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Abstract
Let S be a nonorientable surface. A collection of pairwise noncross-

ing simple closed curves in S is a blockage if every onesided simple
closed curve in S crosses at least one of them. Robertson and Thomas
[9] conjectured that the orientable genus of any graph G embedded in
S with sufficiently large face-width is “roughly” equal to one half of the
minimum number of intersections of a blockage with the graph. The
conjecture was disproved by Mohar [7] and replaced by a similar one.
In this paper, it is proved that the conjectures in [7, 9] hold up to a
constant error term: For any graph G embedded in S, the orientable
genus of G differs from the conjectured value at most by O(g2), where
g is the genus of S.

1 Introduction

We follow standard graph theory terminology [2]. By a surface we mean
a compact connected PL 2-manifold without boundary. The genus g(G)
∗Supported in part by the Ministry of Science and Technology of Slovenia, Research

Project J1-0502-0101.
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of a graph G is the smallest integer g such that G has an embedding in
the orientable surface Sg of genus g. The nonorientable surface of genus g
will be denoted by Ng. So, N1 is the projective plane and N2 is the Klein
bottle. The nonorientable genus of G is the smallest g such that G admits
an embedding in Ng.

All embeddings of graphs in surfaces considered in this paper are 2-cell
embeddings in which every face is homeomorphic to an open disk in the plane.
If Π is an embedding of a connected graphG in some surface, the Euler genus
of Π is defined as the number eg(G,Π) = 2− |V (G)|+ |E(G)| − f , where f
is the number of Π-facial walks. We refer to [8] for additional information
on embeddings of graphs in surfaces.

A closed curve on a surface S is a continuous PL mapping γ : S1 → S,
and we sometimes identify γ with its image γ(S1) in S. If a graph G is
embedded in S, then cr(γ,G) denotes the number of points z ∈ S1 such that
γ(z) is a point of G in S. The curve γ is onesided if every neighborhood of
γ on S contains a Möbius strip, and twosided otherwise.

2 The orientable genus of graphs with a given
nonorientable embedding

Let Π be a (2-cell) embedding of a graph G into a nonplanar surface S, i.e. a
surface distinct from the 2-sphere. Then we define the face-width fw(G,Π)
(also called the representativity) of the embedding Π as the minimum num-
ber of facial walks of G whose union contains a noncontractible curve. Al-
ternatively, fw(G,Π) is the minimum cr(γ,G) taken over all noncontractible
closed curves γ on S.

It is easy to see that the nonorientable genus of every graph G is bounded
by a linear function of the genus g(G). On the other hand, Auslander,
Brown, and Youngs [1] proved that there are graphs embeddable in the pro-
jective plane whose orientable genus is arbitrarily large. This phenomenon
is now appropriately understood after Fiedler, Huneke, Richter, and Robert-
son [3] proved that the genus g(G) of a graph G that is Π-embedded in the
projective plane equals

g(G) =
⌊

1
2
fw(Π)

⌋
(1)

if fw(Π) 6= 2. If fw(Π) = 2, then g(G) is either 0 or 1.
This result has been generalized to the Klein bottle by Robertson and

Thomas [9] as follows. Let Π be an embedding of G in N2. Denote by
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ord2(G,Π) the minimum of dcr(γ,G)/2e taken over all noncontractible and
nonseparating twosided simple closed curves γ. Similarly, let ord1(G,Π)
denote the minimum of bcr(γ1, G)/2c + bcr(γ2, G)/2c taken over all pairs
γ1, γ2 of nonhomotopic onesided simple closed curves. The latter minimum
restricted to all noncrossing pairs γ1, γ2 of onesided simple closed curves is
denoted by ord′1(G,Π). Let

g = min{ord1(G,Π), ord2(G,Π)} (2)

and

g′ = min{ord′1(G,Π), ord2(G,Π)}. (3)

Robertson and Thomas [9] proved that if g ≥ 4, then g(G) = g = g′.
Equations (1) and (2) imply that the genus of graphs that can be embedded
in the projective plane or the Klein bottle can be computed in polynomial
time.

By [11], genus testing is NP-complete for general graphs. Therefore, it
is interesting that the classes of projective planar graphs and graphs embed-
dable in the Klein bottle admit a polynomial time genus testing algorithm.
Very likely the genus problem for graphs with bounded nonorientable genus
is solvable in polynomial time as suggested in [9].

Robertson and Thomas [9] conjectured that (1) and (2) can be general-
ized as follows. Suppose that Γ = {γ1, . . . , γp} is a set of closed curves in
the surface Nk. Then Γ is crossing-free if the following holds:

(a) No γi crosses itself.
(b) For 1 ≤ i < j ≤ p, the curves γi and γj do not cross each other.

If there exist simple closed curves γ′1, . . . , γ
′
p with pairwise disjoint images

in Nk such that γ′i is homotopic to γi (i = 1, . . . , p) and such that every
onesided closed curve in Nk crosses at least one of the curves γ′1, . . . , γ

′
p,

then we say that the family Γ is a blockage and that Γ blocks onesided
curves in the surface.

