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Abstract

The notion of (circular) colorings of edge-weighted graphs is in-
troduced. This notion generalizes the notion of (circular) colorings of
graphs, the channel assignment problem, and several other optimiza-
tion problems. For instance, its restriction to colorings of weighted
complete graphs corresponds to the traveling salesman problem (met-
ric case). It also gives rise to a new definition of the chromatic number
of directed graphs. Several basic results about the circular chromatic
number of edge-weighted graphs are derived.

1 Introduction

The theory of circular colorings of graphs has become an important branch
of chromatic graph theory with many interesting results, leading to new
methods and exciting new results. We refer to the survey article by Zhu [9].

In this paper, circular colorings of edge-weighted graphs are introduced.
This notion contains, as special cases, several other optimization problems,
e.g., the channel assignment problem. When restricted to complete graphs,
it generalizes the traveling salesman problem and the hamiltonicity prob-
lem. Edge-weights need not be symmetric. This possibility leads to a new
definition of colorings of directed graphs.

A weighted graph is a pair G = (V,A), where V is the vertex set and
A : V × V → R+ ∪ {0} are the edge-weights. For u, v ∈ V , we shall write
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auv = A(u, v). The set ~E of ordered pairs, ~E = {(u, v) | auv > 0} is called
the set of directed edges of G. The unordered pair {u, v}, shortly written as
uv or vu, is an edge of G if auv > 0 or avu > 0. The set of edges is denoted
by E = E(G). For (u, v) ∈ ~E, auv is called the weight of the directed edge
(u, v). If auv = 0 implies that avu = 0 (u, v ∈ V ), then we say that the
weights are weakly symmetric. If auv = avu for all vertices u, v ∈ V , then
the weights are said to be symmetric.

Throughout this paper, it will be assumed that G has no loops, i.e.,
avv = 0 for every v ∈ V .

For a positive real number p, denote by Sp ⊂ R2 the circle with radius
p
2π (hence with perimeter p) centered at the origin of R2. In the obvious
way, we can identify the circle Sp with the set R/pZ. For x, y ∈ Sp, let us
denote by Sp(x, y) the arc on Sp from x to y in the clockwise direction, and
let d(x, y) denote the length of this arc.

Let G = (V,A) be a weighted graph with at least one edge. A circular
p-coloring of G is a function c : V → Sp such that for every directed edge
(u, v) ∈ ~E, d(c(u), c(v)) ≥ auv. Since d(c(u), c(v)) + d(c(v), c(u)) = p, a
necessary condition for existence of a circular p-coloring is that

p ≥ max{auv + avu | u, v ∈ V }. (1)

The circular chromatic number χc(G) of the edge-weighted graph G is
the infimum of all real numbers p for which there exists a circular p-coloring
of G. It will be shown later that in the case of weakly symmetric weights,
the infimum is indeed attained, i.e., there exists a circular χc(G)-coloring of
G.

The circular chromatic number of weighted graphs introduced above
generalizes some other graph invariants and can be used as a model for
several well-known optimization problems.

(a) If the weights are symmetric and all nonzero edge-weights are equal
to 1, then χc(G) is the usual circular chromatic number of G (cf., e.g.,
[9]).

(b) If there is a function f : V → R+, and weights of edges are defined as
auv = f(u)+f(v), then we get the notion of weighted circular colorings
that were studied by Deuber and Zhu [1].

(c) Let G be an arbitrary (unweighted) graph with vertex set V . Let KG

be the complete graph with the same vertex set as G and edge-weights
1 (for edges of G) and 2 (for nonedges of G). Then χc(KG) = |V | if and

2



only if G has a hamiltonian cycle. If G has no hamiltonian cycle, then
χ(KG) = |V | + la(G), where la(G) is the linear arboricity of G, i.e.,
the minimum number of paths whose vertex sets partition V (G). This
example shows that computation of the weighted circular chromatic
number is NP-hard even for complete graphs with edge-weights 1 and
2 only.

(d) Let D = [duv]u,v∈V be the cost matrix for a metric traveling salesman
problem (TSP), i.e., D satisfies the triangular inequality. Then every
circular p-coloring of the weighted complete graph KV (with edge-
weights D) determines a tour of the traveling salesman of cost ≤ p,
and vice versa. Therefore, χc(KV ) is the optimum for the considered
TSP.

Another closely related area is the channel assignment problem for which
we refer to the recent survey article by McDiarmid [6].

