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Abstract

Let K be a subgraph of G. Suppose that we have a 2-cell embedding of K in
some surface and that for each K-bridge in G one or two simple embeddings in
faces of K are prescribed. A linear time algorithm is presented that either finds
an embedding of G extending the embedding of K in the same surface using only
prescribed embeddings of K-bridges, or finds an obstruction which certifies that
such an extension does not exist. It is described how the obtained obstructions
can be transformed into minimal obstructions in linear time. The geometric and
combinatorial structure of minimal obstructions is also analyzed. At the end we
apply the above algorithm to solve general embedding extension problems where
the embedding of K is a closed 2-cell embedding.

1 Introduction

Let K0 be a fixed graph together with a fixed 2-cell embedding in some (closed) surface.
Let G be a graph containing a subgraph K homeomorphic to K0. The embedding of
K0 and the homeomorphism K → K0 determine a 2-cell embedding of K. Embedding
extension problem asks if it is possible to extend the embedding of K to an embedding Embedding

extension problemof G. A subgraph Ω of G−E(K) is an obstruction (for embedding extensions of K to G)
obstructionif there is no embedding of K ∪Ω extending the embedding of K. Almost all embedding

extension problems can be, roughly speaking, reduced to a number of some special
embedding extension subproblems in which for every K-bridge in G, at most two of the
possible simple embeddings in faces ofK are allowed. (Definitions of the undefined terms
are given in the sequel.) Such an embedding extension problem is said to be 2-restricted . 2-restricted

Even though this special problem looks rather simple, possible obstructions may have
∗Supported in part by the Ministry of Science and Technology of Slovenia, Research Project J1–7036.
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quite complicated structure. It is the purpose of this paper to exhibit and analyze
this structure. After some computational preliminaries which are discussed in Section
2, embedding extension problems and related notions are introduced in Section 3. In
Section 4, a linear time algorithm for solving 2-restricted embedding extension problems
(with some additional properties) is described. The algorithm either finds an admissible
embedding extension, or returns an obstruction for such embedding extensions. When
solving special cases of cylinder and Möbius band embedding extension problems [M2,
JM], a special “millipede” structure of obstructions was observed. In Sections 5, 6,
and 7 we introduce general millipedes and show that every minimal obstruction can be millipedes

written as the union of a bounded number ofK-bridges together with a bounded number
of pairwise disjoint millipedes, where the bounds depend only on K0 . This enables us to
transform obtained obstructions into minimal obstructions in linear time. Let us remark
that minimal obstructions can be arbitrarily large. In Section 8 we use the millipede
structure of obstructions to perform an operation called compression. This operation compression

“slightly” changes the subgraph K such that under the embedding extension problem
with respect to the new subgraph, an obstruction with a bounded number of branches
exists. In our linear time estimates it is crucial that K is homeomorphic to the fixed
graph K0 since the constant factors in these estimates heavily depend on the number of
edges of K0. Section 9 presents a typical application of our results. It is shown how to
extend closed 2-cell embeddings of graphs in linear time.

Results of this paper play a fundamental role in solving more general embedding
extension problems, from the algorithmic and theoretical point of view; see, e.g., [JMM2,
JMM3, M4]. In particular, our results are extensively used in the design of a linear
time algorithm to construct embeddings of graphs in an arbitrary (fixed) surface [M4],
generalizing the well-known Hopcroft-Tarjan algorithm [HT] for testing planarity in
linear time.

2 Computational preliminaries

In our algorithms, we consider embeddings of graphs. In case of orientable surfaces, 2-
cell embeddings can be described combinatorially [GT] by specifying a rotation system: rotation system

for each vertex v of the graph G we have a cyclic permutation πv of its incident edges,
representing their circular order around v on the surface. To describe embeddings in
non-orientable surfaces we need another information, a function λ : E(G) → {1,−1},
called a signature (cf. [GT] for details). However, signatures are really needed only to signature

present a 2-cell embedding of K, while the embeddings of K-bridges in particular faces
of K can be encoded by specifying only corresponding rotation systems. In order to
make a clear presentation of our algorithm, we have decided to use this description only
implicitly. Whenever we say that we have an embedding, we mean such a combinatorial
description.

Concerning the time complexity of our algorithms, we assume a random-access ma-
chine (RAM) model with unit cost for basic operations. This model was introduced by
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Cook and Reckhow [CR] and used in [HT] to describe a linear time planarity testing al-
gorithm. More precisely, our model is the unit-cost RAM where operations on integers, unit-cost

whose value is O(n), need only constant time (where n is the size of the given graph).
We will also need the following simulation of parallelism performed on a unit-cost

RAM. At certain steps of our algorithm we will not be able to decide in advance between
two possible choices. In such a case we will continue computations simultaneously in
both directions. This will enable us to efficiently choose between the two alternatives.
During such parallel computations no new parallelism will be introduced.

Denote by P1 and P2 both parallel processes. During the parallel computation
exactly one of the following three cases will occur:

(i) The process P1 terminates successfully . This means that at the beginning of the successfully

parallelism the decision for P1 would be the right one. In this case, we say that
the parallel computation terminates successfully . In this case we stop P2 (if still successfully

active) and restore the memory to the state before starting parallelism, choose the
alternative P1 as the proper one and continue with (non-parallel) computation
from this point on.

(ii) If P2 terminates successfully, then we act as in the previous case, except that we
stop P1 and choose the second alternative as the right one.

(iii) If none of P1,P2 terminates successfully, then the parallel computation is said to
terminate non-successfully . non-successfully

If one of the processes fails, we still continue to run the remaining one. If it succeeds,
case (i) or (ii) occurs; if also the other process fails, we have case (iii).

In our application of parallelism, the processes P1 and P2 will try to extend a partial
embedding of a graph in two different ways. If appropriate embedding extension is found
by one of them, this process will be termed as successful. Otherwise an obstruction for a
particular type of embedding extension problem will be found. In case (iii) the “union”
of both obstructions will give rise to a more general obstruction.

It is explained in [JM] how the memory management and other details are to be
handled in order that parallelism increases the overall time complexity only by a constant
factor.

3 (2-restricted) embedding extension problems

Our approach to embedding extension problems is based on the concept of a bridge.
Let K be a subgraph of a simple graph G. A K-bridge B in G is a subgraph of G K-bridge

which is either an edge uv ∈ E(G) \ E(K) (together with its endpoints) such that
u, v ∈ V (K), or it is a connected component B◦ of G − V (K) together with all edges
(and their endpoints) between B◦ and K. The vertices of V (B)∩V (K) are the vertices
of attachment (simply attachments) of B. vertices of attach-

ment
attachments

A vertex of K of degree in K different from 2 is a main vertex (or a branched vertex )

main vertex
branched vertex3



of K. A closed branch of K is any path (possibly a closed path) in K whose endpoints

closed branch

are main vertices but no internal vertex on this path is a main vertex. A branch without
its endpoints is an (open) branch. Main vertices and open branches of K are also called (open) branch

basic pieces of K. Note that K is a disjoint union of its basic pieces. Every set T 
= ∅ basic pieces

of basic pieces of K is called a (combinatorial) type. (combinatorial) type

A K-bridge B is local (on e) if there is a closed branch e of K such that all attach- local

ments of B are on e. For a K-bridge B, denote by T = type(B) the set of all basic
pieces of K that B is attached to. We say that B is of type T . If |T | > 2, then B is type

strongly attached to K. strongly attached

Suppose thatK is 2-cell embedded in some surface. Let F be a face of the embedding
and T a (combinatorial) type. An embedding scheme δ for T in the face F (δ) = F is a embedding scheme

set of appearances of basic pieces from T on ∂F such that each basic piece from T is
selected at least once. If each basic piece is selected exactly once, then δ is simple. simple

Let δ be an embedding scheme for the type T . An embedding of a K-bridge B of
type T in F (δ) is δ-compatible if the embedding uses only appearances of basic pieces δ-compatible

from δ. We also say that B is δ-embedded . An embedding of B in F is simple if it is δ-embedded
simpleδ-compatible for some simple embedding scheme δ.