Suppose that a graph G is embedded in Nk. Robertson and Thomas [9]
define the order of a blockage Γ = {γ1, . . . , γp} as

ord(Γ, G) =
1
2

(k − 2p+ s) +
p∑

i=1

ord(γi, G) (4)

where s is the number of onesided closed curves in Γ and

ord(γi, G) =

{
bcr(γi, G)/2c , if γi is onesided
dcr(γi, G)/2e , if γi is twosided.
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Let us observe that the term 1
2(k− 2p+ s) in (4) is an integer and that it is

equal to the genus of the (bordered) orientable surface obtained by cutting
Nk along the curves in Γ. It is easy to prove [9]:

Lemma 2.1. Let G be a graph embedded in Nk, and let Γ be a blockage in
Nk. Then g(G) ≤ ord(Γ, G).

Based on (1)–(3) and Lemma 2.1, Robertson and Thomas proposed the
following

Conjecture 2.2 (Robertson and Thomas [9]). Suppose that G is em-
bedded in Nk with sufficiently large face-width. Let g (respectively g′) be the
minimum order of a blockage (crossing-free blockage) in Nk Then g(G) =
g = g′.

Mohar [7] disproved this conjecture and posed a related conjecture what
the correct expression for g(G) might be (Conjecture 2.3 below). The value
for the orientable genus of G conjectured in [7] can differ only by a constant
(depending on k) from the conjectured value of Robertson and Thomas.

Suppose that G is embedded in Nk. Consider a crossing-free blockage
Γ = {γ1, . . . , γp} and cut the surface Nk along γ1, . . . , γp. This results in a
graph G embedded in an orientable surface. If a vertex a ∈ V (G) lies on
at least one of the curves γi (1 ≤ i ≤ p), then a gives rise to two or more
vertices in G (called copies of a). Add a new vertex va and join it to all
copies of a in G. Call the resulting graph G′ and note that contraction of the
new edges results in the original graph G. Now, the orientable embedding
of G defines local rotations of all vertices of G′ except for the new vertices
va. The minimum genus of an orientable embedding of G′ extending this
partial embedding is called the genus order of the blockage Γ. It is easy to
see that in the case when no vertex of G is split into more than two vertices
of G, the genus order coincides with (4), and that in general it is majorized
by (4).

Conjecture 2.3 (Mohar [7]). If G is embedded in a nonorientable surface
with sufficiently large face-width, then the orientable genus of G is equal to
the minimum genus order of a crossing-free blockage.

In this paper it is proved that Conjectures 2.2 and 2.3 hold up to a
constant error term, even without the assumption on large face-width. It
is shown that for any graph G embedded in Ng, the orientable genus of G
differs from the minimum (genus) order of a crossing-free blockage for less
than (64g)2. See Theorem 4.7.
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3 Blocking onesided curves

Suppose that G is a graph that is Π-embedded in some surface S. We
denote by Γ = Γ(G,Π) the corresponding vertex-face graph. Its vertices
are the union of vertices of G and the vertices of the geometric dual G∗ of
G, i.e., the Π-facial walks. The edges of Γ correspond to the incidence of
vertices and faces, with multiple edges if a vertex appears more than once
on a Π-facial walk. The graph Γ has a natural quadrilateral embedding in S.
The geometric dual of Γ, the graph which we shall denote by M = M(G,Π),
is known as the medial graph of G.

A set B ⊆ E(M) is an edge-blockage in M if every onesided cycle of M
contains an edge of B. If B ⊆ E(M), let B∗ ⊆ E(Γ) be the set of dual
edges, and let Γ(B∗) be the subgraph of Γ generated by B∗.

Lemma 3.1. Suppose that G is Π-embedded in Ng and that B ⊆ E(M) is
an edge-blockage in M that is minimal (with respect to inclusion). Then

(a) Γ(B∗) is a bipartite Eulerian graph (possibly disconnected).

(b) The edge set B∗ of Γ(B∗) can be partitioned into a set of edge-disjoint
crossing-free closed walks. Any such partition into crossing-free closed
walks is a crossing-free blockage in the surface.

(c) Ng\Γ(B∗) is connected.

(d) Let ni be the number of vertices of degree 2i+ 2 in Γ(B∗). Then

∞∑
i=0

i ni ≤ g − 1 . (5)

Proof. To prove claim (a), suppose that Γ(B∗) contains a vertex x of odd
degree d. Let e1, . . . , ed be the edges in B dual to the edges of Γ(B∗) that
are incident with x. By the minimality of B, there exist Π-onesided cycles
Ci ⊆ E(M)\(B\ei), i = 1, . . . , d. Let C0 be the facial walk in M that
corresponds to the vertex x of Γ. It is easy to see that the symmetric
difference of the edges of these cycles, C = C0 + C1 + · · · + Cd, contains a
onesided cycle in M . This yields a contradiction since C is disjoint from B.

