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Abstract

An acyclic homomorphism of a digraph D into a digraph F' is a
mapping ¢: V(D) — V(F) such that for every arc uv € E(D), either
o(u) = ¢(v) or ¢p(u)d(v) is an arc of F, and for every vertex v €
V(F), the subgraph of D induced on ¢~!(v) is acyclic. For each fixed
digraph F' we consider the following decision problem: Does a given
input digraph D admit an acyclic homomorphism to F? We prove
that this problem is NP-complete unless F' is acyclic, in which case
it is polynomial time solvable. From this we conclude that it is NP-
complete to decide if the circular chromatic number of a given digraph
is at most ¢, for any rational number ¢ > 1. We discuss the complexity
of the problems restricted to planar graphs. We also refine the proof
to deduce that certain F'-coloring problems are NP-complete.

*Supported in part by the Ministry of Science and Technology of Slovenia, Research
Project J1-0502-0101-01.



1 Introduction

Let H be a fixed graph. An H-coloring of a graph G is a graph homomor-
phism G — H, i.e., a mapping ¢: V(G) — V(H) such that ¢(u)p(v) is an
edge of H whenever uv is an edge of G. This notion generalizes k-coloring
since a Kj-coloring of G is precisely a standard k-coloring of G. For a fixed
integer k£ > 3, to decide the existence of a k-coloring for a given graph G is
one of the basic NP-complete problems. This result has been generalized to
H-colorings by Hell and Nesettil [10], who proved that, for a fixed graph H,
to decide the existence of an H-coloring for a given graph G is NP-complete
if H is not bipartite (and is polynomially solvable if H is bipartite).

Let C(k,d) be the graph with vertex set {0, ...,k — 1} in which distinct
vertices i, are adjacent if and only if d < |i — j| < k —d. The circular
chromatic number x.(G) of a graph G is the minimum of all rational numbers
k/d (where k and d < k are positive integers) such that there exists a
homomorphism G — C(k, d) (the minimum must exist [5]). Thus x.(G) < &
if and only if there exists a homomorphism G — C(k,d), and the result of
[10] implies that for every given rational number ¢ > 2, it is also NP-
complete to decide if a given graph G has x.(G) < ¢. (See also [5, 8, 9]; in
particular, it is known to be hard to decide if a graph G with x(G) = n has
Xe(G) <n— % for any integers k > 2,n > 3 [9].)

The theory of circular colorings of graphs has become an important
branch of chromatic graph theory with many exciting results and new tech-
niques. We refer to the survey article by Zhu [15]. Recently, one of the
authors [14] has extended the notion of circular colorings to graphs with
weighted edges, which can be specialized to also yield a notion of the circu-
lar chromatic number x.(D) of a digraph [4].

Let D be a digraph. (All digraphs will be assumed to have no loops.)
A vertex set A C V(D) is acyclic if the induced subgraph D[A] is acyclic.
A partition of V(D) into k acyclic sets is called a k-coloring of D. The
minimum integer k for which there exists a k-coloring of D is called the
chromatic number x(D) of the digraph D. (Note that x(D) < |V (D)] since
D has no loops.) Bokal et al. [4] proved that (in contrast with the undirected
case) it is NP-complete to decide whether an input digraph D has x(D) < 2.

Let F be a fixed digraph. An F-coloring of a digraph D is a digraph ho-
momorphism D — F i.e., a mapping ¢: V(D) — V(F) such that ¢(u)p(v)
is an arc of F whenever uv is an arc of D. The F'-coloring problem asks
whether or not an input digraph D admits an F-coloring [1, 2, 3, 12, 13].
In contrast to the case of graphs, no complexity classification of F-coloring
problems is known, or conjectured. In fact, it is not even known if each



F-coloring problem is polynomial time solvable or NP-complete, and if such
a dichotomy result were true, then a much more general dichotomy for all
constraint satisfaction problems would also hold [6]. There is, however,
a conjecture [2] proposing a classification of the complexity of F-coloring
problems when each vertex of F' has a positive indegree as well as a posi-
tive outdegree. Our last result, Theorem 3.1, verifies a special case of this
conjecture.

A graph G defines a natural digraph D(G) with the same vertices as
G, in which uv is an arc if and only if v and v are adjacent in G. Note
that D(G) is a symmetric digraph, i.e., the reversal of each arc is an arc.
It is easy to see that a mapping f : V(G) — V(H) is a homomorphism
of the graph G to the graph H if and only if it is a homomorphism of the
digraph D(G) to the digraph D(H). (We say that the definition of digraph
homomorphisms is consistent with the definition of graph homomorphisms.)