Embedding schemes δ1 and δ2 overlap if F (δ1) = F (δ2) and either they share three overlap

or more appearances of basic pieces or they contain pairs of appearances of basic pieces
that interlace on ∂F (δ1). Schemes δ1 and δ2 are independent if either F (δ1) 
= F (δ2) or independent

F (δ1) = F (δ2) and ∂F (δ1) contains appearances x, y of main vertices of K such that δ1
and δ2 use distinct segments of ∂F (δ1) from x to y (possibly both including x and/or
y). Note that there are pairs of embedding schemes that are neither independent nor
overlapping.

For every K-bridge B in G, let us choose a non-empty set of simple embedding
schemes D(B) for type(B). A (simple) embedding extension problem (shortly EEP) is a (simple) embedding

extension problemquadruple Ξ = (G,K,Π,D), where K is a subgraph of G, Π is (a combinatorial descrip-
tion of) a 2-cell embedding of K in some surface, and D = {D(B) | B a K-bridge in G}.
Embedding schemes from D(B) are called admissible embedding schemes for B. Em- admissible

embedding schemesbeddings of B that are compatible with some admissible embedding scheme are called
admissible embeddings. admissible

embeddingsA solution for Ξ is an embedding of G extending the embedding Π of K (to an
solutionembedding of G in the same surface) such that under this embedding, each K-bridge B

is δ-embedded for some δ ∈ D(B). An obstruction for Ξ is a set Ω of K-bridges with the obstruction

property that the EEP (K ∪Ω,K,Π,D′), where D′ = {D(B) | B ∈ Ω}, has no solution.
An obstruction Ω is minimal , if no bridge from Ω is redundant, i.e., for each B ∈ Ω, minimal

Ω\{B} is not an obstruction.
The EEP Ξ is 2-restricted (shortly 2-EEP) if for every bridge B in G, we have 2-restricted

|D(B)| ≤ 2. A bridge that has only one admissible embedding scheme is called 1-
embeddable (or uniquely embeddable). A bridge B is 3

2-embeddable if F (δ1) = F (δ2) 1-embeddable
uniquely
embeddable
3
2
-embeddable

(where D(B) = {δ1, δ2} and δ1 
= δ2) and there exists a basic piece x of K such that
both, δ1 and δ2, contain the same appearance of x. In such a case, x is called the base

base
of the 3

2 -embeddable bridge B.
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From now on we will restrict ourselves to 2-EEPs. We will assume that Ξ has
some additional properties that are discussed in the sequel. These properties, although
primarily of a technical nature, will considerably simplify the description of an efficient
algorithm for solving 2-EEPs and the analysis of obstructions.

Firstly, we require that Ξ has the following property:

(P1) For every pair B′, B′′ of bridges of the same type we have:

D(B′) ⊆ D(B′′) or D(B′′) ⊆ D(B′) or D(B′) ∩ D(B′′) = ∅ .

Choose a type T and let B(T ) be the set of all K-bridges in G of type T . By (P1), the
following defines an equivalence relation in B(T ):

B′ ∼ B′′ def⇐⇒ ∃B ∈ B(T ) : D(B′) ∪ D(B′′) ⊆ D(B) .
The equivalence classes of ∼ are called clusters ofG (with respect to Ξ). By construction, clusters

each cluster C is associated with a type T = type(C) and with (one or) two admissible
embedding schemes for type(C). These schemes are denoted by δ1(C) and δ2(C). If
there is only one admissible scheme for C, δ2(C) is undefined. For a bridge B ∈ C and
� ∈ {1, 2}, we denote by B[�] a δ�(C)-embedding of B.

Next, we assume that Ξ satisfies:

(P2) For every K-bridge B and every δ ∈ D(B), B can be δ-embedded.

(P3) There are no local K-bridges in G.

Let us briefly comment on the above properties. Since the admissible embedding schemes
are simple, it is easy to check in linear time by planarity testing whether B can be
δ-embedded. Therefore (P2) can be guaranteed in linear time by appropriate prepro-
cessing. In applications, (P3) can be achieved in linear time by using the results from
[JMM1].

Given a subgraph H of G, the number of branches of H, denoted by bsize(H), is
called the branch size of H. In solving 2-EEPs, results of [M3] enable us to perform a branch size

linear time preprocessing and henceforth assume that Ξ has also the following property:

(P4) For everyK-bridgeB, bsize(B) is bounded by a constant (depending on |type(B)|).
Let us remark that it is crucial for this reduction that all admissible embedding schemes
are simple.

Additionally, the following two technical assumptions will be helpful:

(P5) For every pair x, y ∈ V (K) of vertices each cluster contains at most one bridge
that is attached to K only at x and y.

(P6) Each cluster contains at most two strongly attached K-bridges.

Note that if there is a cluster that contains more than two strongly attached bridges,
then any three of these bridges form an obstruction for Ξ.

5



4 A linear time algorithm

In this section, a linear time algorithm for solving 2-EEPs is presented.

Theorem 4.1 There exists an algorithm that, given a 2-EEP Ξ = (G,K,Π,D) with the
properties (P1)–(P6), either finds a solution of Ξ, or returns an obstruction for Ξ. The
time complexity of the algorithm is O(κ · |E(G)|) where κ depends only on bsize(K).

The rest of the section is devoted to the proof of Theorem 4.1. In the description of
the algorithm we will use oriented basic pieces of K. If e is a branch, it is homeomorphic oriented basic pieces

to the open interval (0, 1), and any orientation of (0, 1) determines an orientation of e. orientation

If x is a main vertex of K, then we associate x with two virtual edges forming an open
path P with the middle vertex x. Now, orientations of x correspond to the orientations
of P . If K is embedded and we are considering an appearance of x on the boundary of
a face F , then the two virtual edges can be identified with the two edges that precede
and follow, respectively, the appearance of x in the facial walk of F .

Let ε be an oriented basic piece. By type(ε) we denote the basic piece whose ori-
entation is given by ε. Suppose that e = type(ε). Its first edge (with respect to ε) is
denoted by left(ε). Similarly, the last edge is denoted by right(ε). (If e is a main vertex,
then left(ε) and right(ε) are the virtual edges of e.) The orientation of ε gives rise to
a linear ordering of vertices (and edges) of e. For u, v ∈ V (e), we write u < v, if u is
closer to left(ε) than v. We also say that u precedes v on ε. Analogously, u ≤ v, if u < v precedes

or u = v. The set (u, v) = {w ∈ V (e) | u < w < v} is called an open segment of e. open segment

Segments (u, v], [u, v), and [u, v] are defined similarly.
For an oriented basic piece ε, we denote by ε the orientation of type(ε) that is

opposite to ε. In particular, left(ε) = right(ε), and conversely. Let B be a bridge that
is attached to ε. By ε(B) we denote the first attachment of B on ε. Then ε(B) is the
last attachment of B on ε.

Let C be a cluster and let ε be an oriented basic piece such that type(ε) ∈ type(C).
In our algorithm, we will have three variables α(C, ε), β1(C, ε), and β2(C, ε). The value
of each of them is either a vertex of ε, or one of left(ε), right(ε). Their interpretation in
our algorithm is as follows:

(a) If u = α(C, ε), then all bridges B from C that have an attachment on ε strictly
before u have already been considered by the algorithm, one of their admissible
embeddings has been chosen, and all restrictions to embeddings of other bridges
that are imposed by the chosen embedding have been discovered and used in
updating the corresponding values of β1’s and β2’s. Such bridges B will be called
already embedded . Moreover, no two already embedded bridges (possibly from already embedded

different clusters) interfere with each other, i.e., all the chosen embeddings can be
realized simultaneously.

