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Abstract

Hajés theorem states that every graph with chromatic number
at least k can be obtained from the complete graph Kj; by a se-
quence of simple operations such that every intermediate graph also
has chromatic number at least k. Here, Hajés theorem is extended
in three slightly different ways to colorings and circular colorings of
edge-weighted graphs. These extensions shed some new light on the
Hajés theorem and show that colorings of edge-weighted graphs are
most natural extension of usual graph colorings.

1 Introduction

A graph is k-critical if its chromatic number is k but every proper subgraph
has smaller chromatic number. Critical graphs play an important role in
the theory of graph colorings. However, not much is known about them.
On the other hand, there is a very simple inductive construction due to
Hajés [2] which gives rise to all k-critical graphs. More precisely, Hajos
theorem states that every k-critical graph can be obtained from copies of
the complete graph K by applying a finite sequence of the following two
operations:

(a) Identify two nonadjacent vertices.

(b) Take two graphs G, G4 constructed by these operations, delete an
edge u;v; in G;, 1 = 1,2, identify u; with us and add the edge vqvs.
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In [5], it was asked what an analogue of the Hajds theorem would be for
circular colorings. An answer was obtained by Zhu in [6]. However, that
result needs additional, more complicated operations.

It is shown in this paper that the Hajos theorem has very natural and
simple generalizations in the case of edge-weighted graphs, both for the usual
chromatic number and the circular chromatic number. Among two differ-
ent extensions of Hajés theorem for the circular chromatic number, the one
which is a full analogue of the Haj6s theorem for weighted graphs (cf. Corol-
lary 6.5), may need an infinite sequence (a limiting process) of operations
instead of a finite sequence. We do not know if this is really necessary, but
if it is, this result would shed new light on the Hajés theorem. May this
be a reason why no nontrivial applications of this celebrated theorem are
known?

2 The channel assignment problem

The channel assignment problem is a graph coloring problem which gener-
alizes usual colorings to edge-weighted graphs as described below [3].

A weighted graph is a pair G = (V, A), where V is the vertex set, and
A:V xV — RTU{0} are the edge-weights. Let E denote the set of all
unordered pairs uv (u # v) of vertices for which A(u,v) # 0. For u,v € V,
ayy = A(u,v) denotes the weight of the edge uv of G. In this paper, it is
also assumed that the edge-weights are symmetric, i.e., @y, = a4y, and that
there are no loops, i.e., ay, = 0 for every v € V.

Let G = (V,A) and G’ = (V', A’) be weighted graphs with V' C V. We
say that G' is a subgraph of G, G' C G, if al,, < ay, for every u,v € V'
It is a proper subgraph if either V' # V or there exist u,v € V' such that
Ay < Q-

The chromatic number x(G) (also known as the span) of the weighted
graph G is equal to the minimum real number r such that there exists a
mapping (called an r-coloring) c: V — [1,r]| (where [1,7] denotes the closed
interval from 1 to r) such that for any two adjacent vertices u,v € V,
le(u) — c(v)] > ayy-

The problem of determining the span of a weighted graph with inte-
ger edge-weights is known as the channel assignment problem since it has
applications in assigning channels and frequencies to radio or mobile tele-
phony transmitters. The following lemma, shows that we may only consider
colorings for which ¢(v) is an integer for every v € V.

Lemma 2.1 Suppose that ¢ : V — [1,7] is an r-coloring of a weighted graph



G with integer edge-weights. For v € V, let ¢ (v) = |c(v)|. Then ¢ is a
|7 |-coloring of G.

Proof. It is easy to see that |/ (u) — ' (v)] > [|c(u) — c(v)]] > |auww] = ayo-
This completes the proof. O

The channel assignment problem is related to some other problems on
graphs. For example:

(a) If all edge-weights are equal to 1, then x(G) is the usual chromatic
number of G.

(b) Let G be an arbitrary (unweighted) graph with vertex set V. Let
K¢ be the complete graph with the same vertex set as G and edge-
weights 1 (for edges of G) and 2 (for nonedges of G). Then x(Kqg) =
|V|+1a(G) —1, where la(G) is the linear arboricity of G, i.e., the mini-
mum number of paths whose vertex sets partition V(G). In particular,
X(K¢g) = |V] if and only if G has a hamiltonian path. This example
shows that computation of the weighted circular chromatic number is
NP-hard even for complete graphs with edge-weights 1 and 2 only.

We refer to [3] for further details about the channel assignment problem.

