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Abstract

It is shown that the ratio between separation and rigidity indices of graphs may be
arbitrarily large. Paley graphs are such examples.
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1 Introduction

Let G be a (simple) graph. Let Γ be its (full) automorphism group with its
natural action on V (G), and let Γv ≤ Γ be the stabilizer of a vertex v ∈ V (G).
We say that a vertex set S ⊆ V (G) fixes G if⋂

v∈S

Γv = {id}. (1)

If the automorphism group of G is trivial, then the empty set fixes G. The
rigidity index of the graph G, denoted by rig(G), is the minimum cardinality
of a vertex set fixing G.

For example, rig(Kn) = n−1, rig(Km,n) = m+n−2, and rig(G) = rig(G). If G
is a 3-connected planar graph, then a set of three vertices lying consecutively
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along a face fixes G. This implies that rig(G) ≤ 3 for every 3-connected planar
graph. It is proved in [3] that rig(G) is bounded on the class of 4-connected
projective planar graphs, and also, that for every surface Σ there exists an
integer qΣ, so that rig(G) ≤ qΣ if G is 5-connected and admits an embedding
in Σ.

Suppose we are given a set of automorphisms of G which generate Γ. We can
compute Γ using the Schreier-Sims algorithm, and a set of vertices S fixing G
is called a base of Γ [2, p. 18].

Let Pv denote the orbit partition of vertices of G induced by the action of Γv

on V (G). We say that a vertex set S separates G if∧
v∈S

Pv = 0, (2)

where ∧ denotes the meet operation in the lattice of all partitions of vertices
of G and 0 is the partition into singletons. The separation index of a graph G,
denoted by sep(G), is the minimum cardinality of a set separating G. Similarly
as above, sep(G) = 0 if the automorphism group of G is trivial.

Let S be a vertex set that separates G. Clearly, S also fixes G. Hence, rig(G) ≤
sep(G).

The separation index was first defined by Vince in [5], where he used a geo-
metric argument to prove that sep(G) ≤ 3 for 3-connected planar graphs.

It is easy to see that sep(G) = 1 is equivalent to rig(G) = 1. Vince mentioned
in [5] that rigidity and separation indices are not the same on every graph,
but no examples were provided. In this paper we show that for every integer
k there exists a graph G with rig(G) = 2 and sep(G) ≥ k. It is shown that
Paley graphs give rise of such examples.

2 Results

Our main result is the following

Theorem 1 For every integer k there exists a vertex-transitive graph G with
rig(G) = 2 and sep(G) ≥ k.

The proof of Theorem 1 is a simple consequence of Proposition 2 and Theo-
rem 3 stated below.

Choose a prime number p = 4k + 1. Denote by Zp the set of integers modulo
p and let Qp = {x2 | 0 6= x ∈ Zp} be the set of all quadratic residues modulo
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p. For notational clarity we also set Qp = Zp \Qp \ {0}. It is easy to see that
Qp is closed under multiplication and it is well known that −1 ∈ Qp.

The vertex set of the Paley graph Gp is Zp in which vertices u and v are
adjacent if u − v ∈ Qp. It is easy to see that automorphisms of Gp include
multiplications by quadratic residues and translations. Muzychuk [4] proved
that every automorphism of Gp is of the form x 7→ ax+b where a ∈ Qp and b ∈
Zp. This implies that any automorphism π fixing 0 is merely a multiplication
with a quadratic residue, and if also π(1) = 1, then π = id. Therefore Γ0∩Γ1 =
{id} and hence we have:

Proposition 2 Rigidity index of the Paley graph Gp is equal to 2.

Next we shall estimate the separation index of a Paley graph.

Theorem 3 The following inequalities hold for the separation index of Gp:

blog2 pc ≤ sep(Gp) ≤ b2 log2 pc.

Proof. It follows from the above discussion that Pi = {{i}, i + Qp, i + Qp} for
every i ∈ V (Gp). If U is a nonempty vertex subset of Gp then let PU be the
vertex partition defined as

PU =
∧

v∈U

Pv.