The notion of the circular chromatic number thus generalizes several
well-known optimization problems and hence introduces the possibility to
apply tools from one area into another one. As the edge-weights are not
discrete integer values, one may also get use of some tools from continuous
optimization. The author of this paper is quite optimistic about such possi-
bilities which may yield better understanding of graph coloring theory. As
an example we refer to an extension of Hajós theorem to circular colorings
of edge-weighted graphs [8] which sheds some new light to why no nontrivial
applications of this celebrated theorem are known.

2 Tight edges

In this section it will be shown that χc(G) can be expressed as an integer
fraction a/k, where k is an integer smaller than n and a is the sum of at
most n edge-weights. This implies, in particular, that χc(G) is a rational
number if all edge-weights are rational. The proof of this result also implies
that for every weighted graph G with weakly symmetric weights, there exists
a circular p-coloring for p = χc(G).

Let c be a circular p-coloring of G. A directed edge (u, v) is said to be
tight if d(c(u), c(v)) = auv. A cycle C = v1v2 . . . vkv1 is tight if the directed
edges (v1, v2), . . . , (vk−1, vk), and (vk, v1) are all tight. If k = 2 and the edges
(v1, v2) and (v2, v1) are both tight, then we also consider the 2-cycle v1v2v1

to be a tight cycle. If C is a tight cycle, then the weight of C,

a(C) := av1v2 + · · ·+ avk−1vk
+ avkv1 (2)
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is an integer multiple of p, and the number w(C) = a(C)/p is called the
winding number of C.

Lemma 2.1 Suppose that the weights of G are weakly symmetric. If p0 =
χc(G), then there is a circular p0-coloring of G which has a tight cycle.

Proof. We may assume that G is connected. Suppose that p1 ≥ p0 and
that there is a circular p1-coloring of G. Let p ≤ p1 be a real number such
that G has a circular p-coloring c with maximum number of tight edges.

Let v0 be a vertex of G and let V0 = {v0}. For i = 1, 2, . . . , let Vi =
{v ∈ V | ∃u ∈ Vi−1 such that (u, v) is tight}. If V0 ∪ · · · ∪ Vi−1 6= V , and
Vi = ∅, we can shift the colors of V \ (V0 ∪ · · · ∪Vi−1) counterclockwise until
a new tight edge occurs. (Let us observe that the last conclusion uses the
fact that the weights are weakly symmetric.) By the maximality of c, this
does not happen. Consequently, for each v ∈ V there is a path from v0 to v
consisting only of tight edges.

Suppose that there is no tight cycle. For v ∈ V , let l(v) be the maximum
of a(P ) taken over all directed walks P from v0 to v which consist of tight
edges only. Since there are no tight cycles, the values l(v) are finite. By the
definition of l(v), if l(u) > l(v), then the edge uv is not tight. This implies
that for p′ = p − ε, where ε > 0 is small enough, the mapping c′(v) =
l(v) mod p′ ∈ R/p′Z determines a circular p′-coloring of G. By increasing
the value of ε as much as possible, a new tight edge occurs. Observe that
such maximum increase exists since the edge-weights are weakly symmetric.
This contradicts the maximality of c and shows that there exists a tight
cycle.

Clearly, if the cycle C is tight, then p = a(C)/w(C). The winding
number of C is bounded by the number of edges in C. Therefore, the same
cycle can be tight for at most n distinct values of p. Since there are only
finitely many cycles of G, this easily implies the statement of the lemma.

Lemma 2.1 does not hold without the assumption of weak symmetry.
For example, the acyclic tournament graph on n vertices with aij = 1 and
aji = 0 for every pair of vertices i < j, has circular chromatic number equal
to 1 but every circular p-coloring of this graph has p > 1.

Lemma 2.1 can also be applied to graphs whose weights are not weakly
symmetric. This can be achieved by replacing the weight 0 of every directed
edge (u, v) for which auv = 0 and avu > 0 by an infinitesimally small weight
ε, and then letting ε tend to 0. This gives rise to a weighted graph with
weakly symmetric weights, called the ε-extension of G. Tight cycles in
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the ε-extended graph can be described as cyclic sequences of edges, C =
v1v2 . . . vkv1, where each pair vivi+1 (indices modulo k) is an (undirected)
edge of G. Then C is said to be a weakly tight cycle of G. Its weight a(C)
is defined by (2). Let us observe that a weakly tight cycle corresponds to
an (undirected) cycle in G.

