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Abstract

Partial cubes are, by definition, isometric subgraphs of hypercubes. Cubic inflation is an operation
that transforms a 2ell embedded grap into a aibic graph embedded in the same surface; its
result can be described as the dual of the barycentric subdivisi@ bfew corcepts of mirror and
pre-mirror graphs are also introduced. They give i3 a claracterization of Platonic graphs (i) as
pre-mirror graphs and (i) as planar graphs of minimum degree at least three whose cubic inflation is
a mirror graph. Using abic inflation we find five new prime cubic partial cubes.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Graphs that can be isometrically embedded into hypercubes are palid cubes.
They were introduced by Graham and Polldld][and intensively studied afterwards.
Djokovi€ [10] gave the first chracterization of partial cubes, several more followed in
[2, 4, 26, 31], cf. the book B] for more information on these characterizations. Partial cubes
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were applied in different situations, see, for instan6e6][11, 21]. Distance regular partial
cubes are characterized 29, in [2(] this reailt is extended to a certain broader metrical
hierarchy. For the complexity issues on partial cubes we refet,tad, 17] and for yet
more information on these graphs see also the bo&ks7, recent studies in19], and
references therein.

One of the most challeging open problems in the area is to classify regular partial
cubes, in particular the cubic ones. For one of the most important subclasses of
partial cubes—median graphs—Muld@d] proved that hypercubes are the only regular
examples. Besides hypercubes, the even cycles are also regular partial cubes. Observe that
the Cartesian product of two (regular) partial cubes is a (regular) partial cube. We say
that a regulapartial cube igorime if it cannot be written as a Cartesian product of two
(necessarily regular) partial cubes, eaohtaining at least two vertices.

Restricting to he cubic case, it was verified irB][ by a conputer search that up
to 30 vertices, there are only three prime cubic partial cubes: the generalized Petersen
graphP (10, 3) on 20 vertices, the permutahedréf from Fig. 2 on 24 vertices, and a
sporadic example on 30 vertices. Some prioubic partial cubes on more vertices are
also known, for instance the truncated cuboctahedron on 48 vertices and the truncated
icosidodecahedron on 120 vertic& [

Motivated by the search for regular/cubic partial cubes, mirror graphs are introduced
in the next section. It is then prodehat hey are partial cubes. I18ection 3the concept
of cubic inflation is described. It is observed that the cubic inflation of an arbitrary graph
embedded in some surface contains a Hamilton cycle, which leads us to conjecture that
every abic partial cube is Hamiltorin the fdlowing section the concept of pre-mirror
graphs is introduced in order to characterize Platonic graphs as pre-mirror graphs and as
planar graphs of minimum degree at least three whose cubic inflation is a mirror graph. In
the final section our efforts givesifive new prime abic partial cubes.

The Cartesian product GOH of graphsG and H is the graph with vertex set
V (G) x V (H) where the vertexa, x) is adjacent to the vertgk, y) wheneveab € E(G)
andx = y,ora = bandxy € E(H). The Cartesian product df copies ofK; is a
(k-dimersional) hypercube or k-cube Qk. The 3-cube is also known as thaube. A
subgraphH of G is calledisometric if dy (U, v) = dg(u, v) forallu,v € V(H), where
dg (u, v) denotes the usual shortest path distance.

2. Mirror graphs

Let G = (V, E) bea mnrected graph. Call a partitioR = {Ej, E2, ..., Ex} of E a
mirror partition if for everyi € {1, ..., k}, there isan automorphism; of G suchthat

(M1) for every edgeiv € Ej, o (U) = v ande; (v) = U, and A .
(M2) G — Ej consists of two connected componef@$ and G,, andei mapsG}
isomorphically ontoG.,.

Sincew; is an automgphism of G, E; is a matching irG joining G} andG..
A connected graph israirror graphif it admits a mirror partition. Note that hypercubes
and even cycles are mirror graphs. Also,Gf and G, are mirror graphs, then their



B. BreSar et al. / European Journal of Combinatorics 25 (2004) 55-64 57

Catesian productG; O Gy is also a mirror graph. Furthermore, as the mirror partition
condition is quite strong, mirror graphs that cannot be written as Cartesian products of
other graphs are rather specific.