3 Circular chromatic number of weighted graphs

The theory of circular colorings of graphs has become an important branch
of chromatic graph theory with many interesting results, leading to new
methods and exciting new results. We refer to the survey article by Zhu [5].
An extension of circular colorings to weighted graphs was recently introduced
by the author [4].

For a positive real number p, denote by S, C R? the circle with radius
£ (hence with perimeter p) centered at the origin of R”. In the obvious
way, we can identify the circle S, with the set R/pZ of real number modulo
p. For z,y € S, let us denote by S,(z,y) the arc on S, from z to y in the
clockwise direction, and let d(x,y) denote the length of this arc.

Let G = (V, A) be an edge-weighted graph with at least one edge. A
circular p-coloring of G is a function ¢ : V' — S, such that for every edge
wo € E, d(c(u),c(v)) > ayy. Since d(c(u), c(v)) + d(c(v), c(u)) = p, a neces-
sary condition for existence of a circular p-coloring is that

p > 2max{ay, |u,v € V}. (1)



The circular chromatic number x.(G) of a weighted graph G is the in-
fimum of all real numbers p for which there exists a circular p-coloring of
G. It is known [4] that the infimum is attained, i.e., there exists a circular
Xc(G)-coloring of G.

The circular chromatic number of weighted graphs generalizes some other
graph invariants and can be used as a model for several well-known opti-
mization problems:

(a) If all edge-weights are equal to 1, then x.(G) is the usual circular
chromatic number of G (cf., e.g., [5]).

(b) If there is a function f: V — R™, and weights of edges are defined as
ayy = f(u)+ f(v), then we get the notion of weighted circular colorings
that were studied by Deuber and Zhu [1].

(c) Let G be an arbitrary (unweighted) graph with vertex set V. Let K¢
be the complete graph with the same vertex set as G and edge-weights
1 (for edges of G) and 2 (for nonedges of G). Then x.(K¢) = |V|if and
only if G has a hamiltonian cycle, and x.(K¢) < |[V|+ 1 if and only if
G has a hamiltonian path. This example shows that computation of
the weighted circular chromatic number is NP-hard even for complete
graphs with edge-weights 1 and 2 only.

(d) Let D = [dyy]u,vev be the cost matrix for a metric traveling salesman
problem (MTSP), i.e., D is a nonnegative matrix that satisfies the
triangular inequality. Then every circular p-coloring of the weighted
complete graph Ky (with edge-weights D) determines a tour of the
traveling salesman of cost < p, and vice versa. Therefore, x.(Ky ) is
the optimum for the considered MTSP.

The notion of the circular chromatic number thus generalizes several
well-known optimization problems and hence introduces the possibility to
apply tools from one area into another one. As the edge-weights are not
discrete integer values, one may also get use of some tools from continuous
optimization.

4 Hajos theorem for the channel assignment prob-
lem

In this section it is assumed that all edge-weights are integers. Let p be
a positive integer. We consider the set G(p) of all weighted graphs with



integer edge-weights whose chromatic number is at least p. It is clear that
the following two operations never decrease the chromatic number:

(a) Identify two nonadjacent vertices u,v € V. Let w be the new vertex.
The resulting weighted graph G’ = (V' A") has vertex set V' = (V\{u,v})U
{w} and the same edge-weights as G except that the weights of edges incident
with w are al,, = max{ay,, ay.}.

(b) Increase some edge-weight (possibly from 0 to a positive value in
which case a new edge is added) or add a new vertex. By repeating this
operation, every weighted graph which contains G as a subgraph can be
obtained.

There is a third operation which combines two graphs from G(p) and
gives rise to a new graph in G(p). For i = 1,2, let G; = (V;,A®) be a
weighted graph, and let u;v; be an edge of G;. Let us identify w1 and us in
the disjoint union of G; and G5 into a new vertex u, then delete the edges uw,
and uvg, and finally, add the edge vivy with weight ay,,, = aq(}l)vl —|—a1%)v2 —1.
The operation is represented in Figure 1. The resulting weighted graph G
is called the Hajos sum of G1 and Gs.

G, G,
_—>

Figure 1: The (weak) Hajés sum of two graphs

(1)

If we leave the edges uv; and wwvy in G having weights a,,», — 1 and
a%)w — 1, respectively, we get the weak Hajos sum. In Figure 1, the edge-
weights for the weak sum are given in parenthesis. All results stated in this
paper carry over to the cases when the usual Hajés sum is replaced with the

weak sum.