We introduce a different kind of digraph homomorphisms and obtain a
complete classification of the corresponding F'-coloring problems.

An acyclic homomorphism of a digraph D into a digraph F' is a mapping
¢: V(D) — V(F) such that:

(i) for every arc uv € E(D), either ¢(u) = ¢(v) or ¢(u)p(v) is an arc of
F, and

(ii) for every vertex v € V(F), the subgraph of D induced on ¢~!(v) is
acyclic.

It is easy to check that the composition of acyclic homomorphisms is
again an acyclic homomorphism. It is also easy to see that this definition
is also consistent with the definition of graph homomorphims, i.e., that a
mapping f is a graph homomorphism of G to H if and only if it is an acyclic
digraph homomorphism of D(G) to D(H).

An acyclic homomorphism of D to F' will also be called an acyclic F'-
coloring of D. For a fixed digraph F', the acyclic F-coloring problem asks
whether or not an input digraph D admits an acyclic F-coloring.

We now define a digraph analogue of C/(k,d): The digraph C(k,d)
has the vertex set V(C(k,d)) = {0,...,k — 1}, and from each vertex i €
V(é(k,d)) there are arcs toi +d, 1 +d+ 1, ..., 1+ k — 1, with arithmetic
modulo k. Notice that @(n, n—1)~ C,, is the directed n-cycle.

One can again define the circular chromatic number x.(D) of the digraph
D [4] as the minimum of all rational numbers k/d (where k and d < k are
positive integers) such that there exists an acyclic homomorphism D —
C(k,d). If k and d are positive integers with k > d, then x.(C(k,d)) = &.



It is not difficult to see [4] that
X(D) = 1 < xe(D) < x(D).

It follows from [4] that it is NP-complete to decide if x.(D) < 2. This
suggests that to decide if x.(D) < ¢ should be NP-complete for every q > 2,
but it gives no insight on what may hold for ¢ < 2.

In this paper we verify that the acyclic F-coloring problem is NP-complete,
unless F' is acyclic, in which case it is polynomial time solvable. This im-
plies, in particular, that to decide if x.(D) < q is also NP-complete, for
every fixed rational number ¢ > 1. Refining this proof, we also conclude
that certain F-coloring problems are NP-complete, verifying special cases of
two conjectures from [1, 2].

2 Acyclic homomorphisms and colorings
We begin by disposing of the easy positive direction.

Proposition 2.1 Suppose F is an acyclic digraph. Then a digraph D ad-
mits an acyclic F-coloring if and only if D is itself acyclic.

Proof. If D is acyclic, any constant mapping (all vertices of D map to
one vertex of F') is an acyclic homomorphism. Conversely, if D contains a
directed cycle C, then any acyclic homomorphism of D to F' would take C
to a directed cycle in F. O

For the negative results, we observe that all acyclic F-coloring problems
are in the class NP, with the mapping ¢ itself being a concise certificate.

Recall that Cy = C/(2,1) denotes the directed two-cycle. Note that D
admits an acyclic homomorphism to Cs if and only if x(D) < 2. Therefore
our first negative result follows from [4].

Proposition 2.2 The acyclic ég—coloring problem is NP-complete.

Proof. We shall present a brief proof, slightly adapting the proof in [4],
because we shall need to refer to the details of it in the next section. We
shall give a polynomial time reduction from the NP-complete problem of
2-colorability of 3-uniform hypergraphs (also known as the not-all-equal 3-
satisfiability problem without negated variables). For such a hypergraph
X we construct a digraph D consisting of one vertex x for each vertex z
of X, and three vertices ae, be, ce for each hyperedge e = abc of X. The



arcs of D are zz. and z.x for each vertex z of X and each hyperedge e
containing z, and aebe, beCe, ceae for each hyperedge e of X. We claim that
X is 2-colorable if and only if D admits an acyclic ég—coloring, i.e., can
be colored with two colors so that each color class is acyclic. Given a 2-
coloring of X, we can apply the same colors to the vertices z of D, and the
opposite color to all vertices z, for edges e containing x. There will be no
monochromatic directed cycle. Moreover, whenever D is colored with two
colors without a monochromatic directed cycle, the colouring of the vertices
z yields a 2-coloring of X. O

Recall that D(G) is the symmetric digraph associated with the graph
G. On the other hand, each digraph D is also associated with a natural
graph H (D) which has the same vertices as D, and in which two vertices
u, v are adjacent if and only if both uv and vu are arcs of D. Note that the
symmetric digraph D(H (F')) is obtained from F' by removing all arcs uv for
which the reversal vu is not an arc. We call this digraph the symmetric part
of F. Tt is again easy to see that if a mapping is a digraph homomorphism
of D to F', then it is also a graph homomorphism of the symmetric part of
D to the symmetric part of G.