To show that miror graphs are partial cubes, we need the following notion. Two edges
e = xy and f = uv of a graphG are in the Djokowi=Winkler [LO, 31] relation ® if
de (X, u) + dg(y, v) # da (X, v) + dg(y, u). Winkler [31] proved that aconnected graph
is a partial cube if and only if it is bipartite ar is transitive (and hece an equivalence
relaion).

Proposition 1. Every mirror graph is a partial cube. Moreover, its mirror partition
coincides with its ®-equivalence classes.

Proof. LetG be a nirror graph with a mirror partitiorP. We first shev that a miror graph
G is bipartite. If not, letC = ujuz. .. uzs;1u1 be a shortest odd cycle, and letu; € E;j,
whereE; is a part of a mirror partition 0G. Letu; € G} anduz € G.,. By (M2), there is
another edge; u; 1 of C that belongs tcE;. Let usassume that vertices @ have been
enumerated so thatis the minimum possible. Then, cleany< s+1. SinceC is a shortest
odd cycle, it isisometric inG. Therdore,dg (U1, Ur+1) >t — 1 anddg(uz, Uy) =1 — 2.
But this ontradicts the fact that; (u1) = uz ande; (Ur+1) = Ur. .

Let uv be an edge ofj € P, whereu € G} andv € G,. Letz € G|. We daim
thatd(v,z) = d(u,2) + 1. Let P be a(v, 2)-geodesic path and letw’ be the first
edge ofP with w € G, andw’ € G}. Thendg(u, w') = dg(v, w) which implies that
d(v, 2) > d(u, 2). Clearly,d(v, 2) < d(u, z) + 1. A A

Let uv,xy € Ei. We mayassume thatu,x € G),v,y e G,. By the above,
d(u,y) =d(u,x) + 1andd(v, X) = d(v, y) + 1. Thusuv ® xy. .

Assume thatuw © xy whereuv is an elge of Ej andu € G}, v € G,. We reed to
show thatxy € E; as well. Suppose not, and assume without loss of generality that
X,y € G]. Thend(v, x) = d(u, x)+1andd(v, y) = d(u, y) + 1 thusd(v, x) +d(u, y) =
d(v, y) +d(u, x), a ontradiction. O

We ne&t wish to find examples of mirror graphs. For this sake, the concept of the cubic
inflation is introduced first.

3. Cubicinflation

An embedded graph or amap is a connected graph together with a 2-cell embedding in
same closed surface. L&t be a map without vertices of degree one. Then we define the
mapCZ(G) as follows. First, we replace each vertexc V(G) by a cycleQ, of length
2deg;(v), and therreplace every edgev of G by two edges joinindQy andQ, in such
a way that a cubic map on the same surface is obtained in which all cy2leare facial
and all edges o6 give rise to 4-faces in that map. The result of such a change is shown
locally in Fig. 1L The resulting mapCZ(G) is called thecubic inflation of G. The map
CZ(Ky) is illustrated onFig. 2 it is interesting to note thafZ(K4) is isomophic to the
permutahedroii/z, cf. [32, p. 16].

There is an alternative way to describe the cubic inflation. Gehe an embedded
graph. Recall that thbarycentric subdivison B(G) of G is a triangulation obtained as
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Fig. 1. Cubic inflation locally.

Fig. 2. Inflated tetrahedron.

follows [23]. Subdivide each edge @ by one vertex, and in the interior of each face
add a vertex which is joined to all vertices (including the new subdivision vertices) on the
corresponding face boundary. Denote &Yy the dual map of the mas. The fdlowing
result fdlows easily from the fact thaB(G) = B(G*) for every embedded grapb.

Proposition 2. For every embedded graph G without vertices of degree one, we have
CI(G) = B(G)* = CZ(G").

Yet another way to describe the cubic inflatiéZ (G) of G is thatCZ(G) is just the
truncation of themedial graph of5: CZ(G) = Tr(Med(G)). Let G be an embedded graph.
Then the vertices of thmedial Med(G) of G are the edges d@. Each faceF = e1e ... &
deternines the edgesi ey, . . ., ex_1&k, exer of Med(G). See L3, Setion 172] for a more
detadled explanation of this concept. Thiuncation Tr(G) of G is a graphobtained from
G by replacing each vertaxof degreek with k new vertices that form a cycle and are each
adjacent to the corresponding vertices of the neighbous 8fnceG is a graptembedded
in a surface, there is a natural order for the new adjacencies. For a more exact definition
we again refer to3, p. 126].