Lemma 4.1 Let G be the Hajos sum of weighted graphs G1 and Go. Then
x(G) = min{x(G1), x(G2)}

Proof. Ifc:V — {1,2,...,r} is an r-coloring of G, r = x(G), then
le(v1) — c(v2)| > ayyo, = aﬁ}l)vl + aq(fz)vz — 1. Therefore, either |c(u) — c(vy)] >



aS}l)m or |c(u) — c(vg)] > a%)w. Assuming the former, the restriction of ¢ to
V1 determines an r-coloring of G. This shows that x(G1) < x(G). O

A weighted graph G € G(p) is p-critical if every proper subgraph of G
(with integer weights) has chromatic number less than p. Observe that this
implies that x(G) = p. Let C(p) be the set of all p-critical weighted graphs.
Clearly, every graph in G(p) contains a subgraph which is in C(p).

Denote by MTSi(p) the set of all integer-weighted complete graphs G
with x(G) = p whose edge-weights satisfy the triangular inequality. Ex-
amples of graphs in MTS;(p) N C(p) are complete graphs K}, with all edge-
weights equal to the same integer «, where p — 1 = a(k — 1). More compli-
cated examples are obtained as follows. Start with a critical complete graph
Go € MTSi(py) and replace the i*" vertex v; of Gy (i = 1,...,n) by the
complete graph Kj, with unit edge-weights and let all edges between Ky,
and Ky, have the same weight as the edge vjv; in Go. The graph G thus
obtained is in MTS;(p) N C(p) where p =po+ k1 + -+ + kyp — n.

Let H(p) be the set of weighted graphs that can be obtained from graphs
in MTS;(p) by a sequence of identifications of nonadjacent vertices and Hajos
sums. These graphs will be called Hajds constructible graphs.

Theorem 4.2 FEvery graph in G(p) contains a subgraph that is in H(p), i.e.,
C(p) € H(p).

Proof. Suppose that the theorem is not true. Let G be a counterexample
with minimum number of vertices and, subject to this constraint, with max-
imum sum of edge-weights. Such a counterexample exists since every graph
with an edge of weight > p — 1 contains as a subgraph the complete graph
on 2 vertices with the edge of weight p — 1 which is a member of MTSi(p).

Suppose first that G has vertices w,v;, v such that the triangular in-
equality does not hold: ay,y, > @yy, +Gwy,. For i = 1,2, let G; be the graph
obtained from G by increasing the weight a,,, by 1. By the maximality of
G, G; contains a Hajés constructible subgraph G?. Since G' does not contain
such a subgraph, G’ contains the edge wv;, and its weight in G} is @y, + 1.

Let G! be a copy of G} such that G and G are disjoint. Let G” be
the Haj6s sum of graphs G and G with respect to the edges wv; and
wuvy. If t1 and ty are vertices of G” that correspond to the same vertex
t e V(GY) NV (GY) \ {w}, then ¢; and ¢y are nonadjacent in G”. Therefore,
we may identify all such pairs t1,%s of nonadjacent vertices in G”. The
resulting graph is Hajés constructible. It is easy to see that it is isomorphic
to a subgraph of G. This contradiction shows that edge-weights in G satisfy
the triangular inequality.



Triangular inequality in G implies that any two nonadjacent vertices
have the same neighbors. Therefore, G is a complete multipartite graph.
Let Vi,..., Vi be the partition of V' into maximal independent sets. If vu
and vw are edges of GG incident with the same vertex v such that uw ¢ E,
then the triangular inequality shows that a,, = ay,. Therefore, all edges
between two partite sets V;, V; have the same weight. Let G’ be the induced
subgraph obtained from G by taking one vertex from each partite class V;,
i =1,...,k. By the conclusions made above, any coloring of G’ gives rise
to a coloring of G with the same span. Therefore, G' € G(p). Moreover,
G’ € MTSi(p') where p' = x(G) > p.

We claim that G’ contains a subgraph G” € MTS;(p). The claim is clear
if G’ has all edge-weights equal to 1 or if p’ = p. Next, suppose that p’ > p
and that the largest edge-weight is at least 2. Then the decrease of the
largest edge-weight in G yields a subgraph of G which is a complete graph,
satisfies the triangular inequality, and has chromatic number at least p. By
repeating the decrease of a largest edge-weight one by one, we either get all
edge-weights equal to 1, or decrease the chromatic number to p. In each
case, the claim is established. O

Theorem 4.2 answers a question of McDiarmid stated in [3].