(b) β1(C, ε) is a vertex of ε satisfying the following requirement. Each bridge of C that
has an attachment on [α(C, ε), β1(C, ε)) is either already embedded, or its δ1(C)-
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embedding is obstructed by some of the already embedded bridges (from the same
or from some other clusters). If there is no such vertex, then β1(C, ε) = right(ε).

(c) β2(C, ε) is defined analogously except that δ1(C)-embeddings are replaced by δ2(C)-
embeddings. If bridges from C are 1-embeddable, then we set β2(C, ε) = β1(C, ε).

Let C be a cluster of weakly attached bridges with type(C) = {e, f}. Denote by δ1, δ2
the admissible embedding schemes for C. Suppose that ε is an orientation of e. Then ε
induces an orientation φi of f through F (δi) by the following requirement: under every
δi-embedding of a bridge B ∈ C the appearances left(ε) and left(φi) lie on the boundary
of the same subface of F (δi). We say that φi is induced by ε and δi. We define two induced

doubly linked lists S1 = S(C, ε, δ1) and S2 = S(C, ε, δ2). Each list Si (i ∈ {1, 2}) contains
all bridges from C. Their order in Si is consistent with the following requirements:

(S1) If ε(Q) < ε(R), then Q precedes R in Si.

(S2) If ε(Q) = ε(R) and φi(Q) < φi(R), then Q precedes R in Si.

(S3) If ε(Q) = ε(R), φi(Q) = φi(R), and Q is attached only to ε(Q) and to φi(Q), while
R has at least three vertices of attachment, then Q precedes R in Si.

If a pair of bridges from C does not fit any of (S1), (S2), or (S3), then their mutual order
in Si is arbitrary. It is easy to see that there always exists a linear ordering of bridges
from C that is consistent with the above requirements.

It is important to observe that, if a set of bridges from C is δi-embedded, then their
order determined by the embedding (and by the choice of ε) is the same as their order
in S(C, ε, δi) and in S(C, φi, δi). Note that this property holds only if (P5) is fulfilled.

Let us now describe how to build the lists S(C, ε, δi) in linear time. Let e = type(ε).
Denote by v1, v2, . . . , vk the vertices of e in the order as determined by ε. The list
S(C, ε, δi) will be obtained as a concatenation of lists Sj = Sj(C, ε, δi), 1 ≤ j ≤ k, where
each Sj links all bridges B ∈ C with ε(B) = vj in the order respecting (S2) and (S3).
The lists Sj are constructed simultaneously by the following algorithm:

Sj := ∅, j = 1, . . . , k
for all u ∈ V (f) do

{ The vertices u are taken in order as they appear on
f according to the orientation φi. }

for all B ∈ C with φi(B) = u do
if B is attached only to two vertices then
add B at the end of Sj, where vj = ε(B)

endfor
for all B ∈ C with φi(B) = u do

if B is attached to three or more vertices then
add B at the end of Sj, where vj = ε(B)

endfor
endfor
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Concatenate S1, . . . , Sk into S(C, ε, δi).
It is easy to implement the traversals in the above algorithm so that the overall

time spent by the algorithm is linear. Note that the double traversal of bridges with
φi(B) = u assures that (S3) will be fulfilled. Condition (S2) is satisfied at the end
since the traversal of the “opposite” branch f is performed in the direction imposed
by φi. Clearly, (S1) is guaranteed by the use of sublists Sj and their concatenation at
the end. In the main algorithm, these lists are used to efficiently check simultaneous
δi-embeddability of those bridges from C that have an attachment in the chosen segment
of ε and φi.

To unify the presentation of the main algorithm, we may assume that the lists
S(C, ε, δi) are built also for clusters with |type(C)| > 2 since such clusters contain at
most two bridges.

To be able to remove bridges from the lists in constant time, for every bridge B ∈ C
a list of pointers to its appearances in the lists S(C, ε, δi) is also maintained.

We are now ready to discuss the main part of the algorithm. Denote by B the
set of all K-bridges in G. Roughly speaking, the algorithm Extend is based on the
following idea. Suppose that a subset of bridges B′ ⊆ B is already embedded. Their
presence within faces of K blocks some admissible embeddings of the remaining bridges.
If there is a bridge that has no admissible embedding left, then we are done. Otherwise,
some of the remaining bridges can be embedded in one way only. We say that these
bridges are forced to have the remaining embedding. By fixing that embedding and forced

adding these bridges to B′, we obtain additional bridges with at most one admissible
embedding. By repeating this procedure, we either get stuck (which proves that no
embedding extension exists with the initial B′ embedded as given), or no more bridges
are blocked by the chosen embedding of B′. In the latter case, it is clear that the bridges
in B′ can be left embedded as they are without obstructing any admissible embeddings
of the remaining bridges. The procedure described above is called Forcing.

It is easy to implement the above idea in quadratic time. To realize it in linear time
much more sophisticated approach is needed. Let us now discuss some details needed
for efficient implementation of algorithm Extend. At the very beginning, we select an
arbitrary non-empty cluster C0 and a bridge B0 ∈ C0 which is initial in some of the lists
S(C0, ε0, δ). (The choice of B0 as the initial bridge in one of the lists is helpful but not
necessary.) Then we start two parallel processes: the first one starts with B0[1], while
the second one tries to extend B0[2]. (If B0 is 1-embeddable, then parallelism is not
needed). The details how to perform such parallel computations without increasing the
overall time complexity are described in Section 2. Each of the two parallel processes
either finds an admissible embedding for a set of bridges which does not interfere with
any admissible embedding of the remaining bridges (successful termination), or it gets successful

stuck (non-successful termination). It has been described in Section 2 how the two non-successful

parallel processes react if one or the other stops successfully. The parallel computation
is successful if at least one of the two parallel processes stops successfully. Otherwise, it successful

is non-successful . non-successful
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The lists S(C, ε, δ) are updated during the algorithm by removing the already em-
bedded bridges. We also use bridges B(C, ε, δ). They are needed only for efficient
construction of obstructions and their use is described in more details in the next sec-
tion. We denote by B the set of bridges that have not yet been embedded. The main
part of the algorithm is the following:

algorithm Extend
Determine all lists S(C, ε, δ).
Initialize auxiliary variables for parallel computations.
for every pair (C, ε) do
Let α(C, ε) = β1(C, ε) = β2(C, ε) be the initial vertex of ε.

endfor
while B 
= ∅ do
Select C0 and the initial bridge B0 ∈ C0.
Split C0 with respect to B0.
{ Parallel part follows. }
for every admissible embedding δ0 ∈ D(B0) do in parallel
Embed B0 compatibly with δ0.
for every pair (C, ε) do
Update the values of βi(C, ε), B(C, ε, δi(C)), i = 1, 2.

endfor
Forcing

end parallel for
{ Parallel part is finished. }
if not successful then Return(obstruction)

endwhile
{ If we reach this point, all bridges have been embedded. }
Return(solution)

Before the algorithm enters the parallel part, a splitting of the chosen cluster C0

with respect to the bridge B0 occurs. The bridge B0 is chosen so that it is the first
bridge in one of the lists S(C0, ε0, δi(C0)). If B0 is strongly attached or if it is also
the first bridge in some list S(C0, ε

′, δ3−i(C0)), then the splitting of a cluster is trivial,
i.e., the cluster C0 remains unchanged. Otherwise C0 is split as follows. We introduce
two additional (sub)clusters C′

0 and C′′
0 . The cluster C′

0 contains those bridges from C0

that are attached to ε0 only at ε0(B0), while the cluster C′′
0 contains those bridges from

C0 that are attached to ε0 at ε0(B0) and also in some other vertex. Bridges from C0

that are not attached to ε0(B0) remain in C0. Admissible embedding schemes remain
unchanged. The distribution of bridges from C0 among C0, C′

0, and C′′
0 is therefore the

same as obtained if we would consider ε0(B0) as a main vertex of K. Observe that if
there are more than two bridges in C′′

0, then any three of them form a small obstruction
for Ξ. By traversing the initial part of S(C0, ε0, δi(C0)) it is easy to implement the
above splitting (and the initialization of the required auxiliary variables) in time that
is proportional to the number of bridges in C ′

0 ∪ C′′
0. It may happen that in the current

iteration of the loop while, only a part of the bridges from C ′
0∪C′′0 is embedded. Since a
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splitting of a new cluster prior to the next iteration can increase the time complexity, we
always choose as the initial cluster C0 one of the subclusters C′

0, C′′
0 if they are not empty.

