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Abstract. We present an algorithm for finding shortest surface non-
separating cycles in graphs with given edge-lengths that are embedded
on surfaces. The time complexity is O(g3/2V 3/2 log V +g5/2V 1/2), where
V is the number of vertices in the graph and g is the genus of the sur-
face. If g = o(V 1/3−ε), this represents a considerable improvement over
previous results by Thomassen, and Erickson and Har-Peled. We also
give algorithms to find a shortest non-contractible cycle in O(gO(g)V 3/2)
time, improving previous results for fixed genus.

This result can be applied for computing the (non-separating) face-
width of embedded graphs. Using similar ideas we provide the first near-
linear running time algorithm for computing the face-width of a graph
embedded on the projective plane, and an algorithm to find the face-
width of embedded toroidal graphs in O(V 5/4 log V ) time.

1 Introduction

Cutting a surface for reducing its topological complexity is a common technique
used in geometric computing and topological graph theory. Erickson and Har-
Peled [9] discuss the relevance of cutting a surface to get a topological disk in
computer graphics. Colin de Verdière [5] describes applications that algorithmi-
cal problems involving curves on topological surfaces have in other fields.

Many results in topological graph theory rely on the concept of face-width,
sometimes called representativity, which is a parameter that quantifies local
planarity and density of embeddings. The face-width is closely related to the
edge-width, the minimum number of vertices of any shortest non-contractible
cycle of an embedded graph [17]. Among some relevant applications, face-width
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plays a fundamental role in the graph minors theory of Robertson and Seymour,
and large face-width implies that there exists a collection of cycles that are far
apart from each other, and after cutting along them, a planar graph is obtained.
By doing so, many computational problems for locally planar graphs on gen-
eral surfaces can be reduced to corresponding problems on planar graphs. See
[17, Chapter 5] for further details. The efficiency of algorithmical counterparts
of several of these results passes through the efficient computation of face-width.

The same can be said for the non-separating counterparts of the width pa-
rameters, where the surface non-separating (i.e., nonzero-homologous) cycles are
considered instead of non-contractible ones. In this work, we focus on what may
be considered the most natural problem for graphs embedded on surfaces: finding
a shortest non-contractible and a shortest surface non-separating cycle. Our re-
sults give polynomial-time improvements over previous algorithms for low-genus
embeddings of graphs (in the non-separating case) or for embeddings of graphs
in a fixed surface (in the non-contractible case). In particular, we improve pre-
vious algorithms for computing the face-width and the edge-width of embedded
graphs. In our approach, we reduce the problem to that of computing the dis-
tance between a few pairs of vertices, what some authors have called the k-pairs
shortest path problem.

1.1 Overview of the Results

Let G be a graph with V vertices and E edges embedded on a (possibly non-
orientable) surface Σ of genus g, and with positive weights on the edges, repre-
senting edge-lengths. Our main contributions are the following:

– We find a shortest surface non-separating cycle of G in O(g3/2V 3/2 log V +
g5/2V 1/2) time, or O(g3/2V 3/2) if g = O(V 1−ε) for some constant ε > 0.
This result relies on a characterization of the surface non-separating cycles
given in Section 3. The algorithmical implications of this characterization
are described in Section 4.

– For any fixed surface, we find a shortest non-contractible cycle in O(V 3/2)
time. This is achieved by considering a small portion of the universal cover.
See Section 5.

– We compute the non-separating face-width and edge-width of G in
O(g3/2V 3/2 + g5/2V 1/2) time. For fixed surfaces, we can also compute the
face-width and edge-width of G in O(V 3/2) time. For graphs embedded on
the projective plane or the torus we can compute the face-width in near-
linear or O(V 5/4 log V ) time, respectively. This is described in Section 6.

Although the general approach is common in all our results, the details are
quite different for each case. The overview of the technique is as follows. We find a
set of generators either for the first homology group (in the non-separating case)
or the fundamental group (in the non-contractible case) that is made of a few
geodesic paths. It is then possible to show that shortest cycles we are interested in
(non-separating or non-contractible ones) intersect these generators according to
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certain patterns, and this allows us to reduce the problem to computing distances
between pairs of vertices in associated graphs.

We next describe the most relevant related work, and in Section 2 we intro-
duce the basic background. The rest of the sections are as described above.