(b) Any partition of B∗ into closed walks is obtained as follows. For
each vertex x ∈ V (Γ(B∗)), partition the edges incident with x into pairs
and then join the paired edges to form a collection C of closed walks in Γ
(which may be viewed as closed curves in Ng). By choosing the pairs so that
they are not crossing with any other chosen pair of edges incident with the
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same vertex, none of the curves in C crosses itself and no two of them cross
each other.

Suppose that there is a onesided simple closed curve γ in Ng that crosses
no member of C. By elementary topology, it may be assumed that γ does not
intersect any edge of Γ in its internal point, i.e., γ passes through faces and
vertices of Γ. Then γ is determined (up to homotopy) by a cyclic sequence
v1f1v2f2 . . . vkfkv1 of vertices vi ∈ V (Γ) and faces fi of Γ that are traversed
by γ. Note that f1, . . . , fk ∈ V (M). For i = 1, . . . , k, let Si be a walk in
M that starts with the vertex fi−1 of M , traverses a segment of the facial
walk in M which corresponds to vi, and ends at fi. Clearly, the closed walk
W in M which is composed of S1, . . . , Sk is homotopic to γ (in Ng), so it is
onesided. Since γ crosses no curve from C, each Si contains an even number
of edges of B. Let e1, . . . , e2d be the edges of B that are traversed by W
an odd number of times and let C1, . . . , C2d be as in the proof of part (a).
Then W +C1 + · · ·+C2d contains a onesided cycle that is disjoint from B,
a contradiction.

(c) Suppose that Ng\B∗ is disconnected. Then there is an edge e∗ ∈ B∗
such that on each side of e∗ there is a different component of Ng\B∗. Let e ∈
B be the edge which is dual to e. Let C be a Π-onesided cycle in M\(B\e).
Since C contains e, it intersects two components of Ng\B∗. Therefore, C
crosses B∗ at least twice, a contradiction.

(d) Γ(B∗) is a graph in Ng having n =
∑

i ni vertices and m =
∑

i(i+1)ni

edges. It may be disconnected, and its embedding in Ng may not be 2-cell.
But Euler’s inequality still holds: n −m + f ≥ χ(Ng) = 2 − g. By (c), the
number f of connected components of Ng\B∗ is 1, hence

∑
i ini = m− n ≤

g − 2 + f = g − 1.

A vertex set U ⊆ V (G) of a Π-embedded graph G is a vertex-blockage
if every Π-onesided cycle of G contains a vertex in U . Similarly, a set
U∗ ⊆ V (G∗) of Π-faces is a face-blockage if every onesided cycle in the dual
graph G∗ contains a vertex in U∗. It is easy to see that U∗ is a face-blockage
if and only if every onesided closed curve which does not contain vertices of
G intersects a face in U∗.

Lemma 3.2. Suppose that G is Π-embedded in Ng and that B ⊆ E(M) is
an edge-blockage in M that is minimal (with respect to inclusion). Let

U = V (Γ(B∗)) ∩ V (G) and U∗ = V (Γ(B∗)) ∩ V (G∗) . (6)

Then U is a vertex-blockage, U∗ is a face-blockage in G, and the following
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inequalities hold:

2|U | ≤ |B| ≤ 2|U |+ 2g − 2 , (7)
2|U∗| ≤ |B| ≤ 2|U∗|+ 2g − 2 , (8)

|U |+ |U∗| ≤ |B| ≤ |U |+ |U∗|+ g − 1 . (9)

Proof. Let C be a Π-onesided cycle of G. By Lemma 3.1(b), C intersects
Γ(B∗). Hence it intersects U . This proves that U is a vertex-blockage. By
duality, U∗ is a face-blockage.

To prove the first inequality of (7), observe that the minimum degree in
Γ(B∗) is ≥ 2 (by Lemma 3.1(a)) and that |B| equals the sum of degrees of
vertices in U . To verify the second inequality, we shall apply Lemma 3.1(d)
and denote by n′i the number of vertices in U whose degree in Γ(B∗) is 2i+2.
Then

|B| =
∑
u∈U

deg(u) = 2|U |+ 2
∑

i

i n′i

≤ 2|U |+ 2
∑

i

i ni ≤ 2|U |+ 2(g − 1).

Similar proofs yield (8) and (9).

Let β = β(G,Π) denote the vertex-blockage number , i.e. the minimum
number of vertices in a vertex-blockage. Similarly, let β∗ = β∗(G,Π) be the
face-blockage number (the minimum number of faces in a face-blockage), and
β′ = β′(G,Π) the edge-blockage number (the minimum number of edges in
an edge-blockage in M).