5 Hajés theorem for the integer circular chromatic
number

Hajos theorem for circular chromatic number has been recently obtained
by Zhu [6]. For that purpose, three new, rather complicated operations
are introduced instead of the Hajés sum. In this paper two versions of the
Hajés theorem for the circular chromatic number are obtained. The first
one, presented in this section, is a weaker form, analogous to Theorem 4.2.
The other one is presented in the next section.

Let us first observe that the Hajés sum of two graphs can have smaller
circular chromatic number as the starting graphs. For example, the Hajos
sum of two 3-cycles gives rise to the 5-cycle (all edge-weights are equal
to 1). While x.(C3) = 3, the resulting graph C5 has circular chromatic
number equal to g It will be discussed in the next section how to overcome
this trouble. In this section we consider only the case when p is an integer
and consider the class G'(p) of all weighted graphs with integer edge-weights
whose circular chromatic number is strictly larger than p — 1. In this class,
the behavior is similar as for usual colorings. This is due to the following



lemma.

Lemma 5.1 Suppose that p is an integer and that ¢ : V. — R/pZ determines
a circular p-coloring of a weighted graph G with integer edge-weights. For
vEV, let d(v) = c(v) +%]. Then ¢ is a circular p-coloring of G.

Proof. Tt is easy to see that the circular distance d' of ¢'(u) and c'(v) is
strictly greater than d — 1, where d is the circular distance between c(u)
and c(v). Moreover, if d is an integer, then d’ = d. Since d' is an integer,
d > |d] > |auy] = ayy- This completes the proof. O

Lemma 5.2 Let G be the Hajos sum of graphs G1,G2 € G'(p). Then G €
g'(p).

Proof. Suppose that x.(G) < p—1. By Lemma 5.1, G has a circular (p—1)-
coloring whose colors are integers. This implies, in the same way as in the
proof of Lemma 4.1, that either Gy or G5 has a circular (p — 1)-coloring, a
contradiction. O

A weighted graph G € G'(p) is critical if every proper subgraph of G
with integer edge-weights has circular chromatic number at most p — 1. Let
C'(p) be the set of all critical weighted graphs. Clearly, every graph in G'(p)
contains a subgraph which is in C'(p). It is also easy to see that every
G € C'(p) has x.(G) = p, except the graph K on two vertices and its edge
of weight [p/2], where p is odd.

Denote by MTS{(p) the set of all weighted complete graphs with in-
teger edge-weights satisfying the triangular inequality and whose circular
chromatic number is equal to p. These graphs correspond to the metric
traveling salesman problems whose shortest hamiltonian cycle has length p.
Additionally, we shall assume that MTS{,(p) contains the complete graph
K of order 2 with its edge of weight [p/2] (even though x.(K) = p+1 when
p is odd).

Let H'(p) be the set of weighted graphs that can be obtained from
graphs in MTS{,(p) by a sequence of identifications of nonadjacent vertices
and (weak) Hajés sums. These graphs are said to be (weakly) Hajés con-
structible.

Having Lemma 5.1 and Lemma 5.2, the proof of Theorem 4.2 can be
used also for graphs in G'(p). Let us observe that the addition of the graph
K in MTS{(p) (when p is odd) was necessary for the proof to work.



Theorem 5.3 Every graph in G'(p) contains a subgraph that is in H'(p),
i.e., C'(p) CH'(p).

Theorem 5.3 for the circular chromatic number of unweighted simple
graphs is equivalent to the usual Hajés theorem. This follows from the fact
that every simple graph G satisfies x(G) < x.(G) < x(G) and since the
Hajds sum gives rise to a simple graph if and only if both factors are simple,
hence the only graph in MTS{,(p) that is used in Hajés construction of G is
the complete graph K.

6 Hajoés theorem for general edge-weighted graphs

In this section, the circular chromatic number p and the edge-weights are
arbitrary positive real numbers.

Theorem 5.3 is not the full analogy of Hajés theorem for circular col-
orings. As mentioned in the previous section, the (weak) Hajés sum does
not preserve the property of the circular chromatic number being at least p.
However, a modified operation described below behaves well in this respect.

For i = 1,2, let G; = (V;, A®) be a weighted graph, and let u;v; be an
edge of G;. Let G be the weighted graph obtained in the same way as by
taking the Hajds sum of G; and G, except that the edge vjve gets weight
Gyyvy = aq(}l)vl + a%)vz. The resulting weighted graph G is called the strong
Hajos sum of G1 and Gs.