Our second negative result follows from [10].

Proposition 2.3 If the symmetric part of F contains an odd cycle, then
the acyclic F-coloring problem is NP-complete.

Proof. If the symmetric part of F' contains an odd cycle, then H(F)
is nonbipartite, and hence it is NP-complete to decide if an input graph
G admits a homomorphism to H(F) [10]. On the other hand, we claim
that G admits a homomorphism to H(F') if and only if D(G) admits an
acyclic homomorphism to F. Any homomorphism of G to H(F') is clearly
also an acyclic homomorphism of D(G) to F. Thus consider an acyclic
homomorphism ¢ of D(G) to F. Since D(G) is a symmetric digraph, ¢ is
in fact an acyclic homomorphism of D(G) to the symmetric part of F, i.e.,
to D(H(F)). Therefore ¢ is a homomorphism of G to H(F). O

We are now ready for our first main result.

Theorem 2.4 If F' contains o directed cycle, then the acyclic F-coloring
problem is NP-complete.

Proof. Let k be the minimum length of a directed cycle in F. We first
assume that k£ > 3, i.e., that the symmetric part of F' is empty. Let F’ be



the digraph obtained from F' by adding an arc uv whenever there is in F' a
directed path from u to v of length at most £k — 1. Let D’ be the digraph
obtained from D by replacing each arc zy by a directed path of length £k —1
from z to y. We claim that there exists an acyclic homomorphism of D to
F' if and only if there exists an acyclic homomorphism of D' to F.

Suppose first that ¢ is an acyclic homomorphism of D’ to F. Each arc
zy of D corresponds to a path of length £k — 1 from z to y in D', which is
taken by the acyclic homomorphism ¢ to a path of length at most k£ — 1
in F. (This follows from the definition of an acyclic homomorphism and
the fact that there are no directed cycles of length less than k in F.) Thus
d(x) = ¢(y) or ¢(z)p(y) is an arc of F'. Moreover, for every v € V(F'), the
set ¢~1(v) NV(D) is a subset of ¢~!(v) in D', and hence is acyclic in D'.
Observe that if ¢(z) = ¢(y) = v, then ¢ maps to v all vertices of D’ on the
(k—1)-path from z to y. Therefore, the set ¢~ (v)NV (D) induces an acyclic
subgraph of D. Thus ¢ restricted to V(D) is an acyclic homomorphism of
D to F'. Conversely, suppose that ¢ is an acyclic homomorphism of D to
F'. Thus the mapping ¢ can be extended to the new vertices (on the added
directed paths of length & — 1) of D’ so that the resulting mapping is an
acyclic homomorphism of D' to F.

This argument is a polynomial reduction from the problem of acyclic F'-
coloring to the problem of acyclic F-coloring. Since F' contains a directed
cycle of length k, the digraph F’ contains k > 3 vertices in a complete
directed digraph, i.e., the symmetric part of F’ contains a triangle. By
Proposition 2.3 the acyclic F'-coloring problem, and hence also the acyclic
F-coloring problem, is NP-complete.

It remains to deal with the case when the symmetric part of F' is bi-
partite, but not empty. Suppose H(F') has £ > 1 edges. For any digraph
D we construct, in polynomial time, a digraph D(Z) consisting of disjoint
copies D(i,7) of D, for all pairs i < j, with 7,7 = 0,1,...,4, and of special
vertices ag,ay,...,as bg,by,...,b;. Moreover, each vertex of D(7,j) has an
arc from a; and b;, and to a; and b;, and there are also arcs a;b;, b;a; for all
1=20,1,...,¢ amongst the special vertices.