1.2 Related Previous Work

Thomassen [20] was the first to give a polynomial time algorithm for finding
a shortest non-separating and a shortest non-contractible cycle in a graph on
a surface; see also [17, Chapter 4]. Although Thomassen does not claim any
specific running time, his algorithm tries a quadratic number of cycles, and for
each one it has to decide if it is non-separating or non-contractible. This yields a
rough estimate O(V (V +g)2) for its running time. More generally, his algorithm
can be used for computing in polynomial time a shortest cycle in any class C
of cycles that satisfy the so-called 3-path-condition: if u, v are vertices of G and
P1, P2, P3 are internally disjoint paths joining u and v, and if two of the three
cycles Ci,j = Pi ∪ Pj (i �= j) are not in C, then also the third one is not in C.
The class of one-sided cycles for embedded graphs is another relevant family of
cycles that satisfy the 3-path-condition.

Erickson and Har-Peled [9] considered the problem of computing a planariz-
ing subgraph of minimum length, that is, a subgraph C ⊆ G of minimum length
such that Σ \ C is a topological disk. They show that the problem is NP-hard
when genus is not fixed, provide a polynomial time algorithm for fixed surfaces,
and provide efficient approximation algorithms. More relevant for our work, they
show that a shortest non-contractible (resp. non-separating) loop through a fixed
vertex can be computed in O(V log V + g) (resp. O((V + g) log V )) time, and
therefore a shortest non-contractible (resp. non-separating) cycle can be com-
puted in O(V 2 log V + V g) (resp. O(V (V + g) log V )) time. They also provide
an algorithm that in O(g(V + g) log V ) time finds a non-separating (or non-
contractible) cycle whose length is at most twice the length of a shortest one.

Several other algorithmical problems for graphs embedded on surfaces have
been considered. Colin de Verdière and Lazarus [6,7] considered the problem of
finding a shortest cycle in a given homotopy class, a system of loops homotopic
to a given one, and finding optimal pants decompositions. Eppstein [8] discusses
how to use the tree-cotree partition for dynamically maintaining properties from
an embedded graph under several operations. Very recently, Erickson and Whit-
tlesey [10] present algorithms to determine a shortest set of loops generating the
fundamental group. Other known results for curves embedded on topological
surfaces include [2,3,16,21]; see also [18,19] and references therein.

2 Background

Topology. We consider surfaces Σ that are connected, compact, Hausdorff topo-
logical spaces in which each point has a neighborhood that is homeomorphic to
R

2; in particular, they do not have boundary. A loop is a continuous function of
the circle S1 in Σ. Two loops are homotopic if there is a continuous deformation
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of one onto the other, that is, if there is a continuous function from the cylinder
S1 × [0, 1] to Σ such that each boundary of the cylinder is mapped to one of
the loops. A loop is contractible if it is homotopic to a constant (a loop whose
image is a single point); otherwise it is non-contractible. A loop is surface sepa-
rating (or zero-homologous) if it can be expressed as the symmetric difference of
boundaries of topological disks embedded in Σ; otherwise it is non-separating.
In particular, any non-separating loop is a non-contractible loop. We refer to
[13] and to [17, Chapter 4] for additional details.

Representation of Embedded Graphs. We will assume the Heffter-Edmonds-
Ringel representation of embedded graphs: it is enough to specify for each vertex
v the circular ordering of the edges emanating from v and for each edge e ∈ E(G)
its signature λ(e) ∈ {+1,−1}. The negative signature of e tells that the selected
circular ordering around vertices changes from clockwise to anti-clockwise when
passing from one end of the edge to the other. For orientable surfaces, all the
signatures can be made positive, and there is no need to specify it. This repre-
sentation uniquely determines the embedding of G, up to homeomorphism, and
one can compute the set of facial walks in linear time.

Let V denote the number of vertices in G and let g be the (Eurler) genus of
the surface Σ in which G is embedded. It follows from Euler’s formula that G
has Θ(V + g) edges. Asymptotically, we may consider V + g as the measure of
the size of the input.

We use the notation G C for the surface obtained by cutting G along a cycle
C. Each vertex v ∈ C gives rise to two vertices v′, v′′ in G C. If C is a two-
sided cycle, then it gives rise to two cycles C′ and C′′ in G C whose vertices
are {v′ | v ∈ V (C)} and {v′′ | v ∈ V (C)}, respectively. If C is one-sided, then it
gives rise to a cycle C′ in G C whose length is twice the length of C, in which
each vertex v of C corresponds to two diagonally opposite vertices v′, v′′ on C′.
The notation G C naturally generalizes to G C, where C is a set of cycles.