In trees and forests, there are only cycles of length 2. Therefore, Lemma
2.1 implies:

Corollary 2.2 For every forest F with at least one edge,

χc(F ) = max{auv + avu | u, v ∈ V }.

Let C be a tight cycle with respect to a circular p-coloring. Then p =
a(C)/w(C). If the edge-weights are symmetric, then each edge-weight is at
most p/2. Therefore, a(C) ≤ np/2, so the winding number is at most n/2.
In the nonsymmetric case, the winding number is at most n− 1.

Corollary 2.3 The circular chromatic number of G is of the form a(C)
k

where C is a cycle in G (possibly of length 2) and k is an integer which is
smaller than n = |V | (and is smaller or equal to n/2 if the edge-weights are
symmetric). If the weights of G are weakly symmetric, then the infimum in
the definition of the circular chromatic number is attained.

Another interesting corollary of Lemma 2.1 is the following result which
shows that the methods of polyhedral combinatorics may be used in graph
coloring theory.

Corollary 2.4 The circular chromatic number of a given graph G, viewed
as a function of the edge-wieghts, is a continuous, piecewise linear function
with finitely many domains of linearity.

3 Upper bounds

Let G = (V,A) be a weighted graph. For v ∈ V , let d+
G(v) =

∑
u∈V auv and

d−G(v) =
∑

u∈V avu, and let DG(v) = d+
G(v) + d−G(v). The graph G is said to

be weakly p-degenerate if every subgraph H of G contains a vertex v with
DH(v) ≤ p. The following result is obvious:

Proposition 3.1 If G is a weakly p-degenerate graph, then χc(G) ≤ p.
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The inequality of Proposition 3.1 has an analogy in the theory of usual
graph colorings of unweighted graphs, except that Proposition 3.1 gives a
bound which is worse by a factor of 2. The following example shows that
the loss of factor 2 in comparison with the usual chromatic number cannot
be improved.

Let Gn be the graph obtained from the complete graph Kn with unit
edge-weights by adding a new vertex tuv for each edge uv ∈ E(Kn), and
joining tuv with the vertices u and v. The weight of each new edge joining
tuv with u or v is equal to κ = n−1

2 .

Proposition 3.2 The graph Gn is (n − 1)-degenerate. If n is odd, then
χc(Gn) = 2n− 4 + 4

n+1 .

Proof. It is clear by construction that Gn is (n− 1)-degenerate.
Suppose now that n is odd. Let p0 = 2n − 4 + 4

n+1 = nr, where r =
2 − 4

n+1 . Let v1, . . . , vn be the vertices of Kn ⊂ Gn. By setting c(vi) =
(i − 1)r ∈ R/p0Z, a circular p0-coloring of Kn is obtained which can be
extended to a circular p0-coloring of Gn. Therefore, χc(Gn) ≤ p0.

Suppose now that p < p0, and suppose that there is a circular p-coloring c
of Gn. Let xi = c(vi). We may assume that the cyclic order of these colors on
Sp is x1, . . . , xn. For x ∈ Sp, let x̄ be the point of Sp which lies diametrically
opposite x on the circle Sp. Let ri = d(xi, xi+1), i = 1, . . . , n − 1, and let
rn = d(xn, x1).

Let α be the minimum distance of a point xj from some x̄i, i, j ∈
{1, . . . , n}. Since the color c(tvivj ) has distance at least κ from xi and from
xj , it is necessary that p/2 + α ≥ 2κ. This implies:

α ≥ 2κ− p

2
> 1− 2

n + 1
. (3)

Clearly, any two distinct points xi and xj are at distance at least 1 on
Sp. The same holds for the opposite points x̄i and x̄j . Therefore, the 2n
points x1, . . . , xn and x̄1, . . . , x̄n divide Sp in 2n segments, each of length
more than 1− 2

n+1 . This implies that p > 2n(1− 2
n+1) = p0, a contradiction.

On the other hand, the upper bound of ∆(G)+1 for the usual chromatic
number has a generalization to the weighted case. Such a result, derived
for the setting of channel assignment problems, was recently obtained by
McDiarmid [5]. His proof can be extended to work also in the case of circular
colorings of edge-weighted graphs.
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Theorem 3.3 Let ∆+(G) = max{d+
G(v) + avu | u, v ∈ V }. Then χc(G) ≤

∆+(G).

Proof. By applying the ε-extension described after Lemma 2.1, and at the
end taking the limit as ε tends to 0, we may assume that the edge weights
are weakly symmetric.