The notion of cubic inflation is also related to Delaney symbols used in tiling theory
(see, for example 1F]).

Cubic inflations on morgeneral surfaces may also yield partial cubes. Such examples
are shown by an examplelifig. 3. Here we stet with ann-cycle embedded as a horizontal
“meridian” in the torus, and then add > 1 loops embedded as shown in the figure.
Each vertex becomes incident with zero or more loops. The graph of the cubic inflation is
isomorphic toCon42k O K2, hence it is a (nonprime) partial cube and also a mirror graph.
By Proposition 2thedual map has the same cubic inflation. Let us observe that the dual
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Fig. 3. Toroidal examples.

map adnits the same structure as exhibitedHig. 3. It would be of cetain interest to find
other examples of this kind.
The following simple result shows that cubic inflations of arbitrary maps are Hamilton.

Proposition 3. Let H bethe cubic inflation of a graph G embedded in some surface. Then
H containsa Hamilton cycle.

Proof. Let(C; be the cdlection of all cycles ofH that correspond to vertices &, and let
T be a spanning tree @b. Let C2 be the set of all 4-cycles dfl that correspond to the
edges ofT . Then he symmetric differencé; + C2 is a Hamilton cycle oH. O

In the last section, further examples of (cubic) partial cubes obtained by cubic inflation
are presented. Since this is a rare phenomeRmposition Jed us to the following

Conjectured. Every cubic partial cubeisHamilton.

It is possible that every regular partial cube is Hamilton. We do not dare to conjecture
this since a much weaker well-known conjecture is far from being understood. Namely,
the middle leel graphs (which are regular partial cubes) are conjectured to be Hamilton,
and no real progress has been made towards a proof of this conjectur@.7See fnore
detals.

4. Inflated graphswith mirror partitions

In this section we characterize mirror graphs that can be obtained by the cubic inflation
from some plane map.
Let B be a Eulerian graph embedded in some surfacgrdight-ahead walk in B is
a dosed walk such that every pair of consecutive edges (including the transition from the
last edge back to the initial edge of the Wapasses through the corresponding vertex
straight-ahead with respect to the local rotation at that vertex. Two straight-ahead walks
are considered the same if one is a cyclic shift or the inverse of a cyclic shift of the other.
Then every edge dB determines precisely one straight-ahead walk containing that edge.
Let B = B(G) be the barycentric subdivision of a m&pand letW = viv2... v v1 be
a straght-ahead walk irB. The veticesv; € V (B) appearing il correspond to vertices,
edges, and faces @&. We saythatv; appears essentially in W if v is either a vertex of
G, oryj is an elge of G andv;_1 andvj1 (indices considered modulg are faces of
G. ThenW determines a cyclic sequence of vertices and edgé& thfat is obained by
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taking all essential appearancedih Every suchsgjuence of vertices and edges@®@fis
said to be arsA-walk in G. Note hat the collection of those SA-walks @ that contain at
least oneedge ofG induces a partition oE (G). Thenation of SA-walks appears in other
contexts as traverséZ), straight ahead?y], straight Eulerian13], cut-through 1§, and
central-circuit p].

We are inerested in graphs with special SA-walks that are somehow similar to the
mirror partition condition. IfSis an SA-walk inG (so, Sis a sguence of consecutively
incident vertices, edges, and faces@f, let G — S be the subgraph of obtained by
removing all edges and vertices that occufSir_et uscall a plane grapli& a pre-mirror
graph if for every SAwalk S of G:

(PM1) G — Sconsists of two connected compone8t§, G5, and
(PM2) there is an automorphiseg of G that mapst isomorphically ontoG$, where
any element o is invariant unders.

The main question in our investigations is which mirror graphs are cubic inflations.
Recall that the Platonic graphseatetrahedron, cube, octahed, icosahedron, and
dodecahedron.