Distances in Graphs. In general, we consider simple graphs with positive edge-
weights, that is, we have a function w : E → R

+ describing the length of the
edges. In a graph G, a walk is a sequence of vertices such that any two consecutive
vertices are connected by an edge in G; a path is a walk where all vertices are
distinct; a loop is a walk where the first and last vertex are the same; a cycle is
a loop without repeated vertices; a segment is a subwalk. The length of a walk
is the sum of the weights of its edges, counted with multiplicity.

For two vertices u, v ∈ V (G), the distance in G, denoted dG(u, v), is the
minimum length of a path in G from u to v. A shortest-path tree from a vertex
v is a tree T such that for any vertex u we have dG(v, u) = dT (v, u); it can be
computed in O(V log V + E) = O(V log V + g) time [12], or in O(V ) time if
g = O(V 1−ε) for any positive, fixed ε [14]. When all the edge-weights are equal
to one, a breadth-first-search tree is a shortest-path tree.

We assume non-negative real edge-weights, and our algorithms run in the
comparison based model of computation, that is, we only add and compare (sums
of) edge weights. For integer weights and word-RAM model of computation,
some logarithmic improvements may be possible.
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Width of Embeddings. The edge-width ew(G) (non-separating edge-width ew0(G))
of a graph G embedded in a surface is defined as the minimum number of vertices
in a non-contractible (resp. surface non-separating) cycle. The face-width fw(G)
(non-separating face-width fw0(G)) is the smallest number k such that there exist
facial walks W1, . . . , Wk whose union contains a non-contractible (resp. surface
non-separating) cycle.

2.1 k-Pairs Distance Problem

Consider the k-pairs distance problem: given a graph G with positive edge-
weights and k pairs (s1, t1), . . . , (sk, tk) of vertices of G, compute the distances
dG(si, ti) for i = 1, . . . , k. Djidjev [4] and Fakcharoenphol and Rao [11] (slightly
improved by Klein [15] for non-negative edge-lengths) describe data structures
for shortest path queries in planar graphs. We will need the following special
case.

Lemma 1. For a planar graph of order V , the k-pairs distance problem can be
solved in O(min{V 3/2 + k

√
V , V log2 V + k

√
V log2 V }) time.

For a graph G embedded on a surface of genus g, there exist a set S ⊂ V (G)
of size O(

√
gV ) such that G− S is planar. It can be computed in time linear in

the size of the graph [8]. Since G − S is planar, we can then use the previous
lemma to get the following result.

Lemma 2. The k-pairs distance problem can be solved in O(
√

gV (V log V +g+
k)) time, and in O(

√
gV (V + k)) time if g = O(V 1−ε) for some ε > 0.

Proof. (Sketch) We compute in O(V + g) time a vertex set S ⊂ V (G) of size
O(

√
gV ) such that G − S is a planar graph. Making a shortest path tree from

each vertex s ∈ S, we compute all the values dG(s, v) for s ∈ S, v ∈ V (G).
We define the restricted distances dS

G(si, ti) = mins∈S{dG(si, s)+dG(s, ti)}, and
compute for each pair (si, ti) the value dS

G(si, ti)
If si and ti are in different connected components of G − S, it is clear that

dG(si, ti) = dS
G(si, ti). If si, ti are in the same component Gj of G − S we have

dG(si, ti) = min{dGj (si, ti), dS
G(si, ti)}. We can compute dGj (si, ti) for all the

pairs (si, ti) in a component Gj using Lemma 1, and the lemma follows because
each pair (si, ti) is in one component. �

3 Separating vs. Non-separating Cycles

In this section we characterize the surface non-separating cycles using the con-
cept of crossing. Let Q = u0u1 . . . uku0 and Q′ = v0v1 . . . vlv0 be cycles in the
embedded graph G. If Q, Q′ do not have any common edge, for each pair of
common vertices ui = vj we count a crossing if the edges ui−1ui, uiui+1 of Q
and the edges vj−1vj , vjvj+1 of Q′ alternate in the local rotation around ui = vj ;
the resulting number is cr(Q, Q′). If Q, Q′ are distinct and have a set of edges E′

in common, then cr(Q, Q′) is the number of crossings after contracting G along
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E′. If Q = Q′, then we define cr(Q, Q′) = 0 if Q is two-sided, and cr(Q, Q′) = 1
if Q is one-sided; we do this for consistency in later developments.

