p(n) := minfN : W
p(N) = ng; for n 2 Z+:Then W�
p is a right inverse for W
p, but when 
omposed on the left yields the weakerW�
p ÆW
p(N) � N:Sin
e every Sidon sequen
e is well-spread, we haveW (N) � S(N) for ea
h N 2 N : (8)Of the myriad 
onne
tions between the seven fun
tions just de�ned, we shall need only afew more, enumerated as Lemmas 5.1{5.5.Lemma 5.1 Every n 2 Z+ satis�es  
p(n) � 2W�
p(n).14



Proof. Sin
e  
p(1) = W�
p(1) = 0, the assertion holds for n = 1. For n � 2, letN = W�
p(n). Sin
e W
p(N) = n, we 
an 
hoose a 
onstant-parity well-spread sequen
e0 � x1 < � � � < xn � N . By de�nition,  
p satis�es 
p(n) � xn�1 + xn � 2N � 2 = 2W�
p(n)� 2:Lemma 5.2 Ea
h N 2 range(�
p) satis�es W
p(N) � ��1
p (N).Proof. Let n = ��1
p (N). Sin
e �
p(n) = N , there exists a 
onstant-parity well-spreadsequen
e 0 � x1 < � � � < xn = N . Hen
e, W
p(N) � n = ��1
p (N).Lemma 5.3 For every N 2 N, if k = W
p(N), then �k2� � N .Proof. If 0 � x1 < � � � < xk � N is a 
onstant-parity well-spread sequen
e, then the �k2�sums xi + xj, i < j, are distin
t and belong to the set f0; 2; : : : ; 2(N � 1)g.Lemma 5.4 Ea
h n � 2 satis�es  
p(n) � �
p(n) + �
p(n� 1).Proof. Choose a 
onstant-parity well-spread sequen
e x1 < � � � < xn so that  
p(n) =xn�1 + xn. Sin
e �
p(n) � xn and �
p(n� 1) � xn�1, the assertion follows.Lemma 5.5 Every N 2 N satis�es W
p(N) � W (bN=2
).Proof. If n = W (N) and 0 � x1 < � � � < xn � N is well-spread, then yi := 2xi de�nesa 
onstant-parity well-spread sequen
e of length n 
ontained in f0; 1; : : : ; 2Ng. Thus,W
p(2N + 1) � W
p(2N) � n =W (N).Theorem 5.6 	(n) 2 �(n2); in parti
ular, we have	(n) � (n� 1)22 for n � 2; (9)and 	(n) � 2n2�1 + o(1)� as n!1: (10)Proof. For the lower bound, let n 2 N , N = �
p(n), and k = W
p(N). Lemma 5.2 showsthat n = ��1
p (N) � k, while Lemma 5.3 gives �k2� � N , so that�
p(n) � n(n� 1)2 :If n � 2, then Lemma 5.4 gives  
p(n) � �
p(n)+�
p(n�1) � (n�1)2. Now Corollary 4.2shows that 	(n) =  
p(n)2 ; (11)15



yielding (9).For the upper bound, given a (large) n 2 N , let N = W�
p(n). Lemma 5.5, (8) and (7)give n = W
p(N) � W (bN=2
) � S(bN=2
) � bN=2
1=2�1� o(1)�;when
e N � 2n2(1 + o(1)) as n!1. Now Lemma 5.1 shows that 
p(n) � 2W�
p(n) = 2N � 4n2�1 + o(1)�;and (11) gives (10).With the upper and lower bounds on 	(n) di�ering only by a fa
tor of four, Theo-rem 5.6 goes a long way in determining the growth-rate of 	(n). In the spirit of (7), we
lose withConje
ture 5.7 The fun
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