Corollary 3.3. Suppose that G is Π-embedded in the nonorientable surface
Ng. Then the following inequalities hold:

2β ≤ β′ ≤ 2β + 2g − 2 , (10)
2β∗ ≤ β′ ≤ 2β∗ + 2g − 2 , (11)

β + β∗ ≤ β′ ≤ β + β∗ + g − 1 . (12)

Proof. Let B be a minimum edge-blockage, i.e. |B| = β′. Then U = Γ(B∗)∩
V (G) is a vertex-blockage by Lemma 3.2. This easily implies that 2β ≤ β′.

Suppose now that U is a minimum vertex-blockage in G. If u ∈ U is a
vertex of degree d, split u into d new vertices u1, . . . , ud, with ui joined only
to the ith neighbor of u (i = 1, . . . , d). This operation can be performed on
the surface for all vertices in U simultaneously. Since U is a blockage, the
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resulting graph contains no onesided cycles. We now start identifying some
of the new vertices corresponding to Π-consecutive neighbors of u, say ui

and ui+1. We perform such identifications on the surface as long as possible
so that the resulting graph G′ contains no onesided cycles.

Let B ⊆ E(M) be the set of those edges of M that correspond to those
Π-consecutive pairs ui, ui+1 that have not been identified. Since G′ contains
no onesided cycles, B is an edge-blockage. Moreover, since every further
identification gives rise to a onesided cycle, B is a minimal edge-blockage
(with respect to inclusion). It is also obvious that V (Γ(B∗)) ∩ V (G) ⊆ U .
By Lemma 3.2 we thus have:

|B| ≤ 2|V (Γ(B∗)) ∩ V (G)|+ 2g − 2
≤ 2|U |+ 2g − 2 = 2β + 2g − 2.

This implies the second inequality in (10).
Relation (11) follows by duality, while (12) is proved analogously.

Corollary 3.4. Let G be a graph that is Π-embedded in Ng. Then

g(G) ≤ 1
4
β′(G,Π) +

g

4
,

g(G) ≤ 1
2
β(G,Π) +

3g − 2
4

, and

g(G) ≤ 1
2
β∗(G,Π) +

3g − 2
4

.

Proof. Let B be a minimum edge-blockage. By Lemma 3.1(b), Γ(B∗) de-
fines a crossing-free blockage Γ = {γ1, . . . , γp}. Clearly,

∑
i cr(γi, G) =

1
2 |B

∗| = 1
2 |B| =

1
2β
′(G,Π). By Lemma 3.1(c), it follows that Γ contains at

most g
2 twosided curves. Consequently, ord(Γ, G) ≤ 1

2

∑
i cr(γi, G) + 1

2 |{i |
γi is twosided}| ≤ 1

4β
′(G,Π) + g

4 . By Lemma 2.1, g(G) ≤ ord(Γ, G). This
proves the first inequality. The second and the third inequality follow from
the first one by (10) and (11), respectively.

4 Unstable faces and blockages

Let Π0 be an embedding of a graph G. Suppose that there is a facial walk
F in which some vertex v appears twice. Then there is a simple closed
curve γ in the surface which is contained in the face bounded by F such
that γ ∩G = {v} and γ intersects F in two distinct appearances of v in F .
If γ is contractible and its interior contains a vertex or an edge of G, then
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we delete the vertices and edges of G in the interior of γ. This operation is
called an elementary reduction of type I .

Suppose now that there are facial walks F and F ′ such that there exist
distinct vertices v, v′ ∈ V (F )∩V (F ′). Then there is a simple closed curve γ
in the surface which is composed of two segments α, β joining v and v′ in the
faces bounded by F and F ′, respectively. If γ is contractible and its interior
contains at least two edges of G, then we replace all edges and vertices in
its interior by a single edge joining v and v′. Such an operation is called an
elementary reduction of type II .

The embedded graph G is essentially 3-connected if no elementary re-
ductions of type I or II are possible. See also [5]. An obvious property of
elementary reductions is the following:

Lemma 4.1. Let Π be an embedding of a graph G. If the Π′-embedded graph
G′ is obtained from G by a sequence of elementary reductions, then g(G′) =
g(G) and β(G,Π) = β(G′,Π′), β′(G,Π) = β′(G′,Π′), and β∗(G,Π) =
β∗(G′,Π′).

By Lemma 4.1, we shall be able to restrict ourselves to essentially 3-
connected embeddings.

Suppose now that we have two embeddings, Π and Π′, of a graph G. Let
F = v0e1v1 . . . vk−1ekv0 be a Π-facial walk. A subsequence eiviei+1 (indices
modulo k), i ∈ {1, . . . , k}, is called an angle of F . The angle eiviei+1

is identified with the angle ei+1viei obtained by traversing the facial walk
F in the reverse direction. The angle eiviei+1 is (Π,Π′)-unstable if it is
not an angle of the embedding Π′. If two consecutive angles eiviei+1 and
ei+1vi+1ei+2 of the facial walk F are (Π,Π′)-stable but eiviei+1vi+1ei+2 is
not a subwalk of a Π′-facial walk, then the angles eiviei+1 and ei+1vi+1ei+2

are said to be weakly (Π,Π′)-unstable .
Suppose that W = . . . e1ve2 . . . and W ′ = . . . e3ve4 . . . are walks in a Π′-

embedded graph G. If the edges e1, . . . , e4 are distinct and their Π′-clockwise
order around v is e1e3e2e4 or e1e4e2e3, then we say that W and W ′ Π′-cross
at v. Similarly we define Π′-crossing of two walks at a common edge e.