Lemma 6.1 Let G be the strong Hajos sum of weighted graphs G1 and Go.
Then XC(G) > min{XC(G1)7XC(G2)}'

Proof. Letc:V — S, be a circular p-coloring of G. Since d(c(v1), c(ve)) >

Ay, vy, 1t follows that either for ¢ = 1 or for i = 2, d(c(v;),c(u)) > a’gt)ul
Therefore, the restriction of ¢ to V; determines a circular p-coloring of G;. O

Let G.(p) be the set of all weighted graphs whose circular chromatic
number is at least p. A weighted graph G € G.(p) is p-critical if every
proper subgraph of G has circular chromatic number less than p. Since x.
is a continuous function of edge-weights, this implies that x.(G) = p. Let
Cc(p) be the set of all p-critical weighted graphs. Clearly, every graph in
G.(p) contains a subgraph which is in C.(p).

Denote by MTSo(p) the set of all weighted complete graphs whose edge-
weights satisfy the triangular inequality and whose circular chromatic num-
ber is equal to p. For ¢ > 0, let M_T'So(p) be the set of all instances of



weighted graphs with x.(G) = p whose edge-weights satisfy the e-triangular
inequality:
Oyy < Gy + Gy + € (u,v,w € V).

Lemma 6.2 Every weighted graph in G.(p) has a subgraph that can be 0b-
tained from graphs in MyTSo(p) by identifying nonadjacent vertices and
taking strong Hajos sums.

The proof of Lemma, 6.2 is similar to the proof of Theorem 4.2, and will
therefore be omitted. The same proof can be used to verify the following
result.

Lemma 6.3 For everye > 0, every graph in My TSo(p) contains a subgraph
that can be obtained from graphs in M.TSo(p) by taking strong Hajos sums
and identifying nonadjacent vertices.

Lemma 6.2 and consecutive application of Lemma 6.3 yield:

Theorem 6.4 For every ¢ > 0, every graph in G.(p) contains a subgraph
that can be obtained from graphs in M.TSo(p) by taking strong Hajos sums
and identifying nonadjacent vertices.

The proof of Theorem 6.4 also shows that none of the graphs used or
encountered when constructing the graph G € G.(p) of order n from graphs
in M_.T'Sp(p) has more than 2n — 1 vertices. The proof also yields a bound
on the number of steps used in such a construction. As a corollary we get:

Corollary 6.5 For every T > 0 and every G € G.(p), there exists a subgraph
G’ of G that can be obtained from graphs in MTSo(p — 7) by taking strong
Hajos sums and identifying nonadjacent vertices.

Proof. Let ¢ be a positive real number, let n be the order of GG, and let a be
the minimum positive edge-weight of G. By Theorem 6.4, G has a subgraph
H that is Haj6s constructible from graphs Gi,...,G, € MTSo(p). The
proof of Theorem 6.4 shows that each G; (1 <i < m) is of order at most n,
and that we may also assume that all nonzero edge-weights in G; are greater
or equal to a. If ¢ < a (which we assume), then this implies that every G;
is a complete multipartite graph.

Let Vi,...,V; be the partite sets of GG;. The e-triangular inequality
applied to triples u,v,u’ and u/,v’, v, respectively, implies that the weights
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of any two edges uv, u'v' joining V, and Vj, (1 < a < b < r) do not differ too
much:
|am, - aufvf| S 2¢. (2)

Let K; be the induced complete subgraph of GG; obtained by taking one
vertex from each partite class of G;. Then (2) easily implies that

Xc(Ki) > XC(Gi) —2ne = p — 2ne. (3)

Let K/ be the graph obtained from K; by replacing each edge-weight w by
a(;”—J:r;). Since K; satisfies the e-triangular inequality, it follows that K
satisfies the usual triangular inequality. It is also easy to see that w' < w,
i.e., K] is a subgraph of K;.

Suppose now that ¢ < 7/(2n + p/a). Then the bound (3) implies that

w =

a pe
a—_i_ch(Ki)ZP—%w—EZP—T-

Xc(Kj) >
By multiplying all edge-weights of K| by the constant (p — 7)/x.(K]) < 1,
a subgraph K" of K] is obtained, and K/ € MTSo(p — 7).

Now, consider the constructing sequence for obtaining the subgraph H
of G from G4,..., G, by using Hajds operations. In that sequence, replace
each G; by its subgraph K]'. This gives rise to a constructing sequence for
a subgraph G’ of H and proves the theorem. O

Let us observe that the subgraph G’ in Corollary 6.5 has x.(G') > p—r.

Corollary 6.5 may be viewed as an “approximative” version of the Hajos
theorem. The difficulty of establishing an “exact” version of this result may
be related to the fact that today no nontrivial applications of the Hajos
theorem are known.
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