We claim that D has an acyclic ég—coloring if and only if D(¢) has an
acyclic F-coloring. Indeed, if D has an acyclic ég—coloring, then all D(i, 7)
can be acyclically Cy-colored by the same 62, and this coloring extends to
the special vertices as well by coloring all a; with one color and all b; with
the other. Conversely, if D(¢) has an acyclic F-coloring, then two pairs
a;,b; and a;,b; must map to the same two vertices u,v belonging to an
edge of H(F'), by the pigeon-hole principle. This means that each vertex ¢
of D(i,j) must also map to u or v, otherwise u,v and ¢(c) would form a



symmetric triangle, contrary to the assumption that H (F') is bipartite. Thus
we obtain a ég—coloring of D. This amounts to a polynomial reduction of
the problem of acyclic ég—coloring (which is NP-complete by Proposition
2.2) to the problem of acyclic F-coloring, and hence the latter problem is
also NP-complete. O

Corollary 2.5 For every fized rational number q > 1, it is NP-complete to
decide if x.(D) < q.

Proof. We have x.(D) < § if and only if D admits an acyclic homomor-
phism to é(k, d), and as long as d < k, é(k,d) is not acyclic. O

For graphs, it has been shown in [9], that it is NP-hard decide whether
a graph G of chromatic number n satisfies x.(G) < n — %, for any positive
integers k > 2 and n > 3. One can ask similar questions for circular chro-
matic numbers of digraphs. We only remark that it is NP-hard to decide if
Xe(D') < 2 even knowing that x(D') = 2: Consider the digraph F = Cs,
and apply the proof of the Theorem 2.4, with k& = 3. The digraph F’ will be
the symmetric triangle, and acyclic F’-colorability is NP-complete. From
that proof we know that an input digraph D has an acyclic F’'-coloring if
and only if the digraph D’ (which has chromatic number 2) has an acyclic
F-coloring, i.e., has x.(D') < 3.

It would also be interesting to know how the complexity of the acyclic F-
coloring problem changes when the inputs are restricted. Typical restrictions
may involve maximum degree, or planarity, etc. (For undirected graphs
we direct the reader to [11] for a survey.) We first make the following
observation.

Corollary 2.6 The acyclic C’},—coloring problem is NP-complete even when
restricted to planar digraphs.

Proof. Let F = Cs. Since the shortest directed cycle in F' has length three,
we can apply the above reduction from the problem of acyclic F'-coloring to
the problem of acyclic F-coloring. In this case F’ is the symmetric triangle;
since 3-coloring is NP-complete for planar graphs [7], the corollary follows.
|

We also have a similar result for acyclic C‘}—coloring:

Theorem 2.7 The acyclic ég—coloring problem is NP-complete even when
restricted to planar digraphs.



Proof. We reduce the problem of planar 3-satisfiability. An instance of
3-satisfiability is planar if its associated graph is planar. (The associated
graph has a vertex C for each clause, and a vertex x for each variable; there
is an edge joining x and C if variable x occurs in clause C, positively or
negatively.) It is well known that 3-satisfiability is NP-complete even when
restricted to connected planar instances [7].

Thus suppose we have an instance of planar 3-satisfiability, and consider
the planar embedding of its (connected) associated graph G. We shall trans-
form G to a digraph D which is Ch-colorable if and only if the instance was
satisfiable. The digraph D will contain all the vertices (C and x) of G, in the
same position in the plane as in G. If C was joined to z, y, z (in this clockwise
order) in G, we surround it with a directed six-cycle zcci1yccozocsz o, joined
to C' by the symmetric set of arcs Ccy, ¢1C,Cca, coC, Ces,c3C. The new
vertices ¢;, called dummy vertices, are distinct for each clause C. Further,
we replace each edge xC' of G by the symmetric arcs zxc,xcz if  oc-
curs negatively in C, or the symmetric path of length two zzl,, z.z, -z ¢,
zcowy if ¢ occurs positively in C. It is clear that the digraph constructed so
far is planar. Now consider, for each vertex z corresponding to a variable,
the six-cycles corresponding to the clauses C' in which x occurs (positively
or negatively), in their circular order of the planar embedding. For any
two consecutive six-cycles there exist two dummy vertices ¢, which can
be joined without destroying the planar embedding; we add the symmetric
path of length two cc”’,c"c, ', c'¢”. This is our planar digraph D.