We introduce the concept of (Z2-)homology; see any textbook of algebraic
topology for a comprehensive treatment. A set of edges E′ is a 1-chain; it is
a 1-cycle if each vertex has even degree in E′; in particular, every cycle in the
graph is a 1-cycle, and also the symmetric difference of 1-cycles is a 1-cycle. The
set of 1-cycles with the symmetric difference operation + is an Abelian group,
denoted by C1(G). This group can also be viewed as a vector space over Z2 and
is henceforth called the cycle space of the graph G. If f is a closed walk in G, the
edges that appear an odd number of times in f form a 1-cycle. For convenience,
we will denote the 1-cycle corresponding to f by the same symbol f .

Two 1-chains E1, E2 are homologically equivalent if there is a family of facial
walks f1, . . . , ft of the embedded graph G such that E1 + f1 + · · · + ft = E2.
Being homologically equivalent is an equivalence relation compatible with the
symmetric difference of sets. The 1-cycles that are homologically equivalent to
the empty set, form a subgroup B1(G) of C1(G). The quotient group H1(G) =
C1(G)/B1(G) is called the homology group of the embedded graph G.

A set L of 1-chains generates the homology group if for any loop l in G, there
is a subset L′ ⊂ L such that l is homologically equivalent with

∑
l′∈L′ l′. There

are sets of generators consisting of g 1-chains. It is known that any generating
set of the fundamental group is also a generating set of the homology group
H1(G).

If L = {L1, . . . , Lg} is a set of 1-cycles that generate H1(G), then every Li

(1 ≤ i ≤ g) contains a cycle Qi such that the set Q = {Q1, . . . , Qg} generates
H1(G). This follows from the exchange property of bases of a vector space since
H1(G) can also be viewed as a vector space over Z2.

A cycle in G is surface non-separating if and only if it is homologically equiv-
alent to the empty set. We have the following characterization of non-separating
cycles involving parity of crossing numbers.

Lemma 3. Let Q = {Q1, . . . , Qg} be a set of cycles that generate the homology
group H1(G). A cycle Q in G is non-separating if and only if there is some cycle
Qi ∈ Q such that Q and Qi cross an odd number of times, that is, cr(Q, Qi) ≡ 1
(mod 2).

Proof. Let f0, . . . , fr be the 1-cycles that correspond to the facial walks. Then
f0 = f1 + · · · + fr and Q ∪ {f1, . . . , fr} is a generating set of C1(G). If C is a
1-cycle, then C =

∑
j∈J Qj +

∑
i∈I fi. We define crC(Q) as the modulo 2 value

of ∑

j∈J

cr(Q, Qj) +
∑

i∈I

cr(Q, fi) =
∑

j∈J

cr(Q, Qj) mod 2.

It is easy to see that crC : C1(G) → Z2 is a homomorphism. Since cr(Q, fi) = 0
for every facial walk fi, crC determines also a homomorphism H1(G) → Z2.

If Q is a surface separating cycle, then it corresponds to the trivial element
of H1(G), so every homomorphism maps it to 0. In particular, for every j,
cr(Q, Qj) = crQj (Q) = 0 mod 2.
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Let Q be a non-separating cycle and consider G̃ = G Q. Take a vertex v ∈ Q,
which gives rise to two vertices v′, v′′ ∈ G̃. Since Q is non-separating, there is a
simple path P in G̃ connecting v′, v′′. The path P is a loop in G (not necessarily
a cycle) that crosses Q exactly once.

Since Q generates the homology group, there is a subset Q′ ⊂ Q such
that the loop P and

∑
Qi∈Q′ Qi are homological. But then 1 = crP (Q) =∑

Qi∈Q′ cr(P, Qi) mod 2, which means that for some Qi ∈ Q′, it holds
cr(P, Qi) ≡ 1 (mod 2). �

4 Shortest Non-separating Cycle

We use the tree-cotree decomposition for embedded graphs introduced by Epp-
stein [8]. Let T be a spanning tree of G rooted at x ∈ V (G). For any edge
e = uv ∈ E(G) \ T , we denote by loop(T, e) the closed walk in G obtained
by following the path in T from x to u, the edge uv, and the path in T
from v to x; we use cycle(T, e) for the cycle obtained by removing the re-
peated edges in loop(T, e). A subset of edges C ⊆ E(G) is a cotree of G if
C∗ = {e∗ ∈ E(G∗) | e ∈ C} is a spanning tree of the dual graph G∗. A tree-cotree
partition of G is a triple (T, C, X) of disjoint subsets of E(G) such that T forms
a spanning tree of G, C is cotree of G, and E(G) = T ∪ C ∪ X . Euler’s formula
implies that if (T, C, X) is a tree-cotree partition, then {loop(T, e) | e ∈ X} con-
tains g loops and it generates the fundamental group of the surface; see, e.g., [8].
As a consequence, {cycle(T, e) | e ∈ X} generates the homology group H1.

Let Tx be a shortest-path tree from vertex x ∈ V (G). Let us fix any tree-
cotree partition (Tx, Cx, Xx), and let Qx = {cycle(Tx, e) | e ∈ Xx}. For a cycle
Q ∈ Qx, let QQ be the set of cycles that cross Q an odd number of times. Since
Qx generates the homology group, Lemma 3 implies that

⋃
Q∈Qx

QQ is precisely
the set of non-separating cycles. We will compute a shortest cycle in QQ, for
each Q ∈ Qx, and take the shortest cycle among all them; this will be a shortest
non-separating cycle.

We next show how to compute a shortest cycle in QQ for Q ∈ Qx. Firstly,
we use that Tx is a shortest-path tree to argue that we only need to consider
cycles that intersect Q exactly once; a similar idea is used by Erickson and Har-
Peled [9] for their 2-approximation algorithm. Secondly, we reduce the problem
of finding a shortest cycle in QQ to an O(V )-pairs distance problem.

Lemma 4. Among the shortest cycles in QQ, where Q ∈ Qx, there is one that
crosses Q exactly once.

Proof. (Sketch) Let Q0 be a shortest cycle in QQ for which the number
Int(Q, Q0) of connected components of Q ∩ Q0 is minimum. We claim that
Int(Q, Q0) ≤ 2, and therefore cr(Q, Q0) = 1 because QQ is the set of cycles
crossing Q an odd number of times, and each crossing is an intersection. Using
the 3-path-condition and that the cycle Q is made of two shortest paths, it is
not difficult to show that Int(Q, Q0) ≥ 3 cannot happen. �
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Lemma 5. For any Q ∈ Qx, we can compute a shortest cycle in QQ in
O((V log V + g)

√
gV ) time, or O(V

√
gV ) time if g = O(V 1−ε).

Proof. Consider the graph G̃ = G Q, which is embedded in a surface of Euler
genus g − 1 (if Q is a 1-sided curve in Σ) or g − 2 (if Q is 2-sided). Each vertex
v on Q gives rise to two copies v′, v′′ of v in G̃.

In G, a cycle that crosses Q exactly once (at vertex v, say) gives rise to a path
in G̃ from v′ to v′′ (and vice versa). Therefore, finding a shortest cycle in QQ

is equivalent to finding a shortest path in G̃ between pairs of the form (v′, v′′)
with v on Q. In G̃, we have O(V ) pairs (v′, v′′) with v on Q, and using Lemma 2
we can find a closest pair (v′0, v

′′
0 ) in O((V log V + g)

√
gV ) time, or O(V

√
gV )

if g = O(V 1−ε). We use a single source shortest path algorithm to find in G̃ a
shortest path from v′0 to v′′0 , and hence a shortest cycle in QQ. �

Theorem 1. Let G be a graph with V vertices embedded on a surface of genus
g. We can find a shortest surface non-separating cycle in O((gV log V +g2)

√
gV )

time, or O((gV )3/2) time if g = O(V 1−ε).

Proof. Since
⋃

Q∈Qx
QQ is precisely the set of non-separating cycles, we find a

shortest non-separating cycle by using the previous lemma for each Q ∈ Qx, and
taking the shortest among them. The running time follows because Qx contains
O(g) loops. �

Observe that the algorithm by Erickson and Har-Peled [9] outperforms our
result for g = Ω(V 1/3 log2/3 V ). Therefore, we can recap concluding that a short-
est non-separating cycle can be computed in O(min{(gV )3/2, V (V + g) log V })
time.