A map G is regular (or flag-transitive) if its automorptem gioup acts transitively on
the triples(v, e, F) € V(G) x E(G) x F(G) (alsocalledflags) whose vertex is incident
with the edgee, ande is incident with the facd-. It is known that regular maps in the
sphere are precisely the Rlaic maps and all cycles.

Theorem 5. Let G be a map in the plane with minimum vertex degree at least three. Then
the following assertions are equivalent.

(i) CZ(G)isamirror graph.
(i) Gisapre-mirror graph.
(iif) G isaPlatonic graph.

Proof. (i) = (iii). Let G be a map irthe plane with minimum vertex degree at least three
suchthatCZ(G) is a mirra grgph.

We firstobserve that mirror graphs are vertex-siine. First of all, it is clear by (M2)
that every nirror graphH is connected. Lex andy be vertices oH, and letP be a path
of lengthr from x toy. Letis,...,i; be integersin{l, ..., k} such that the jth edge on
P belongs to the park;; of the mirror partition,j = 1,...,r. Thenwj,ai, ..., is an
automorphism oH that map toy.

Next we show that eary automorphism of the mirror gragly (G), which appears in
the mirror partition condition, fixes the set of facesCaf(G) that correspond to vertices
of G (hence it also fixes the set of faces that correspond to fac€g.dRecall first that
Mader 2] and Wakins [28] (cf. also [L3]) proved that vertex connectivity of a vertex-
transitive graph of degrele is at least 2k + 1)/3. SinceCZ(G) is a mirror graph, it is
vertex-transitive. Moreover, it is cubimd hence 3-connected. By a theorem of Whithey
[3Q] (cf. also [23]), every automorphism of a 3-connedtplanar graph maps facial cycles
onto facial cycles.

Now, let @ be an automorphism ofZ(G) which appears in the mirror partition
condition. It is obvious thatr fixes any facial cycleC which contains an edge whose

r
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ends are interchanged lay (applying also Whitney's theem). Since eery edge is in
precisely two faces, we infer that faces incidenQare also mapped properly (that is,
faces corresponding to vertices®@fare mapped to faces corresponding to verticeS of
and likewise for the faces corresponding to face$df By connectivity ofCZ(G) (we
apply successively the former observation for incident faces) we infewtfiges the set
of faces which correspond to vertices @f Obviously, since compdsim preserves this
property, we infer that for each pair of vertiogsy € CZ(G) there existsmaubmorphism
that mapsu to v and fixes the set of faces that correspond to verticé&. of

Note that every vertex @Z(G) is incident with precisely three faces which correspond
to a vertex ofG, its incident edge inG, and one of the faces in which this edge lies in
G, respectively. In other words, there & bijedion between vertices a@fZ(G) and flags
(v, &, F) of G. Moreover, byobservations of the previous paragraph, for every given pair
u, v € CZ(G), there exits an autommphism ofCZ(G) which mapsu to v, and at tle same
time fixes the set of faces which correspond to vertice& ofrom this we mfer that for
each given pair of flags i, there isan automorphism o%, which mas one flag to the
other. HenceG is a regular map, and since it is of degree at least 3, we derive that it is a
Plabnic graph.

(iif) = (ii). Itis a straightforward check that all five Platonic graphs are pre-mirror.

(i) = (i). It follows directly from definitions of both classes and cubic inflation that if
G is pre-miror thenCZ(G) is mirror. [

Theorem Xharacterizes plane gras of minimum degree 3 whose cubic inflations are
mirror graphs. They are precisely the Platonic graphG.id a plane graph with minimum
degree 2 and its cubic inflation is a mirror graph, then it is easy to se&tlimfa cycle
Ch, h > 3. Conversely¢Z(C,) isisomorphic to the Cartesian product©, andK>, and
hence it is a mirror graph. Howevet,, is not pre-mirror (since for one of its SA-wall&

Cn — Sis the empty graph).

If we allow graphs with multiple edges and loops, then the set of all regular spherical

maps extends with cycles of length 1 and 2 and Wwithds—dual maps of the cycles.

Corollary 6. The cubic inflation of a spherical map G with minimum degree at least 2 is
amirror graph if and only if G isa regular spherical map.