This assures that all bridges from C′
0 ∪C′′

0 are embedded before another splitting occurs.
Hence, the overall time spent by the algorithm on splitting of clusters is proportional to
the number of embedded bridges. Splitting of clusters therefore does not increase the
overall time complexity.

The splitting of a cluster assures that B0 is also the first bridge in some of the lists for
the embedding scheme δ3−i. This property is used when updating the values of βi(C, ε)
(i = 1, 2).

The chosen embedding of B0 is used to start the procedure Forcing that is described
below:

procedure Forcing
{ Some bridges are already embedded. They block some embeddings of
the remaining bridges. A bridge B ∈ C that is not yet embedded and is
attached to a segment [α(C, ε), βi(C, ε)) must be δ3−i-embedded. }
while ∃(C, ε) such that α(C, ε) 
= β1(C, ε) or α(C, ε) 
= β2(C, ε) do

if α(C, ε) 
= β1(C, ε) and α(C, ε) 
= β2(C, ε) then
β := min{β1(C, ε), β2(C, ε)} (with respect to orientation ε)
if ∃B ∈ B ∩ C attached to [α(C, ε), β) then Stop(not successful)
α(C, ε) := β

endif
if α(C, ε) 
= β1(C, ε) then i := 1 else i := 2 endif
Bi := all bridges in B ∩ C attached to [α(C, ε), βi(C, ε))
if Bi 
= ∅ then
Embed Bi compatibly with δ3−i(C).
if no embedding exists then Stop(not successful)
Remove bridges Bi from all lists S(C, ε′, δ) in which they occur.
for every pair (C′, ε′): (C′, ε′) 
= (C, ε) do
Update the values of βj(C′, ε′) and B(C′, ε′, δj(C ′)), j = 1, 2.

endfor
B := B \ Bi

endif
α(C, ε) := βi(C, ε)
β3−i(C, ε) := βi(C, ε)

endwhile
Stop(successful)

end {Forcing}
As far as the algorithm is concerned, the choice of pairs (C, ε) in the main loop

of Forcing is arbitrary if there are several candidates. However, to achieve certain
additional properties of obtained obstructions, we initially choose a linear ordering of
all possible pairs (C, ε). At each iteration, we search for candidates (C, ε) cyclically in
the chosen order from the point where we stopped previously. This assumption will

10



be used in the process of minimizing the obtained obstruction in Sections 5–7. An
implementation of Algorithm Extend that uses such a selection scheme for choosing
pairs (C, ε) is called a BF-implementation of Algorithm Extend. BF-implementation

The search for B ∈ B ∩ C that is attached to [α(C, ε), β) in the procedure Forcing
can be easily performed by advancing through the list S(C, ε, δ1) or S(C, ε, δ2). Similarly,
the construction of the set Bi and the testing for the simultaneous δ3−i-embeddability of
Bi can be implemented by moving along the list S(C, ε, δi) and comparing the extreme
vertices of attachment of bridges with the values of β3−i(C, ε̃) (where type(ε̃) ∈ type(C)).
Bridges that become embedded are removed from all the lists S(C, ε′, δ), from B and
also from the cluster C.

It remains to explain how to update the values of βi(C, ε) and B(C, ε, δi), (i = 1, 2).
Let us first describe how to do that at the very beginning of the parallel part. The
parallel part of algorithm Extend starts with a δ0-embedding of the bridge B0 ∈ C0.
Splitting of the cluster C0 guarantees that there is an oriented basic piece ε0 such that
B0 is the initial bridge in S(C0, ε0, δ0). Given C, ε such that type(ε) ∈ type(C), and
i ∈ {1, 2}, we change the value of βi(C, ε) according to one of the following cases:

(a) If δ0 and δi(C) are independent, then we leave βi(C, ε) unchanged.
(b) If δ0 and δi(C) overlap, then we set βi(C, ε) = right(ε).
(c) Suppose that C 
= C0 and that δ0, δ := δi(C) neither overlap nor are independent.

Then F0 := F (δ0) = F (δ) and δ0 and δ share an appearance of an open branch
(or two) on ∂F0. The embedding of B0 dissects ∂F0 in several closed segments.
Since δ0 and δ do not overlap, one of these segments contains (parts of) all the
appearances from δ. Denote this segment by S. If type(ε) is a main vertex or
the appearance of ε in δ does not appear in δ0, we leave βi(C, ε) unchanged. If
left(ε) ∈ S, then we also leave βi(C, ε) unchanged. On the other hand, if left(ε) 
∈ S,
we set βi(C, ε) = ε(B0).

(d) It remains to consider the case when C = C0 and cases (a), (b) do not apply.
If |type(C)| > 2, then we apply exactly the same procedure as in (c). Suppose
now that type(C) = {e, f}. Excluding (a), at least one of e, f is an open branch.
Since the cases when e or f is a main vertex behave like a special case of the
possibility when e, f are both open branches, the latter is assumed henceforth.
We distinguish two possibilities:

(d1) Suppose that δ0 = δ. Since B0 is the first bridge in S(C0, ε0, δ0), we set
βi(C, ε) = ε(B0) if ε ∈ {ε0, φi} (where φi is induced by ε0 and δi(C)). Oth-
erwise, we leave the value of βi(C, ε) unchanged. This case is illustrated in
Figure 1. The changes of βi(C, ε) are represented by bold segments which
show that δ-embeddings of any bridge from cluster C attached to a vertex
inside these segments is blocked by B0.
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Figure 1: Case (d1)
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Figure 2: Case (d2)

(d2) The remaining possibility is when δ0 
= δ. Since we have excluded cases
(a) and (b), we have F0 := F (δ0) = F (δ). Moreover, δ0 and δ use the
same appearance of exactly one of e and f on ∂F0. We may assume that
type(ε0) = e. All four possible positions for the appearances of e, f on ∂F0

that are used by δ0 and δ are shown in Figure 2. Bridges from C that are
attached to bold segments have blocked their δ-embeddings by the chosen
embedding of B0. This determines the change of βi(C, ε). For example,
Figure 2(i) represents the case when βi(C, ε0) is set to ε0(B0). In Figure
2(ii) we change βi(C, ε0) to ε0(B0). In these two cases, δ0 and δ share an
appearance e. In other two cases, different occurrences of e are used by δ0
and δ. Note that in none of the above possibilities we need to know that B0

is the initial bridge in S(C0, ε0, δ0).

In all the cases when we change βi(C, ε), we also set B(C, ε, δi(C)) to B0.
To update the values of βj(C ′, ε′) and B(C′, ε′, δj(C ′)) in procedure Forcing we use

the same method as described above. More precisely, if Bi contains just one bridge, then
this bridge takes over the role of B0. Otherwise, bridges of Bi are δ3−i(C)-embedded
“parallel” to each other and we can speak of the leftmost bridge B′

0 and the rightmost
bridge B′′

0 from Bi. In updating we use the bridge B0 or each of bridges B′
0 and B

′′
0 . The

difference from the initial part is that the proposed change of βj(C ′, ε′) takes place only if
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the new value is more restrictive than the current value (and if B′
0, B

′′
0 give different new

values, we select the more restrictive one). When we change βj(C′, ε′) we also update
B(C′, ε′, δj(C′)) to be the bridge B0 (B′

0 or B
′′
0 ) that caused this change. Since Bi always

contains the initial bridges from S(C, ε, δ1(C)) and also from S(C, ε, δ2(C)), a splitting of
clusters is not needed in Forcing.