We now claim that D admits an acyclic ég—coloring if and only if the
original instance was satisfiable. Indeed, given a satisfying truth assignment,
color each vertex corresponding to a variable x by 0 if « is false, and by 1 if
z is true, and do the same for all vertices xc. Furthermore color all dummy
vertices by 0, and color all clause vertices C' by 1. It is easy to see that all
the auxiliary vertices 2, and ¢” can be colored as well so that the result is an
acyclic ég—coloring of D. Conversely, suppose we have an acyclic ég—coloring
of D. Because of the two-cycles C¢;C, all dummy vertices in any one six-
cycle must obtain the same color; because of the symmetric paths of length
two between dummy vertices of consecutive six-cycles, all dummy vertices
must obtain the same color, say color 0. (Recall that have assumed that
G is connected.) It is now easy to see that the coloring defines a satisfying
truth assignment. (Because of the 6-cycles zcc1yccezocszo, at least one of
the vertices ¢, yc, or z¢ has color 1.) O



3 A refinement for F-colorings

For a digraph F, let F'P denote the digraph obtained by replacing each vertex
of F' by the transitive tournament 7" on 1,2,...,p. (The arcs of T are all
pairs 47 with 4 < j.) There is an arc in F? from a vertex in the copy of T
corresponding to u to a vertex in the copy of T corresponding to v if and
only if there is an arc from u to v in F'. Then it follows from the definitions
that a digraph D admits an acyclic homomorphism to F' if and only if it
admits a homomorphism to FP with p = |V(D)].

We let similarly F be obtained from F' by replacing each vertex by
the countable transitive tournament on 1,2,.... Theorem 2.4 shows that
if F' is not acyclic then the F“-coloring problem (appropriately defined for
mappings of finite digraphs to a finitely described fixed infinite graph) is
intractable. We now refine the result to prove that already the F2-coloring
problem is intractable. More precisely, assume for each vertex v of F, we
have an integer p, > 2. Let F'* be a digraph obtained the same way from
F' by replacing each v with the transitive tournament on p, vertices and
defining the arcs between these tournaments as above.

Theorem 3.1 If F is not acyclic, then the F*-coloring problem is NP-
complete.

Proof. If the symmetric part of F' contains an odd cycle, then the symmet-
ric part of F* also contains an odd cycle (and we only need each p, > 1 here),
and the F*-coloring problem is NP-complete by exactly the same proof as
in Proposition 2.3. (Just substitute F* for F' and omit all the ocurrences of
the word ‘acyclic’.)

If the symmetric part of F' is empty, then assume as above that the length
of the shortest directed cycle in F' is k, where k > 3. Suppose first that k is
odd. Let F’ be the digraph on the same vertex set as F'* and with an arc uv
whenever there is in F* a directed path from u to v of length % A proof
similar to the proof of Theorem 2.4 shows that there is a polynomial time
reduction from the F’'-coloring problem to the F*-coloring problem. (Take
D’ to be the digraph obtained from D by replacing each arc zy by a directed
path of length % from z to y. We are using the ‘indicator construction’,
Lemma 1 from [10].) We now note that F' contains symmetric pairs of arcs
joining vertices at distance % and % in the original directed k-cycle in
F', and hence the symmetric part of F’ contains an odd cycle.

If k is even, we proceed in exactly the same way using directed paths
of length % + 1. In this case the symmetric part of F’ also contains a



nonbipartite graph when k& > 6. (There are symmetric pairs of arcs joining
vertices at distance % -1, %, and % + 1. For k = 4 we extend our attention
to the eight vertices of F2, a subgraph of F*, on which the symmetric
part of F’ is easily seen to have a nonbipartite subgraph. (Indeed, suppose
the original 4-cycle in F' is 1,2,3,4 and let a1, by, a2, bs, a3, b3, aq, by be the
corresponding vertices of F2. Then, using directed paths of length 3, F’
contains the symmetric five-cycle a1bobyasbs.)

It remains to prove that

e if F' has a nonempty and bipartite symmetric part, then F*-coloring
is NP-complete.

We proceed by contradiction, assuming that F' has a nonempty bipartite
symmetric part, and F*-coloring is not NP-complete. We may assume that
S*-coloring is NP-complete for any proper subgraph S of F' which has a
nonempty bipartite symmetric part.

This part of the proof uses the ‘sub-indicator construction’, Lemma 2 of
[10]. To review it briefly, in the special case we shall need, we define a digraph
to be a core if it does not admit a homomorphism to a proper subgraph.
If a digraph F is not a core, then it contains a unique, up to isomorphism,
subgraph S which is a core; this subgraph S is called the core of F. It
is clear that a digraph admits an F-coloring if and only if it admits an
S-coloring. (Thus the F-coloring and S-coloring problems are equivalent.)
Let J be a fixed digraph with specified vertices v and w. The sub-indicator
construction, with respect to J, transforms a given core digraph S, with a
specified vertex u, to the subgraph S~ induced by the vertex set V'~ defined
as follows: Let R be the digraph obtained from the disjoint union of J and
S by identifying vertices v and v. Then a vertex z of S belongs to V'~ just
if there is a homomorphism f of R to S such that f(y) = y for all vertices y
of S, and f(w) = z. Lemma 2 of [10] gives, for a core S, a polynomial time
reduction of the S™-coloring problem to the S-coloring problem.