Further, let mr denote the maximum possible number of blocks in a partition
PU , taken over all vertex sets U of cardinality r. We will inductively show that

mr ≤ 2r+1 − 1. (3)

This is obviously true if r = 1. For the induction step choose an arbitrary
vertex set U ′ of cardinality r+1, and let U = U ′\{v} be a proper subset of U ′.
Clearly, {v} is a block of the partition PU ′ = PU ∧Pv. By intersecting a typical
element of PU with v+Qp and v+Qp we obtain at most two nonempty subsets
which belong to PU ′ . Hence, the numbers mr satisfy the following recursion:

mr+1 ≤ 2mr + 1. (4)

By applying the induction hypothesis we conclude that mr+1 ≤ 2r+2− 1. This
completes the proof of (3).

Now, if a set U of cardinality k separates Gp, then |PU | ≥ p. Combining
this fact with (3) gives the condition 2k+1 − 1 ≥ p. This implies that k ≥
dlog2(p + 1)e − 1. Since p ≡ 1 (mod 4), we conclude that log2(p + 1) is not
an integer, hence dlog2(p + 1)e− 1 = blog2 pc. This completes the proof of the
lower bound.

We prove the upper bound using the probabilistic method [1].
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Let u and v be distinct vertices of Gp. We say that s ∈ V (Gp) separates {u, v}
if u and v lie in different blocks of Ps. Obviously enough, both u and v separate
{u, v}. A vertex s ∈ V (Gp) \ {u, v} does not separate {u, v} if and only if u
and v are either both adjacent to s or both nonadjacent to s. This occurs if
and only if

u− s

v − s
=

v − s− v + s + u− s

v − s
= 1 +

u− v

v − s
(5)

is a member of Qp (all operations are considered in Zp). If s runs over all
elements of Zp\{u, v}, the expression in (5) runs over all elements of Zp\{0, 1},
and exactly (p− 3)/2 of these belong to Qp. Hence:

(1) Let u and v be distinct vertices of Gp. Then exactly p−3
2

vertices of Gp

do not separate u and v.

Let K = b2 log2 pc. Let S = (s1, s2, . . . , sK) be a random vertex sequence of
length K i.e., the vertex si is chosen randomly with uniform distribution, and
independently from other choices, out of the set of all vertices of Gp. We say
that the sequence S separates a vertex set U if the set {s1, s2, . . . , sK} (which
may have less than K elements) separates U .

Let Xu,v (u < v) be the random indicator variable of the event that a randomly
chosen sequence S of length K does not separate {u, v}. By (1) we have

(2) Pr
[
S does not separate {u, v}

]
= E(Xu,v) =

(
p−3
2p

)K
< 1

2K .

Finally, let X denote the random variable which counts the number of (un-
ordered) pairs of distinct vertices which are not separated by a random vertex-
sequence S. By linearity of expectation we have

(3) E(X) =
∑

u<v E(Xu,v) < p2 1
2K+1 .

Now K+1 ≥ 2 log2 p implies that E(X) < 1. Therefore there exists a sequence
of length K (and a set of cardinality at most K) separating G. This completes
the proof. 2

3 Open problems

Problem 4 Is it true that already powers of 2 separate Paley graphs? In other
words, does the set {1, 2, 22, . . . , 2blog2 pc} separate Gp?

It is reasonable to expect that Paley graphs attain the maximum possible ratio
between separation and rigidity indices. In fact, we propose the following:
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Conjecture 5 Let G be a graph of order n such that rig(G) > 0. Then

sep(G) / rig(G) = O(log n).

Let us observe that the difference sep(G)−rig(G) can be much larger. Its order
can be proportional to n. Such examples are obtained by taking many copies
of a fixed graph G0 whose separation and rigidity indices are different (and
then taking the complement if we want the resulting graph to be connected).
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