5 Some combinatorial properties of obstructions

Algorithm Extend can be extended in a relatively simple way so that in case when no
embedding extension exists, it returns an obstruction. In this section we discuss the
structure of resulting obstructions.

Let B be a K-bridge in G. We will write B[1], B[2] and interpret B[�] as “B has the
�th admissible embedding”. If for some other bridge B′ its �′th embedding (�′ ∈ {1, 2})
is obstructed by the �th embedding of the bridge B, then we write B[�]→ B′[¬�′], where
¬x stands for 3 − x. This means that B and B′ cannot simultaneously have their �th
and �′th embedding, respectively. The fact B[�]→ B′[¬�′] will also be expressed as B[�]
overlaps with B′[�′] or B[�] forces B′[¬�′]. overlaps

forcesEach application of procedure Forcing starts with a prescribed embedding, say
B[1], of a bridge B and builds a directed tree rooted at B[1] and with all edges directed
away from B[1]. The tree structure is determined by the bridges B(C, ε, δ) and describes
overlappings of bridges as discovered by the procedure. A path from the root to a vertex
B′[�] proves that B′ must use the �th embedding if the initial bridge B is embedded as
chosen. Obviously, each bridge appears at most once as a vertex in the tree.

Obstructions produced by Algorithm Extend when no admissible embedding ex-
tension is found, are composed of one or two parts, depending on whether the initial
bridge B1 has one or two admissible embeddings. If there are two parts, they start with
different embeddings of B1 and each embedding leads to a chain of overlappings showing
that the embedding extension of K to G (using only admissible embeddings) with B1

embedded as chosen does not exist. For each part there are two possibilities why such
a contradiction occurs. The first possibility is that there is a 1-embeddable bridge Bs

which is forced to be embedded in a non-admissible way. In such a case, we have a
forcing chain forcing chain

B1[�1]→ B2[�2]→ . . . → Bs−1[�s−1]→ Bs[�s] , (FC)

where Bs[¬�s] is the only admissible embedding of Bs. Note that all bridges Bj (1 ≤
j ≤ s) are distinct.

The second possibility is more complicated. In this case B1[�1] forces embeddings
B′

s′ [�
′
s′ ] and B′′

s′′ [�
′′
s′′ ] (along two forcing chains) that pairwise exclude each other, i.e.,

B′
s′ [�

′
s′ ] → B′′

s′′ [¬�′′s′′ ] or equivalently B′′
s′′ [�

′′
s′′ ] → B′

s′ [¬�′s′ ]. In this case, embeddings
B′

s′ [�
′
s′ ] and B

′′
s′′ [�

′′
s′′ ] are admissible. Since the two forcing chains have a common begin-

ning, we have the following (branched) forcing chain: (branched) forcing
chain
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B′
1[�

′
1]→ . . . → B′

s′ [�
′
s′ ]

↗
B1[�1]→ . . . → Bs[�s] (BFC)

↘
B′′

1 [�
′′
1]→ . . . → B′′

s′′ [�
′′
s′′ ]

Observe that also in this case all bridges are distinct.
Next we show that it can be achieved that the number of 1-embeddable bridges in

an obstruction is at most two.

Lemma 5.1 Let Ω be an obstruction for a 2-EEP Ξ. Then Ω contains a subset Ω′

that is also an obstruction for Ξ such that Ω′ has at most two 1-embeddable bridges.
Moreover, Ω′ can be found in linear time.

Proof. Suppose that Ω contains a 1-embeddable bridgeB1. Run (a BF-implementation)
of Algorithm Extend starting with B1 and let R be the obtained forcing chain. (We
may assume that Ω was obtained by Algorithm Extend. Then it is easy to check that
R starts with B1.) Suppose that R contains at least two 1-embeddable bridges. If R
is of the form (FC), then the subchain from the last but one to the last 1-embeddable
bridge forms an obstruction with two 1-embeddable bridges. If R is of the form (BFC),
let k be the largest index among 1, 2, . . . , s such that Bk is 1-embeddable. Similarly
we define indices k′ (1 ≤ k′ ≤ s′) and k′′ (1 ≤ k′′ ≤ s′′), if they exist. Since B1 is
1-embeddable, Bk always exists. We distinguish three cases. If k′ and k′′ exist, then

B′
k′ [�′k′ ]→ . . . → B′

s′ [�
′
s′ ]→ B′′

s′′ [¬�′′s′′ ]→ . . . → B′′
k′′ [¬�′′k′′ ]

forms an obstruction with two 1-embeddable bridges. If none of k′, k′′ exists, then

B′
1[�

′
1]→ . . . → B′

s′ [�
′
s′ ]

↗
Bk[�k]→ . . . → Bs[�s]

↘
B′′

1 [�
′′
1]→ . . . → B′′

s′′ [�
′′
s′′ ]

is an obstruction with one 1-embeddable bridge. In the remaining case we may assume
that k′ exists and that k′′ does not. Then

Bk[�k]→ . . . → Bs[�s]→ B′′
1 [�

′′
1 ]→ . . . → B′′

s′′ [�
′′
s′′ ]→ B′

s′ [¬�′s′ ]→ . . . → B′
k′ [¬�′k′ ]

is the required obstruction. Since the described changes can easily be accomplished in
linear time, the lemma is proved.

The proof also shows that 1-embeddable bridges appear only at the beginning and
possibly also at the end of the chains. If they do appear, then Ω is composed of a
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single (branched) forcing chain. Let us note that the above changes require at most
one reversal of the original ordering and that a forcing chain of the form (BFC) may be
transformed into a forcing chain of the form (FC).

In Section 4 we assumed that a BF-implementation of procedure Forcing is used.
If we omit this assumption, Algorithm Extend (together with a splitting of a cluster
at the beginning of each parallel process, if necessary) can be used to traverse in linear
time (branched) forcing chains in order that is different than the original one. This
observation will be used in the sequel.

We can view a branched forcing chain of the form (BFC) as an ordinary (unbranched)
forcing chain

B1[�1]→ . . . → Bs[�s]→ B′
1[�

′
1]→ . . . → B′

s′ [�
′
s′ ]→ B′′

s′′ [¬�′′s′′ ]→ . . . → B′′
1 [¬�′′1]

with an additional forcing Bs[�s] → B′′
1 [�

′′
1] that causes a contradiction. The above

observation on the use of Algorithm Extend enables us to perform the above traversal
of the chain in linear time. During the traversal, several possibilities arise. It may happen
that the required simultaneous embedding of bridgesB1, . . . , Bs, B

′
1, . . . , B

′
s′ , B

′′
s′′ , . . . , B

′′
2

can be realized. In such a case we obtain a forcing chain that is of the form (FC)
except that the unique embeddability of the last bridge in the chain is replaced by a
“contradicting” forcing from one of the previously embedded bridges. We say that such
a forcing chain is of the form (FC′). On the other hand, it may happen that the traversal
stops at B′′

j , where j > 1. (Note that by construction, the bridges B1, . . . , Bs, B
′
1, . . . , B

′
s′

can be simultaneously embedded as required.) This can happen only if one of the
previous (already embedded) bridges in the chain forces B′′

j [�
′′
j ]. In this case the bridges

B′′
1 , . . . , B

′′
j−1 are redundant and the obtained forcing chain is of the form (FC′) with B′′

j

being the last bridge in the chain yielding a contradiction with some previous bridge.
Similarly, we also traverse forcing chains of the form (FC) and thus achieve that the
simultaneous embedding B1[�1]∪ · · · ∪Bs−1[�s−1] exists. Note that during the traversal,
the form of the chain may change into (FC′).