Lemma 4.2. Let Π and Π′ be embeddings of a graph G.

(a) If e vf is a (Π,Π′)-unstable angle of a Π-facial walk F , then there is a
Π-facial walk F ′ with an angle e′vf ′ such that F and F ′ Π′-cross each
other at v.

(b) Suppose that dve and euf are weakly (Π,Π′)-unstable angles of a Π-
facial walk F . Let F ′ = . . . d′veuf ′ . . . be the second Π-facial walk
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containing the edge e. Then F and F ′ Π′-cross each other at e. More-
over, either one of the angles d′ve or euf ′ is (Π,Π′)-unstable, or these
two angles of F ′ are weakly (Π,Π′)-unstable.

Proof. To prove (a), consider the local Π′-clockwise ordering e, e1, . . . , es, f,
f1, . . . , ft of edges around v. Since e and f are not Π′-consecutive, we have
s ≥ 1 and t ≥ 1. It is easy to see that there are Π-consecutive edges e′, f ′

such that e′ = ei for some i (1 ≤ i ≤ s), and f ′ = fj for some j (1 ≤ j ≤ t),
or vice versa. This implies (a).

Claim (b) is obvious and we leave the details for the reader.

A collection of cycles C1, . . . , Ck is called a collection of bouquets if there
exist vertices x1, . . . , xp such that every cycle Ci (1 ≤ i ≤ k) contains pre-
cisely one of these vertices and such that for any two distinct cycles Ci, Cj

(1 ≤ i < j ≤ k), the intersection Ci ∩Cj is either empty, one of the vertices
x1, . . . , xp, or an edge incident to one of these vertices.

Part (a) of the following lemma is proved in [4], while part (b) is easy to
see (cf., e.g., [6]).

Lemma 4.3. Let G be a graph embedded in a surface of Euler genus g, and
let C1, . . . , Ck be a collection of bouquets of cycles of G.

(a) If C1, . . . , Ck are noncontractible and pairwise nonhomotopic then k ≤
3g.

(b) If no subset of C1, . . . , Ck separates the surface then k ≤ g.

The proof of the next lemma is essentially contained in [6].

Lemma 4.4. Let G be a Π′-embedded graph and let {(Ci, C
′
i) | i = 1, . . . , k}

be a collection of pairs of closed walks of G with the following properties:

(a) C1, . . . , Ck are distinct cycles of G and no two of them are Π′-
crossing.

(b) If 1 ≤ i < j ≤ k then Ci does not Π′-cross with C ′j.
(c) For i = 1, . . . , k, Ci ∩ C ′i is either a vertex or an edge.
(d) For i = 1, . . . , k, Ci and C ′i are Π′-crossing at their intersection.

Then the genus g(G,Π′) of Π′ is at least k.

Lemma 4.5. Let BU ⊆ E(M) be the set of the edges of the medial graph
M(G,Π) which correspond to the (Π,Π′)-unstable and to the weakly (Π,Π′)-
unstable angles. If Π′ is an orientable embedding, then BU is an edge-
blockage for Π.
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Proof. Let C be a onesided cycle in M . An open (normal) neighborhood of
C is homeomorphic to the Möbius band. If E(C) ∩BU = ∅, then it is easy
to see that the same neighborhood would be a neighborhood of C in the
embedding Π′. Since Π′ is orientable, we conclude that E(C)∩BU 6= ∅.

Suppose that the set {1, 2, . . . , 2p} is partitioned into pairs Ai = {ai, bi},
where ai < bi, i = 1, . . . , p. Suppose that 1 ≤ i ≤ p and 1 ≤ j ≤ p and that
bi ≥ aj and bj ≥ ai. Then the pair Ai, Aj is called a canonical pair . An
integer l ∈ {1, 2, . . . , 2p} is covered by this canonical pair if either

(a) i = j and ai ≤ l ≤ bi, or

(b) i 6= j and l is either between ai and aj or between bi and bj .

Lemma 4.6. Under the assumptions given above, there is a set of at least
d
√
p/20 e canonical pairs such that every l ∈ {1, 2, . . . , 2p} is covered by at

most one of these pairs.

Proof. The proof is by induction on p. The proof is obvious for p ≤ 20 and
easy for 21 ≤ p ≤ 80 (where we need only two canonical pairs).