Let us first assume that all edge-weights are integers. Let v1, . . . , vn be
the vertices of G. We assign them colors c(vi) ∈ N (i = 1, . . . , n) by applying
the following “greedy” algorithm. For every value of α = 0, 1, 2, . . . ,∆+(G),
traverse all vertices v1, . . . , vn. During this traversal, assign color c(vi) := α
to every uncolored vertex vi whose already colored neighbors do not object
to this choice, i.e., every vertex vj adjacent to vi which has already received
the color c(vj), must satisfy the condition α− c(vj) ≥ avjvi .

We claim that at the end all vertices are colored and that c(vi) ≤ d+
G(vi),

i = 1, . . . , n. Suppose that vi has not been colored for α = 0, 1, . . . , d. Then
for each such α, there was a vertex vj(α) such that α − c(vj(α)) < avj(α)vi .
If vj is a neighbor of vi, then |{α | j(α) = j}| ≤ avjvi . This implies that
d + 1 ≤ d+

G(vi).
Using the above conclusion, it is easy to see that c determines a circular

∆+(G)-coloring of G.
If the edge-weights are not integers, we proceed as follows. Let N be

a large positive real number, and let a′uv = dNauve. Denote by G′ the
weighted graph thus obtained. Clearly, χc(G′) ≥ N · χc(G). By the above,
χc(G′) ≤ ∆+(G′) = max{d+

G′(v)+a′vu} ≤ N∆+(G)+n. Therefore, χc(G) ≤
∆+(G) + n

N . Since N is arbitrarily large, χc(G) ≤ ∆+(G).

Let GT be the weighted graph whose weight function aT is the transpose
of a, i.e., aT

uv = avu. Every circular p-coloring of G determines a circular p-
coloring of GT obtained by the reflection of the circle Sp. Hence, χc(GT ) =
χc(G). Note that ∆+(GT ) = ∆−(G) = max{d−G(v) + auv | u, v ∈ V }.
Therefore, Theorem 3.3 implies that χc(G) ≤ ∆−(G).

4 Local changes

The following transformation gives a new edge-weighting but preserves the
chromatic number. Let t be a real number and let v be a vertex of G.
For each neighbor u of v, define new edge-weights a′vu = avu + t and a′uv =
auv−t. If the absolute value of t is small enough so that all new edge-weights
remain nonnegative, then the resulting weighted graph has the same circular
chromatic number as G.
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If u, v are nonadjacent vertices of G, let Gu,v denote the graph obtained
from G by identifying u and v into a new vertex w. The edge-weights in
Gu,v are the same as in G except that for each z ∈ V (Gu,v) \ {w}, the
weights a′zw of zw and a′wz of wz are equal to a′zw = max{azu, azv} and
a′wz = max{auz, avz}, respectively. Then

χc(G) ≤ χc(Gu,v) (4)

since every circular p-coloring c of Gu,v determines a coloring of G by setting
c(v) = c(u) := c(w).

If u, v are adjacent vertices of G, then we define Gu,v in the same way
except that the weights of edges incident with w are determined differently:

a′zw = max{azu, azv − auv} and

a′wz = max{auz, auv + avz}.

If c is a circular p-coloring of Gu,v, then setting c(u) = c(w) and c(v) to be
the point on Sp such that d(c(u), c(v)) = auv yields a circular p-coloring of
G. This shows that

χc(G) ≤ χc(Gu,v). (5)

5 Colorings and orientations

In this section we shall assume that the weights of edges of G are weakly
symmetric, and we shall point out at the end of the section that Theorems
5.2 and 5.3 also hold without this assumption.

A mapping T : ~E → {−1, 1} is an (edge-)orientation of G if for every
(u, v) ∈ ~E, T (u, v) = −T (v, u). We say that the edge uv ∈ E is oriented
from u to v if T (u, v) = 1.

Let T be an orientation. A mapping t : E → R is a tension if for every
cycle C = v1v2 . . . vkv1 of G, we have

k∑
i=1

T (vi, vi+1) t(vivi+1) = 0. (6)

The tension t is p-admissible if for every edge uv ∈ E oriented from u to v,
auv ≤ t(uv) ≤ p− avu.

Lemma 5.1 A weighted graph G with weakly symmetric weights has a cir-
cular p-coloring if and only if there is an orientation of G for which there
exists a p-admissible tension.