We say that a forcing chain R = B1[�1] → . . . → Bs[�s] is forward minimal if there forward minimal

are no forcings Bj[�j ] → Bk[�k] for k > j + 1. To achieve in linear time that R is
forward minimal, we apply the procedure Forcing on bridges Bj (1 ≤ j ≤ s) starting
with B1[�1]. If some bridge forces the required embeddings of more than one bridge,
we select as the next bridge the one with the largest index in the chain. For chains of
type (FC) such a selection guarantees forward minimality of the resulting subchains. For
chains of type (FC′) we must take care not to lose the additional forcing Bs[�s]→ B′′

1 [�
′′
1 ].

Let i be the smallest index such that Bi[�i] → Bs[¬�s]. As above, we can achieve that
the subchains of R from B1 to Bi and from Bi to Bs are both forward minimal. Let Bj

(j ≤ i) be the first bridge in the chain that forces some Bk[�k] where k > i. Choose the
index k as large as possible. If j < i, then we replace R by the chain of type (FC′)

B1[�1]→ . . . → Bj[�j ]→ Bk[�k]→ . . . → Bs[�s]→ Bi[¬�i]→ . . . → Bj+1[¬�j+1],

which is forward minimal. The above procedure for making R forward minimal can
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be incorporated in the procedure that changes chains of the form (BFC) into the form
(FC′).

To summarize, so far we have achieved (in linear time) that our obstruction Ω either
consists of a single forcing chain of type (FC) or (FC′) or of two forcing chains of type
(FC′). Furthermore, each forcing chain R = B1[�1] → B2[�2] → . . . → Bs[�s] in Ω has
the following properties:

(Fc0) All bridges Bj (1 ≤ j ≤ s) are distinct and for 2 ≤ j ≤ s−1, Bj has two admissible
embeddings. If Bs is 1-embeddable, then so is B1.

(Fc1) There is no simultaneous embedding of B1 ∪ · · · ∪ Bs where B1 is embedded as
B1[�1].

(Fc2) The simultaneous embedding B1[�1] ∪ · · · ∪Bs−1[�s−1] exists.

(Fm) R is forward minimal.

Let R be a forcing chain of the form (FC′) with the properties (Fc0)–(Fm) and let
r be the smallest index such that Br[�r] → Bs[¬�s]. Let us traverse R in the following
order:

B1[�1]→ . . . → Br[�r]→ Bs[¬�s]→ Bs−1[¬�s−1]→ . . . → Br+1[¬�r+1] .

Let Bj be the first bridge in the traversal whose embedding cannot be realized simul-
taneously with the chosen embeddings of the previous bridges (according to the order
from the traversal). Note that such a bridge always exists by (Fc1), and that j > r
because of (Fc2). If j = r + 1, then R has the following property:

(Fc3) The simultaneous embedding B1[�1]∪ · · · ∪Br[�r]∪Bs[¬�s]∪ · · · ∪Br+2[¬�r+2] can
be realized (where r is the smallest index such that Br[�r]→ Bs[¬�s]).

Suppose now that j > r + 1. We claim that the forcing chain R′, defined as

B1[�1]→ . . . → Br[�r]→ Bs[¬�s]→ . . . → Bj [¬�j] ,

satisfies (Fm), (Fc0)–(Fc2) and also (Fc3). Obviously, R′ fulfils (Fc0). By the defini-
tion of Bj, it also satisfies (Fc1) and (Fc2). Since R satisfies (Fm), (Fc2), and Br is
the first bridge in R that forces Bs[¬�s], R′ is also forward minimal. It remains to check
that R′ satisfies (Fc3). Let Bk be the first bridge in R′, such that Bk embedded as in
R′ forces Bj[�j ]. Since R is forward minimal and j > r + 1, we have j + 1 ≤ k ≤ s. It
remains to check that the simultaneous embedding

B1[�1] ∪ · · · ∪Br[�r] ∪Bs[¬�s] ∪ · · · ∪Bk[¬�k] ∪Bj [�j] ∪ · · · ∪Bk−2[�k−2]

can be realized whenever k ≥ j+2. Let B1 = {Bi | 1 ≤ i ≤ r}, B2 = {Bi | j ≤ i ≤ k−2},
and B3 = {Bi | k ≤ i ≤ s}. By (Fc2), B1 ∪ B2 can be simultaneously embedded as
required. Also, B1 ∪ B3 can be simultaneously embedded as checked by the traversal.
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Since R′ is forward minimal, there are no overlappings among embeddings of bridges
from B2 and B3. The claim is thus proved.

If R is of the form (FC), we consider (Fc3) to be equivalent to (Fc2). From now on
we thus assume that the forcing chain(s) of Ω also satisfy (Fc3).

Next we traverse (again in linear time using Algorithm Extend) the subchain

Br[¬�r]→ . . . → B2[¬�2]

of R (where r is defined in (Fc3) or r = s if R is of the form (FC)) to check if R has
the following property:

(Fc4) The simultaneous embedding B2[¬�2] ∪ · · · ∪ Br[¬�r] can be realized. (If R is of
the form (FC), we take r = s.)

Suppose that the traversal stops at Bj[¬�j ]. Consider the forcing chain

R′ = Br[¬�r]→ . . . → Bj [¬�j]

which is of the form (FC′). It is easy to see that R′ has the properties (Fm) and (Fc0)–
(Fc4). If R is of the form (FC), then R′ forms an obstruction. Let us remark that this
obstruction is in fact minimal. Otherwise, R′ forms an obstruction together with the
forcing chain

Br[�r]→ . . . → Bs[�s]

of the form (FC′) that also has the required properties (Fm) and (Fc0)–(Fc4). (Note
that for the latter chain, (Fc4) is trivial by the choice of r.)

To simplify the proofs in the rest of the paper we shall add an additional assumption
on the EEP Ξ:

(P7) No branch of K appears on the same facial walk of Π twice in the same direction.

This property is always satisfied in orientable embeddings and also in embeddings of K
with minimal Euler genus. In particular, it is satisfied in the main applications of our
algorithms mentioned in the introduction.

e

f fB[1] B[2]

Figure 3: The admissible embeddings of a firmly based 3
2 -embeddable bridge.

Let B be a 3
2 -embeddable bridge with the base e. If B has two or more attachments

on e, we say that B is firmly based (see Figure 3). firmly based
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Lemma 5.2 The number of firmly based 3
2-embeddable bridges in the obstruction Ω for

the 2-EEP Ξ is bounded by a constant which depends only on bsize(K).

Proof. Let R be a forward minimal forcing chain in Ω. Suppose that R contains
two firmly based 3

2 -embeddable bridges B and B′ from the same cluster C and that the
embedding B[�] occurs in R before B′[�′]. If the bridges from C are strongly attached
to K, then C = {B,B′} by (P6). Otherwise, let type(C) = {e, f} where e is the base of
B and B′. Let us first suppose that both, B and B′, appear in R among B2, . . . , Br. If
B[�] and B′[�′] use distinct occurrences of f , then the embedding B[¬�] ∪ B′[¬�′] does
not exist, a contradiction with (Fc4). So, B[�] and B′[�′] use the same occurrence of
f . By (P7) and (Fc4), the union B ∪ B′ has only one attachment x on f . Let B′′ be
the bridge in R that forces B. Since R is forward minimal, B′′ ∈ C and it is attached
to f only at x, while its attachments on e are between the attachments of B and B′.
Consequently, every bridge in R which forces the embedding of B′′ also forces B[�].
Therefore, B′′ must be the first bridge in R. The same arguments, except that (Fc3) is
used instead of (Fc4), imply that among the bridges Bi (r+ 2 ≤ i < s) of R there is at
most one firmly based bridge from C. This completes the proof.