Suppose now that p ≥ 81. Let q = bp/2c. Let us first consider the case
when at least dp/3e pairs Ai satisfy ai ≤ 2q and bi > 2q. Let Z be the
set of all such pairs. Define a partial order � on Z by Ai � Aj if ai ≤ aj

and bi ≤ bj . By the Dilworth Theorem, this partial order either contains a
chain or an antichain of cardinality z = d

√
|Z| e ≥ d

√
p/3 e. If Ai1 , . . . , Aiz

is a chain or an antichain, where ai1 < ai2 < · · · < aiz , then consecutive
pairs in this order are canonical pairs that cover pairwise disjoint subsets of
{1, . . . , 2p}. This gives rise to at least bz/2c canonical pairs. Since p ≥ 81,
bz/2c ≥ 1

2

√
p/3− 1

2 ≥
√
p/20. This completes the proof in this case.

Suppose now that there are less than dp/3e such pairs. The remaining
subset of at least d2p/3e pairs Ai gives rise to two subsets containing p1

and p2 pairs, respectively, such that the pairs in the first set are contained
in {1, . . . , 2q}, and the pairs from the second set are contained in {2q +
1, . . . , 2p}. Note that p1 + p2 ≥ d2p/3e and that p1 ≤ bp/2c and p2 ≤ dp/2e.
In fact, we may assume that p1, p2 ≤ p/2. (If p2 > p/2, then we take
q = dp/2e and repeat the above proof.)

By the induction hypothesis, these sets of pairs contain at least ρ =
d
√
p1/20 e + d

√
p2/20 e canonical pairs that cover disjoint sets. The above

conditions on p1, p2 imply that ρ ≥
√

(p/2)/20 +
√

(p/6)/20 >
√
p/20. This

completes the proof.
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Theorem 4.7. Let G be a graph that is Π-embedded in the nonorientable
surface Ng. Then

1
2
β∗(G,Π)− (64g)2 ≤ g(G) ≤ 1

2
β∗(G,Π) +

3g − 2
4

. (13)

Proof. The second inequality in (13) holds by Corollary 3.4. To prove the
first one, it suffices to verify that the bound g(G) ≥ 1

2 |F| − (64g)2 holds for
some face-blockage F (not necessarily a minimum one). By Lemma 4.1, we
may assume that the Π-embedded graph G is essentially 3-connected.

Let Π′ be an orientable embedding of G with genus g(G). Let BU ⊆
E(M) be the set of those edges of the medial graph M(G,Π) which corre-
spond to the (Π,Π′)-unstable and to the weakly (Π,Π′)-unstable angles. By
Lemma 4.5, the set BU is an edge-blockage.

If a vertex v appears more than once on a facial walk F , then we say that
the angles of F at the appearances of v are 1-singular . If there are distinct
facial walks F, F ′ such that there exist distinct vertices v, v′ ∈ V (F )∩V (F ′)
which are not consecutive on (at least) one of these facial walks, then we
say that the angles of F and of F ′ at v and v′ are 2-singular . For i = 1, 2,
let Bi ⊆ E(M) be the set of the edges which correspond to the i-singular
angles. Since G is essentially 3-connected, the edges in B∗i correspond to
the edges in noncontractible cycles of length 2i in the vertex-face graph Γ.

Let B be an edge-blockage contained in BU ∪B1 ∪B2 of minimum car-
dinality. Let Λ = Γ(B∗) be the subgraph of Γ generated by the edges dual
to B.

Consider the connected components of Λ which are cycles. On each of
these cycles, select a vertex, and let A0 be the set of all selected vertices.
By Lemma 3.1(c), no subset of these cycles separates the surface and hence,
by Lemma 4.3(b), |A0| ≤ g.

Denote by A3 the set of vertices of Λ containing A0 and all vertices of
degree > 2 in Λ. Let A4 be the set of all vertices of Λ whose distance in Λ
from A3 is 1 or 2. By (5) we have

|A3 ∪A4| ≤ 5|A0|+
∑
i≥1

(1 + 2 · (2i+ 2))ni ≤ 5g + 9
∑
i≥1

i ni ≤ 14g − 9.

Similar arguments as used above imply that the graph Λ − (A3 ∪ A4)
is the union of r ≤ 3g − 2 disjoint paths P1, . . . , Pr. Choose arbitrarily an
orientation of each of the paths P1, . . . , Pr. If C is a Π-facial walk corre-
sponding to a vertex of Pi (1 ≤ i ≤ r), let vC ∈ V (G) be the vertex of G
that follows C in Λ in the chosen direction of Pi. If the edge of Λ joining C
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and vC belongs to B∗U , then Lemma 4.2 implies that there is a Π-facial walk
C ′ such that C and C ′ Π′-cross at vC or Π′-cross at a common edge incident
with vC . We say that C ′ is a mate of C. If the edge joining C and vC is in
B∗2 , then we let the mate C ′ of C be a face such that C and C ′ intersect at
vC and at another vertex that is not adjacent with vC .