5 Shortest Non-contractible Cycle

Like in the previous section, we consider a shortest-path tree Tx from vertex
x ∈ V (G), and we fix a tree-cotree partition (Tx, Cx, Xx). Consider the set of
loops Lx = {loop(Tx, e) | e ∈ Xx}, which generates the fundamental group with
base point x. By increasing the number of vertices to O(gV ), we can assume that
Lx consists of cycles (instead of loops) whose pairwise intersection is x. This can
be shown by slightly modifying G in such a way that Lx can be transformed
without harm.

Lemma 6. The problem is reduced to finding a shortest non-contractible cycle
in an embedded graph G̃ of O(gV ) vertices with a given set of cycles Qx such that:
Qx generates the fundamental group with basepoint x, the pairwise intersection
of cycles from Qx is only x, and each cycle from Qx consists of two shortest
paths from x plus an edge. This reduction can be done in O(gV ) time.

Proof. (Sketch) The first goal is to change the graph G in such a way that the
loops in Lx will all become cycles. Then we handle the pairwise intersections
between them. The procedure is as follows. Consider a non-simple loop l0 in
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Lx whose repeated segment P0 is shortest, and replace the vertices in P0 in
the graph as shown in Figure 1. We skip a detailed description since it involves
much notation, but the idea should be clear from the figure. Under this trans-
formation, the rest of loops (or cycles) in Lx remain the same except that their
segment common with P0 is replaced with the corresponding new segments. We
repeat this procedure until Lx consists of only cycles; we need O(g) repetitions.
This achieves the first goal, and the second one can be achieved doing a similar
transfomation if we consider at each step the pair of cycles that have a longest
segment in common. �

x = v0

v1

vk−1

vk

vk+1
v′

k+1

e

x = v0

v1

vk−1

vk

vk+1
v′

k+1

e

v′
1

v′
k−1

v′
k

Fig. 1. Changing G such that a loop l0 ∈ Lx becomes a cycle. The edges viv
′
i have

length 0.

Therefore, from now on, we only consider scenarios as stated in Lemma 6. Let
Q∗ be the set of shortest non-contractible cycles in G̃. Using arguments similar
to Lemma 4, we can show the following.

Lemma 7. There is a cycle Q ∈ Q∗ that crosses each cycle in Qx at most twice.

Consider the set D = Σ Qx and the corresponding graph GP = G̃ Qx.
Since Qx is a set of cycles that generate the fundamental group and they only
intersect at x, it follows that D is a topological disk, and GP is a planar graph.
We can then use D and GP as building blocks to construct a portion of the
universal cover where a shortest non-contractible cycle has to lift.

Theorem 2. Let G be a graph with V vertices embedded on a surface of genus
g. We can find a shortest non-contractible cycle in O(gO(g)V 3/2) time.

Proof. According to Lemma 6, we assume that G̃ has O(gV ) vertices and we are
given a set of cycles Qx that generate the fundamental group with base point x,
whose pairwise intersection is x, and such that each cycle of Qx consists of two
shortest paths plus an edge. Moreover, because of Lemma 7, there is a shortest
non-contractible cycle crossing each cycle of Qx at most twice.

Consider the topological disk D = Σ Qx and let U be the universal cover
that is obtained by gluing copies of D along the cycles in Qx. Let GU be the
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universal cover of the graph G̃ that is naturally embedded in U . The graph GU

is an infinite planar graph, unless Σ is the projective plane P
2, in which case GU

is finite.
Let us fix a copy D0 of D, and let U0 be the portion of the universal cover U

which is reachable from D0 by visiting at most 2g different copies of D. Since each
copy of D is adjacent to 2|Qx| ≤ 2g copies of D, U0 consists of (2g)2g = gO(g)

copies of D. The portion GU0 of the graph GU that is contained in U0 can be
constructed in O(gO(g)gV ) = O(gO(g)V ) time. We assign to the edges in GU0

the same weights they have in G.
A cycle is non-contractible if and only if its lift in U finishes in different copies

of the same vertex. Each time that we pass from a copy of D to another copy we
must intersect a cycle in Qx. Using the previous lemma, we conclude that there
is a shortest non-contractible cycle whose lift intersects at most 2|Qx| = O(g)
copies of D. That is, there exists a shortest non-contractible cycle in G whose
lifting to U starts in D0 and is contained GU0 .