8



Proof. If c is a circular p-coloring, the following determines an orientation T
and a p-admissible tension t. Fix a point o ∈ Sp\c(V ). Suppose that uv ∈ E.
If o /∈ Sp(c(u), c(v)), then we set T (u, v) = 1 and t(uv) = d(c(u), c(v)).
Otherwise, we set T (u, v) = −1 and t(uv) = d(c(v), c(u)).

Conversely, let T be an orientation and t a p-admissible tension. We
may assume that G is connected. Let D be a spanning tree of G, and let v0

be a vertex of G. For v ∈ V , let P = v0v1 . . . vk−1vk be the path in D from
v0 to v = vk. Set l(v) =

∑k−1
i=0 T (vi, vi+1)t(vivi+1) and c(v) = l(v) mod p ∈

R/pZ ≈ Sp. Consider an arbitrary directed edge (u, v) ∈ ~E such that
T (u, v) = 1. If uv ∈ E(D), then l(v) = l(u)+t(uv). The same relation holds
if uv /∈ E(D) by (6). Therefore, auv ≤ l(v) − l(u) ≤ p − avu. This implies
that d(c(u), c(v)) = t(uv) ≥ auv and that d(c(v), c(u)) = p − t(uv) ≥ avu.
This shows that c is a circular p-coloring of G.

The following result of Hoffman [4] and Ghouila-Houri [2] gives a neces-
sary and sufficient condition for existence of an admissible tension. Let us
mention that a directed cycle of G is a cycle in the digraph with edge set ~E.
Each cycle of G determines two directed cycles (one in each direction), and
each edge of G determines a directed cycle of length 2.

Theorem 5.2 Let G be a weighted graph with a given orientation T , and
let l, u : E → R be nonnegative functions such that 0 ≤ l(e) ≤ u(e) for every
e ∈ E. Then there exists a tension t such that l(e) ≤ t(e) ≤ u(e) for every
e ∈ E if and only if for every directed cycle C = v1v2 . . . vkv1 (k ≥ 2) of G,
we have ∑

T (vi,vi+1)=−1

l(vivi+1) ≤
∑

T (vi,vi+1)=1

u(vivi+1), (7)

where i takes values 1, . . . , k, and vk+1 = v1. Moreover, if l and u are
rational (integer) valued, then t can be chosen to be rational (integer) valued.

Observe that Hoffman’s condition in Theorem 5.2 must also hold for the
reverse directed cycle C ′ = v1vk . . . v2v1. This gives:∑

T (vi,vi+1)=1

l(vivi+1) ≤
∑

T (vi,vi+1)=−1

u(vivi+1). (8)

For a directed cycle C = v1 . . . vkv1 of G, let C+ (resp. C−) be the set
of edges of C whose T -orientation is the same (resp. opposite) as on C. For
p-admissible tensions we have l(vivi+1) = avivi+1 if T (vi, vi+1) = 1, and we
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have u(vivi+1) = p− avivi+1 if T (vi, vi+1) = −1. Condition (8) is equivalent
to the following requirement:

a(C) =
k∑

i=1

avivi+1 ≤ p|C−|. (9)

This shows that G has no circular p-coloring if and only if for every orien-
tation T there exists a cycle C such that (9) is violated. This implies:

Theorem 5.3 Let G be a weighted graph. Then

χc(G) = min
T

max
C

a(C)
|C−|

(10)

where the minimum is taken over all (acyclic) orientations T of G, and the
maximum is over all directed cycles of G.

A version of Theorem 5.3 for usual colorings of graphs was proved by
Minty [7]. A version for circular colorings was proved by Goddyn, Tarsi, and
Zhang [3] who also pointed out that the same result can be proved in the
setting of matroids. Our extension to weighted graphs can also be extended
to matroids with weighted elements.

A corollary of Lemma 5.1 and Theorems 5.2 and 5.3 is that the infimum
in the definition of the cyclic chromatic number is attained if the weights are
weakly symmetric. In fact, χc(G) is of the form a

k where a = a(C) is a sum
of at most n edge-weights and k is a positive integer smaller or equal to n. In
the case of symmetric edge-weights, k ≤ n/2 since either C or its inverse C ′

has at most n/2 negatively oriented edges, so that max{a(C)
|C−| ,

a(C′)

|C′−|} ≥
a(C)
n/2 .

Cf. also Corollary 2.3.
Theorems 5.2 and 5.3 also hold for weighted graphs whose weights are

not weakly symmetric. To see this, we replace G by its ε-extension Gε and
take the limit as ε tends to 0. Of course, the maximum in (10) has to be
taken over all directed cycles in the extended graph Gε.
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