Planar pre-mirror graphs (and all cycles) correspond bijectively to mirror graphs which
are cubic inflations. The natural question is, are there any nontrivial prime mirror graphs
that are not cubic inflations of regular maps? Secondly, are there any prime mirror graphs
that are not planar? Is there a similar chagdeation of those maps on some other surface
whose cubic inflation is a mirror graph? Perhaps this could be done by using some kind of
SA-walksor their unions.

We haveonly partly solved the question for which plane graphs their cubic inflation is
a patial cube. Perhaps the following related question could be easier to attack: For which
plane graphs their SA-walks are not self-crossing? An SA-walk is called self-crossing if
there exist two elements (two vertices, tedges, or a vertex and an edge) of this walk
that share a common face, but are opposite on that face. Note that® is embelded
in the plane and’Z(G) is a partial cube, thethe SA-valks of G are not self-crossing.

On the other had, even if no SA-walk inG is self-aossing,CZ(G) is not necessarily
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Fig. 4. Planar maps yiding cubic partial cubes.

a patial cube. Howeveranswemg this question would considerably reduce the class of
graphs, for which the first question is relevant.

5. Hunting for cubic partial cubes

We now retirn to our starting point—searching for more cubic partial cubes. Besides
the aubic partial cubes mentioned in the introduction, three more sporadic examples on 36,
42, and 48 vertices are presented3h [n this section we obtain five new such examples
using the concept of the cubic inflation.

By Theorem 5CZ(G) is a mirra graph if G is a Platonic gaph, hencd’roposition 1
implies:

Corollary 7. Let G beany of thefive Platonic graphs. Then CZ(G) isa primecubic partial
cube.

As we already knowCZ(Ky) is the permutahedroi/z. Since otahalron O is the
dual of the cubeProposition 2implies thatCZ(Qz) andCZ(O) are isomorphic graphs
on 48 vertices—the truncated cuboctahedron. It embeds isometricallRin{d]. Note
that this graph is not @morphic to the graptB, on 48 vertices from3] sinceboth are
3-connected buB; has a facial cycle of length 12. As the icosahedron is the dual of the
dodecahedron, their cubic inflans are isomorphic graphs 420 vertices—the truncated
icosidodecahedron that ertts isometrically intdQ15 [7].

Proposition 8. Cubic inflations of plane maps shown in Fig. 4a)—(e) are partial cubes.
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Fig. 5.©-classes of a cubic partial cube.

In order to proveProposition 8one has to verify that the relatida is transitive. This
was clecked by computer. As an example, the embedding of the cubic inflation of the graph
in Fig. 4(a) is shown inFig. 5. Different drawing styles and marks on the edges indicate
the ®-equivalence classes of the graph.

To obtain graphs oProposition 8 we have not used any particular method. Yet, the
intuitive reason for finding them lies in a fact that they are close to pre-mirror graphs in the
sense, that they possess some SA-walks piitiperties (PM1) and (PM2). In the graphs
of Fig. 4a)—(e), there are,®, 4, 4 and 4 such SA-walks, resptively. Of course, since
these graphs anot pre-mirror, they also have other SA-walks. Observe that we only need
to check for these other SA-walks, if the cagpending edges in the cubic inflation form
whole ®-classes. If they do, then the graph is a partial cube.

The cubic inflation of the graph iRig. 4(a) has 48 vertices. It is neither isomorphic to
CZ(Qa3), that is, to the truncated cuboctahedron (since it has two adjacent 8-faces) nor to
the 48-vertex partial cube fronB] (which has adjacent 4-faces). The graphs (b) and (c)
inflate into cubic graphs on 80 vertices while graghs (d) and (e) inflate to 96 vertices.
Since he face lengths of these pairs of graphs are pairwise diffePeoposition 8gives
rise to five new examples of prime cubic partial cubes.

Note that the cubic inflation of every cyct®, (n > 2) is also a abic partial cube.
However,CZ(Cp) = Co, O Kz is not prime.

All examples of abic partial cubes that we have obtained so far, have the property that
by removing any edge, graphs are no longer partial cubes. Partial cubes with this property
are said to bedge-critical [3]. Therefore, we finish the paper with the following question:

Is every cubic partial cube edge-critical?
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