We can then find a shortest non-contractible cycle by computing, for each
vertex v ∈ D0, the distance in GU0 from the vertex v to all the other copies of v
that are in GU0 . Each vertex v ∈ D0 has O(gO(g)) copies in GU0 . Therefore, the
problem reduces to computing the shortest distance in GU0 between O(gO(g)V )
pairs of vertices. Since GU0 is a planar graph with O(gO(g)V ) vertices, we can
compute these distances using Lemma 1 in O(gO(g)V

√
gO(g)V ) = O(gO(g)V 3/2)

time. �

Observe that, for a fixed surface, the running time of the algorithm is
O(V 3/2). However, for most values of g as a function of V (when g ≥ c log V

log log V

for a certain constant c), the near-quadratic time algorithm by Erickson and
Har-Peled [9] is better.

6 Edge-Width and Face-Width

When edge-lengths are all equal to 1, shortest non-contractible and surface non-
separating cycles determine combinatorial width parameters (cf. [17, Chapter 5]).
Since their computation is of considerable interest in topological graph theory,
it makes sense to consider this special case in more details.

6.1 Arbitrary Embedded Graphs

The (non-separating) edge-width ew(G) (and ew0(G), respectively) of an embed-
ded graph G is the minimum number of vertices in a non-contractible (surface
non-separating) cycle, which can be computed by setting w(e) = 1 for all edges
e in G and running the algorithms from previous sections. For computing the
(non-separating) face-width fw(G) (and fw0(G), respectively) of an embedded
graph G, it is convenient to consider its vertex-face incidence graph Γ : a bi-
partite graph whose vertices are faces and vertices of G, and there is an edge
between face f and vertex v if and only if v is on the face f . The construction of
Γ takes linear time from an embedding of G, and it holds that fw(G) = 1

2ew(Γ )
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and fw0(G) = 1
2ew0(Γ ) [17]. In this setting, since a breadth-first-search tree is a

shortest-path tree, a log factor can be shaved off.

Theorem 3. For a graph G embedded in a surface of genus g, we can compute
its non-separating edge-width and face-width in O(g3/2V 3/2+g5/2V 1/2) time and
its edge-width and face-width in O(gO(g)V 3/2) time.

Although in general it can happen that ew(G) = Ω(V ), there are non-trivial
bounds on the face-width fw(G). Albertson and Hutchinson [1] showed that the
edge-width of a triangulation is at most

√
2V . Since the vertex-face graph Γ has

a natural embedding in the same surface as G as a quadrangulation, we can add
edges to it to obtain a triangulation T , and conclude that fw(G) = 1

2ew(Γ ) ≤
ew(T ) ≤ √

2V .

6.2 Face-Width in the Projective Plane and the Torus

For the special cases when G is embedded in the projective plane P
2 or the torus

T, we can improve the running time for computing the face-width. The idea is
to use an algorithm for computing the edge-width whose running time depends
on the value ew(G). We only describe the technique for the projective plane.

Lemma 8. Let G be a graph embedded in P
2. If ew(G) ≤ t, then we can compute

ew(G) and find a shortest non-contractible cycle in O(V log2 V + t
√

V log2 V )
time.

Proof. (Sketch) Since the sphere is the universal cover of the projective plane
P

2, we can consider the cover of G on the sphere, the so-called double cover DG

of the embedding of G, which is a planar graph. Each vertex v of G gives rise
to two copies v, v′ in DG, and a shortest non-contractible loop passing through
a vertex v ∈ V (G) is equivalent to a shortest path in DG between the vertices v
and v′.

We compute in O(V log V ) time a non-contractible cycle Q of G of length
at most 2ew(G) ≤ 2t [9]. Any non-contractible cycle in G has to intersect Q at
some vertex, and therefore the problem reduces to find two copies v, v′ ∈ DG of
the same vertex v ∈ Q that minimize their distance in dG. This requires |Q| ≤ 2t
pairs of distances in DG, which can be solved using Lemma 1. �

Like before, consider the vertex-face incidence graph Γ which can be con-
structed in linear time. From the bounds in Section 6.1, we know that the edge-
width of Γ is O(

√
V ), and computing the face-width reduces to computing the

edge-width of a graph knowing a priori that ew(Γ ) = 2fw(G) = O(
√

V ). Using
the previous lemma we conclude the following.

Theorem 4. If G is embedded in P
2 we can find fw(G) in O(V log2 V ) time.

For the torus, we have the following result, whose proof we omit.

Theorem 5. If G is embedded in T we can find fw(G) in O(V 5/4 log V ) time.
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