In the sequel we shall achieve that for each firmly based 3
2 -embeddable bridge B in Ω

with oriented base branch ε, at most six bridges that are not 3
2 -embeddable are attached

to the segment S = (ε(B), ε(B)).
Let us first assume that Ω is composed of a single forcing chain R. Denote by

B be the set of bridges from R that are neither 1-embeddable nor 3
2 -embeddable and

that are attached to S. Let Bi ∈ B. Property (Fc2) implies that B[�] → Bi[�i] for
� = 1, 2 if B 
= Bs. Suppose first that R is of the form (FC). Because of (Fc4), B has a
simultaneous embedding with Bi[¬�i], a contradiction. Therefore B = ∅. If R is of the
form (FC′), the proof is more complicated. The first subcase is when B 
= Br+1, Bs. By
(Fc2) and (Fc3), i 
∈ {r + 2, r + 3, . . . , s − 1}. Assume that B ∩ {B2, . . . , Br} 
= ∅. Let
j (2 ≤ j ≤ r) be the largest index such that Bj ∈ B. Since B[�]→ Bj [�j], � = 1, 2, the
bridges B1, . . . , Bj−1 in Ω can be replaced by B. After that, only Bj , Br+1, and Bs may
be attached to S. (Now we have changed Ω, and we repeat the previous reductions in
order to achieve (Fc0)–(Fc4) and (Fm).) The last case to consider is when B = Br+1

or B = Bs. By symmetry we may assume that B = Bs. Since R satisfies (Fm) and
(Fc3), the only bridge Bi (r + 1 < i < s) that might be in the set B is Bs−1. If
s > r + 1, let j be the largest index such that Bj ∈ B and 1 < j ≤ r (if such an index
exists). Then we can remove the bridges B1, . . . , Bj−1 from Ω. If s = r + 1, then we
select Bj ∈ B with the largest index among the bridges Bi (1 < i < r) and proceed as
above. In each of the cases, there remain at most four bridges that are attached to S
and that are not 3

2 -embeddable. (These may be Bj , Br+1, Bs−1, and possibly B1 since
it is 1-embeddable.)

Let us now consider the possibility when Ω is composed of two forcing chains. Select
a forcing chain R in Ω. If B ∈ R, then we proceed as above in the case when R is of
the form (FC′). On the other hand, if B 
∈ R, let B1 be the set of those bridges from
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B for which the embedding in R uses the same appearance of ε as both embeddings of
B. Let B2 = B\B1. If B2 
= ∅, let Bj be the first bridge from R which belongs to B2. If
some bridge Bi (1 ≤ i < j) belongs to B1, let k be the largest index of such a bridge.
Otherwise, let k = 1. Then the bridges Bk, . . . , Bj and B replace the entire chain R. If
Bk ∈ B1, these bridges form an obstruction for the EEP Ξ. In each case, at most two
bridges from B, Bk and Bj , remain attached to S. The last case is when B2 = ∅. If
also B1 = ∅, no changes are necessary. Otherwise, let j be the largest index such that
1 ≤ j ≤ r and Bj ∈ B1 (or j = 1 if such j does not exist). Similarly, let k be the largest
index such that r+1 ≤ k ≤ s and Bk ∈ B1 (or k = r+1). Then the bridges Bj, . . . , Br

and Bs, . . . , Bk together with B replace R. Again, at most two bridges are attached to
the segment S. If Bj ∈ B1, then the selected bridges form an obstruction for Ξ.

After changing Ω and repeating the entire procedure from the beginning, the chain
structure of Ω may change. It may even become composed of two forcing chains instead
of one. However, no new 3

2 -embeddable bridges occur. By Lemma 5.2, the number of
firmly based 3

2 -embeddable bridges is bounded. Therefore the change of Ω is performed
only a constant number of times, and the overall time spent is linear. Thus we may
assume in the sequel that our obstruction Ω additionally satisfies:

(Fb) For each 3
2 -embeddable bridge B with oriented base ε, Ω contains at most six

bridges that are attached to the segment (ε(B), ε(B)) and that are not 3
2 -embeddable.

To achieve the above properties, the initial forcing chain R0, which was obtained by
a BF-implementation of Algorithm Extend, has been changed a bounded number of
times. After the changes, R0 is composed of a bounded number of subchains such that
each subchain (or its reversal) is a subchain of the original forcing chain. Moreover, we
have:

(Bf) Each forcing chain in Ω is composed of a bounded number of subchains, each of
which (or its reversal) is a (not necessarily contiguous) subchain of an original
forcing chain obtained by a BF-implementation of Algorithm Extend.

6 Geometric structure of obstructions

Our next goal is to change the obstruction Ω into a minimal obstruction. It is an
easy task to minimize Ω in quadratic time. Just take an arbitrary bridge B ∈ Ω and
test in linear time (using Algorithm Extend) whether Ω\B is still an obstruction. If
not, the bridge B participates in every minimal obstruction contained in Ω. Otherwise
reject B and proceed with Ω\B. If Ω contains a 1-embeddable bridge, it is not too
complicated to transform Ω in linear time into a minimal obstruction using only its
“combinatorial” properties, i.e., by considering its forcing chain. On the other hand, if
Ω is composed of two forcing chains, this task is much more complicated because of the
mutual interference between the chains. On the other hand, in Section 8 we will also
use the basic “geometric” structure of obstructions to “compress” minimal obstructions.
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Therefore we have decided to use the “geometric” approach also to efficiently minimize
Ω.

The outline of this approach is as follows. We start with a forcing chain R0 contained
in Ω and step by step subdivide R0 into a bounded number of smaller and smaller sub-
chains with additional properties that capture the essential properties of the “geometric”
structure of R0. During the process we take care that each of the subchains retains all
properties achieved at the previous steps. For example, in Section 5 we showed that we
can achieve that R0 satisfies (Fc0)–(Fc4) and (Fm), (Fb), (Bf). Initially, we consider
the first and the last bridge (and also the bridge Br if R0 is of the form (FC′)) and
subchains from (Bf) as separate subchains.

Subchains consisting of a single bridge are said to be trivial , and those that contain trivial

at least two bridges are essential . Each essential subchain B1[�1] → . . . → Bs[�s] is essential

forward minimal and satisfies:

(C0) All bridges Bi (1 ≤ i ≤ s) in the chain are distinct and have two admissible
embeddings.

(C1) The simultaneous embedding B1[�1] ∪ · · · ∪Bs[�s] can be realized.

(C2) The simultaneous embedding B1[¬�1] ∪ · · · ∪Bs[¬�s] can be realized.
(C3) For every j (1 ≤ j ≤ s) the simultaneous embedding B1[�1] ∪ · · · ∪ Bj−1[�j−1] ∪

Bj+1[¬�j+1] ∪ · · · ∪Bs[¬�s] can be realized.
Clearly, (C0) follows from (Fc0), and (C1) follows from the property (Fc2) of R0.
Properties (C2) and (C3) follow by (Fm) and properties (Fc2)–(Fc4) of R0. Let us
mention that (C3) implies forward minimality of each subchain. To summarize: our
obstruction is decomposed into a bounded number of forward minimal subchains with
properties (C0)–(C3) (or having length 1). Additionally, each such subchain is contained
in one of the subchains from (Bf). The “global” properties (Fc0)–(Fc4) will be used
only occasionally in the sequel when comparing distinct subchains.