Let A1 be the set of vertices of Λ which correspond to Π-facial walks
that are not cycles of G. For x ∈ A1, let F be the corresponding facial
walk, and let v ∈ V (F ) be a vertex of G that appears twice in F . Since
G is essentially 3-connected, v and F determine a noncontractible cycle of
length 2 in Γ. (Possibly, the edges of that cycle are not contained in Λ.)
Choose one such 2-cycle for every x ∈ A1, and let C1, . . . , Ck (k = |A1|) be
the resulting collection of cycles of Γ. Clearly, C1, . . . , Ck form a bouquet
collection in Γ. If k > 9g, then Lemma 4.3(a) implies that four of the cycles
are homotopic to each other, say Q1, Q2, Q3, Q4. These cycles of length 2 in
Γ may intersect but their vertices corresponding to faces of G are distinct.
We may assume that C1 and C4 bound a cylinder (or a disk) that contains
C2 and C3. Now, we add to B∗ the edges of Q1 and Q4. This gives rise to a
new edge-blockage contained in BU ∪B1∪B2 whose cardinality is ≤ |B|+4.
Since Q2 and Q3 are contained in the cylinder (disk) bounded by Q1 and
Q4, we may remove the edges of B∗ incident with the vertices of A1 that
are on Q2 and Q3 and also remove the edges of Q4 and still have a blockage
B′ ⊂ B∗ ∪ E(C1). Clearly, |B′| < |B∗|, a contradiction. Consequently,
|A1| ≤ 9g.

Let A2 be the set of vertices of P1, . . . , Pr that are not in A1 and cor-
respond to Π-facial cycles which intersect their mate in more than just a
vertex or an edge. Let C be such facial cycle, and let C ′ be its mate. Since
G is essentially 3-connected, there is a noncontractible 4-cycle Q in Γ whose
vertices are C,C ′, vC and another vertex y ∈ V (C ∩ C ′). Let Z be the set
of all such 4-cycles of Γ. For Q ∈ Z, we denote its vertices by C(Q), C ′(Q),
vC(Q), and y(Q).

It is a simple exercise to prove that there is a subset Z1 ⊆ Z of cardinality
≥ 1

9 |A2| such that for any Q1, Q2 ∈ Z1, vC(Q1) 6= y(Q2) and C(Q1) 6=
C ′(Q2). (Hint: Consider the directed graph on all vC and y-vertices, with an
edge from vC(Q) to y(Q) for each Q ∈ Z, and observe that the outdegree of
this digraph is at most 1.) Clearly, V (Q1)∩V (Q2) ⊆ {C ′(Q1), y(Q1)}. If Q1

and Q2 intersect in two vertices, then we may assume that their intersection
is the edge C ′(Q1)y(Q1) = C ′(Q2)y(Q2).

Let z =
√
|Z1|. If there is a vertex y such that y = y(Q) for at least z

members of Z1, then those 4-cycles in Z1 that contain y form a collection
of bouquets of cardinality at least z. Otherwise, there is a subset of Z1 of
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cardinality ≥ z such that no two cycles in this subset have their y-vertex in
common. Again, this subset forms a collection of bouquets. If z > 9g, then
four of the cycles in that collection of bouquets are homotopic, and a proof
similar to the above proof of the fact that |A1| ≤ 9g yields a contradiction to
the minimality of B. This shows that z ≤ 9g and, therefore, |A2| ≤ 729g2.

Let F1, . . . , FN be the facial cycles corresponding to the vertices on
P1, . . . , Pr which are not in A1 ∪ A2, enumerated in the order of the paths
P1, . . . , Pr and with respect to their selected orientation. Let F ′1, . . . , F

′
N be

their mates. Since the facial cycles corresponding to the vertices in Λ form
a face-blockage, we have

N ≥ β∗(G,Π)− |A1 ∪A2| − |A3 ∪A4|
≥ β∗(G,Π)− (27g + 1)2. (14)

If i, j ∈ {1, . . . , N} and j − i ≥ 2, then we say that {i, j} is a bad pair if
either Fi and Fj , or Fi and F ′j intersect and Π′-cross each other. Let M be
a set of bad pairs of maximum cardinality such that no two members of M
have an element in common. Our goal is to prove that |M | = O(g2).

Each bad pair {i, j} determines a path Qij joining two vertices of Λ: If
Fi and Fj Π′-cross at vertex x, then Qij is the path of length 2 connecting
Fi and Fj through x. If Fi and F ′j Π′-cross at vertex x, then Qij is the
path of length 3 connecting Fi and a vertex in Fj ∩ F ′j through x. Clearly,
E(Qij) ⊆ B∗U .