It follows from our assumptions that F™* is a core, otherwise the core
of F* would be some digraph S* of a proper subgraph S of F which has
a nonempty bipartite symmetric part, and hence both the S*-coloring and
the F*-coloring problems would be NP-complete.

We first claim that every vertex of F' is incident with an edge of H(F).
Otherwise, consider the sub-indicator J consisting of three vertices v, w, and
z, and two arcs wz, zw. If F' contained a vertex z which is not incident with
an edge of H(F'), then all the p, vertices of F* in the transitive tournament
replacing x would be missing from (F*)~ (the vertex u of F* can be chosen
arbitrarily). Thus (F*)~ would be some S* where S is a proper subgraph
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of F' which has a nonempty bipartite symmetric part, and hence again both
the S*-coloring and the F*-coloring problems would be NP-complete.

Next we claim that F' cannot have a vertex a and arcs az,ay such that
xy is an edge of H(F'). If this were the case, then consider the sub-indicator
J consisting of two vertices v and w and the arc vw, and let u be the last
vertex in the transitive tournament of F'* replacing the vertex a of F'. Then
the digraph (F*)~ is missing all the p, vertices of the tournament replacing
a, but contains the symmetric pairs of arcs arising from x and y. Hence
(F*)~ is some S* where S is a proper subgraph of F' which has a nonempty
bipartite symmetric part, and we obtain a contradiction as before.

Finally, we claim that F' is a symmetric digraph. Otherwise there would
be an arc ab in F', such that ba is not an arc of F'. Consider the sub-indicator
J consisting of three vertices v, s, w and three arcs vs, sw,ws, and let u be
the first vertex in the transitive tournament of F'* replacing the vertex a of
F. We first observe that all the p, vertices of F* replacing b are missing
from (F*)~: Indeed, since there are no arcs from these p;, vertices to the p,
vertices of F'* replacing a, the only way the vertex w of R can map to one
of these py vertices, say vertex y, is if there are in F' some arcs ux, zy, yz,
contradicting the preceding claim. Now we recall that each vertex of F' is
incident with an edge of H(F'); thus there are in F' some arcs ac,ca. It
follows that (F*)~ contains the symmetric pairs of arcs arising from the
tournaments replacing a and c¢. This once again contradicts the minimality
of F.

Since F' is a bipartite symmetric digraph, the core of F' must be 62,
and we only need to consider F' = Cy. In this case F *-coloring is NP-
complete by the same argument as given in the proof of Proposition 2.2.
One only needs to note that in any coloring of the digraph D with two
colors, each monochromatic set of vertices is not only acyclic, it is a disjoint
union of isolated arcs. This means that F™*, with its at least two vertices
in a transitive tournament replacing eac vertex, has the property that the
hypergraph X admits a 2-coloring if and only if the digraph D has an F*-
coloring. Therefore F*-coloring is NP-complete. O

This result verifies a special case of Conjecture 5.1 in [1], and of Conjec-
ture 6.1 in [2]. In particular, Conjecture 6.1 of [2] states that, for connected
digraphs F which have all indegrees and all outdegrees at least one, F-
coloring is NP-complete unless the core of F' is ék for some integer k (in
which case it is known to be polynomial time solvable).

Note that we do not know what the complexity of F*-coloring is when
F' is acyclic. Certainly, the problem can be polynomial time solvable: For
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instance, if F' is a transitive tournament, then F* is also a transitive tour-
nament, and so D is F*-colorable if and only if it is acyclic and has height
no greater than |V (F*)| (the height of F*.) Similarly, the problem can
be NP-complete: For instance, there are acyclic triangle-free digraphs F'
(even oriented trees F' [12]) such that F-coloring is NP-complete. Then FP-
coloring is also NP-complete, since an input digraph D is F-colorable if and
only if DP is FP-colorable. (One only needs to notice that the fact that F
is triangle-free implies that the 2p-vertex tournaments of D? corresponding
to edges of D must map to the 2p-vertex tournaments of FP corresponding
to the edges of F'.)
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