If {i, j} is a bad pair and Fi and Fj are in the same path Pa (1 ≤ a ≤ r),
then Qij and the edges of Pa determine a cycle Rij which is called the
canonical cycle of the bad pair {i, j}. Observe that

|E(Qij)| <
1
2
|E(Rij)|. (15)

Suppose that {i, j} and {i′, j′} (i < j, i′ < j′) are disjoint bad pairs such
that i′ < j and i < j′. If Fj and Fj′ are in the same path Pa (1 ≤ a ≤ r) and
Fi and Fi′ are in the same path Pb (1 ≤ b ≤ a), then there is a cycle Rij,i′j′

in Λ that is composed of Qij , Qi′j′ and two paths Pjj′ ⊆ Pa and Pii′ ⊆ Pb

joining the “upper” and “lower” ends of Qij and Qi′j′ , respectively. The
cycle Rij,i′j′ is called the canonical cycle of bad pairs {i, j} and {i′, j′}. We
shall need an analogy of (15). That is not automatic, but if |j − j′| ≥ 4,
then the length of the segment Pjj′ is at least 7. Consequently,

|E(Qij)|+ |E(Qi′j′)| < |E(Pjj′)|. (16)
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We can view P1∪· · ·∪Pr as being a single path by adding auxiliary edges
joining the end of Pl with the beginning of Pl+1, l = 1, . . . , r − 1. Then we
can define canonical cycles for bad pairs (or pairs of bad pairs) also when
the ends of Qij (and Qi′j′) are not in the same path(s) Pa (and Pb). The
canonical cycles that use the auxiliary edges are called fake canonical cycles;
the others are said to be genuine.

In order to meet the condition |j − j′| ≥ 4 needed for (16), we order
the bad pairs in M according to their larger members j, and let M1 be the
subset consisting of every fourth bad pair in this order.

Lemma 4.6 shows that there is a set of at least d
√
|M1|/20 e canonical

cycles (using only bad pairs in M1) whose intersections with P1∪· · ·∪Pr are
pairwise disjoint. Since r ≤ 3g − 2, at most 3g − 3 of these canonical cycles
are fake. Let R1, . . . , Rs (s ≥ d

√
|M1|/20 e−3g+3) be the subset of genuine

canonical cycles. These canonical cycles are disjoint except that they may
have a vertex in common if the mate F ′j of Fj is the same as the mate F ′l of
Fl, and Fj , Fl are in distinct canonical cycles. Therefore, R1, . . . , Rs form a
collection of bouquets.

If one of these cycles, say Rl = Rij (or Rl = Rij,i′j′) would be con-
tractible, then the replacement in B∗ of E(Rl) ∩ Pa (or E(Pjj′)) with Qij

(or Qij ∪Qi′j′) would give rise to another blockage. By (15) (or (16)), this
blockage would contradict minimality of B. Therefore, Rl is noncontractible.
Similar conclusion holds if two of these genuine canonical cycles are homo-
topic (in which case we can add to B∗ the missing edges of one of them
and remove the edges of the second one). Lemma 4.3 implies that s ≤ 3g.
Consequently, |M | ≤ 4|M1| ≤ 3240g2.

Let A be the set of facial cycles Fl such that l is contained in some bad
pair in M . As proved above, |A| ≤ 2 ·3240g2. Let C1, . . . , Ct be a maximum
subsequence of F1, . . . , FN such that none of Ci is in A and such that, for
i = 1, . . . , t− 1, if Ci = Fj , then Ci+1 6= Fj+1. Clearly,

t ≥ 1
2

(N − |A|) ≥ 1
2
N − 3240g2. (17)

For j = 1, . . . , t, let C ′j be the mate of Cj . Let us consider the collection
of pairs

C = {(Cj , C
′
j) | j = 1, . . . , t}.

We claim that C satisfies conditions (a)–(d) of Lemma 4.4. No facial walk Ci

is in A1 ∪A2. Therefore, every Ci is a cycle and (c) holds. Since the cycles
in A do not participate in the sequence C1, . . . , Ct, the pairs in C satisfy (a)
and (b). Clearly, (d) is also satisfied.
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By Lemma 4.4 and inequalities (14) and (17),

g(G) = g(G,Π′) ≥ |C| ≥ 1
2
N − 3240g2 ≥ 1

2
β∗(G,Π)− (64g)2.

The proof is complete.

The “error” term (64g)2 in (13) is not best possible. There are examples
which show that such term of order Ω(g) is necessary, and we conjecture
that (13) can be improved to

g(G) ≥ 1
2
β∗(G,Π)−O(g).

Lemma 2.1, Theorem 4.7, and Corollary 3.3 imply:

Corollary 4.8. Let G be a graph embedded in Ng, and let r be the minimum
order of a crossing-free blockage. Then

r − (64g)2 ≤ g(G) ≤ r.

Finally, let us observe that Corollary 3.3 implies that β(G,Π) and β∗(G,Π)
cannot differ too much. Therefore, g(G) is also approximately equal to
β(G,Π), up to a term which depends on g only.

It is not clear if there is an efficient algorithm for finding a minimum
(crossing-free) blockage or its approximation for a graph embedded in Ng.
For every fixed g, this task is solvable in polynomial time since there is only
a bounded number of possibilities for homotopies of curves in an optimum
crossing-free blockage. However, this approach seems complicated, and we
restrain of describing further details. The case when g = 2 is described in
[9].
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