The forcing B[�] → B′[�′] is strong if the embedding schemes of embeddings B[�] strong

and B′[¬�′] overlap. Since R0 is forward minimal, the number of strong forcings in each
subchain is bounded by the number of clusters. By (P6), there are at most two strongly
attached bridges in each cluster. Hence, a bounded number of subdivisions of subchains
assures that each essential subchain R = B1[�1]→ . . . → Bs[�s] of R0 also satisfies:

(M1) No bridge Bj (1 ≤ j ≤ s) is strongly attached to K.

(M2) No forcing in R is strong. (However, forcings between the last member of a
subchain and the first member of the next subchain can be strong.)

In the sequel we shall further subdivide the chains in order to assure additional
structural properties that will later enable us to efficiently perform minimization and
“compression” of obstructions. We shall also use the fact that if R has properties
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(C0)–(C3) and (M1)–(M2), then also every (contiguous) subchain of R has the same
properties.

The subchain R is obtained by Algorithm Extend and satisfies (M2). This implies
that each pair Bi, Bi+1 of consecutive bridges in R is attached to a common branch.
Moreover, there is an appearance ε̃i of an oriented branch εi such that the forcing
Bi[�i]→ Bi+1[�i+1] occurs because of attachments of Bi and Bi+1 on ε̃i. More precisely,
if the bridge Bi+1 was forced because of the value β�(C, ε), then Bi+1 ∈ C, � = ¬�i+1,
ε = εi, and ε̃i is the occurrence of εi which is used by the embedding Bi+1[�]. For the
extreme attachments of Bi and Bi+1 on εi we have εi(Bi+1) < εi(Bi). In such a case we
say that Bi and Bi+1 overlap on the oriented branch εi. overlap on the ori-

ented branch εiSuppose that εi = εj for some i < j. If Bi+1 and Bj+1 are both in the same cluster,
then (Fm) and Algorithm Extend imply that

εi(Bi+1) < εi(Bi) ≤ εi(Bj+1) < εi(Bj) . (1)

In the sequel we shall prove that for each 3
2 -embeddable cluster C with the base

ε there is only a bounded number of forcings Bi[�i] → Bi+1[�i+1] such that at least
one of the bridges Bi, Bi+1 belongs to C and such that εi = ε. Let e = type(ε) and
type(C) = {e, x}. Suppose that for indices i1 < i2 < i3, the forcings Bij−1[�ij−1] →
Bij [�ij ] (1 ≤ j ≤ 3) are on the branch ε and such that Bij ∈ C (1 ≤ j ≤ 3). Suppose
also that �i1 = �i2 = �i3 =: �. Now, (1) implies that ε(Bi1) < ε(Bi2) < ε(Bi3). By (P7)
and (C2), the union Bi1 ∪ Bi2 ∪ Bi3 must be attached to x at one vertex only. Denote
this vertex by u. By assumptions, Bi1−1 has an attachment on ε after ε(Bi1). Since this
bridge does not overlap with Bi2 and Bi3, it belongs to the cluster C and is attached only
to the segment [ε(Bi1), ε(Bi2)] ⊆ ε and to u. Therefore the bridge Bi1−2, which in R
forces the embedding of Bi1−1, also forces the embedding of Bi1 . This contradicts (Fm).
Hence i1 = 2. Similarly we prove that R contains at most three forcings B[�] → B′[�′]
on the oriented branch ε where B ∈ C.

By making an additional bounded number of subdivisions of forcing subchains we
can achieve that each essential subchain R satisfies:

(M3) 3
2 -embeddable bridges in R do not overlap with other bridges in R on their base
branches.

Our next goal is to achieve one of the following for each subchain R:
(M4a) For all bridges Bi (1 ≤ i ≤ s) in R, the embeddings Bi[1] and Bi[2] are in distinct

faces of K.

(M4b) For all bridges Bi (1 ≤ i ≤ s) in R, the embeddings Bi[1] and Bi[2] are in the
same face of K.

Let Bi ∈ C and Bi+1 ∈ C′ be consecutive bridges in R. It suffices to prove that if F1 =
F1(C) 
= F2 = F2(C), then also F1(C ′) 
= F2(C′). Suppose not, say F1 = F1(C′) = F2(C′).
Since Bi and Bi+1 overlap on εi, the branch e = type(εi) lies on the boundary of F1 and
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F2. Therefore e occurs on ∂F1 just once, and the admissible embeddings of Bi+1 both
use this occurrence of e. In particular, e is the base of Bi+1. This contradicts (M3).

If the subchain R satisfies (M4b), then both admissible embeddings of all bridges in
R are in the same face F . If R satisfies (M4a), then there are distinct faces F1 and F2

of K such that all admissible embeddings of bridges in R are in F1 and F2. This fact is
easily proved by induction on the length of R since the branches εi on which consecutive
bridges overlap, must all lie on the boundary of F1 and F2.

We say that R satisfies (M4), if it has either property (M4a) or (M4b).
Let B be a bridge that is attached to the oriented branch ε. An embedding B[�] of

B in the face F splits F into several subfaces. Let F+
ε,B[�] be the subface that contains

on its boundary the edge right(ε) (from the same occurrence as used by B[�]). Similarly,
let F−

ε,B[�] be the subface containing left(ε).
Suppose that bridges B ∈ C and B′ ∈ C′ (C 
= C′) from R overlap on the oriented

branch ε, B[�] → B′[�′]. Let e = type(ε), type(C) = {e, f}, and type(C′) = {e, f ′}. We
denote by f1 the occurrence of f used by B[�], and by f2 the occurrence used by B[¬�].
Similarly, let f ′

1 and f
′
2 be the occurrences of f

′ used by B′[�′] and B′[¬�′], respectively.
Since B and B′ belong to distinct clusters and they overlap on ε, f ′

2 lies in the subface
F+

ε,B[�]. If also f
′
1 lies in the same subface F

+
ε,B[¬�], we say that the overlapping of B and

B′ in R is weird (see Figure 4 for the case (M4a)). weird

ε

B ][

B ][ ’’B ][

f1

2f f1
’

2f ’

Figure 4: Weird overlapping in two faces.

We claim that in R for each pair of distinct clusters C, C′ and each oriented branch ε
there are at most two weird overlappings B[�]→ B′[�′] on ε such that B ∈ C and B′ ∈ C′.
Suppose not. Let Bij [�ij ] → Bij+1[�ij+1] (1 ≤ j ≤ 3) be weird overlappings on ε where
Bij ∈ C and Bij+1 ∈ C ′. Suppose that i1 < i2 < i3. Then ε(Bi1+1) < ε(Bi1) < ε(Bi3).
Weird overlapping implies that Bi1+1[�i1+1]→ Bi3 [�i1 ]. This contradicts either (Fm) or
(C1) (depending on whether �i1 = �i3 or not). Hence we may assume:

(M5) There are no weird overlappings in R.
A forward minimal essential subchain with properties (C0)–(C3), (Fb), and (M1)–

(M5) is called a basic subchain. With a bounded number of additional splittings of basic subchain

basic subchains we also achieve that each resulting essential subchain R satisfies: If
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R contains an overlapping B[�] → B′[�′] on the occurrence ε̃ of the oriented branch ε,
where B ∈ C and B′ ∈ C′, then in the basic subchain R′ that contains R there is a pair
of bridges B− ∈ C and B′− ∈ C′ that appear in R′ before R whose embeddings B−[�]
and B′−[�′] overlap on ε̃. Similarly, there are bridges B+ ∈ C and B′+ ∈ C′ that appear
in R′ after R and whose embeddings overlap on ε̃.

Suppose that there are indices i1 < i2 < i3 < i4 such that the bridges Rj := Bij

(1 ≤ j ≤ 4) belong to the same cluster C, all bridges R′
j := Bij+1 (1 ≤ j ≤ 4) belong

to the same cluster C ′ (possibly C = C′), and such that all four overlappings of Rj

and R′
j (1 ≤ j ≤ 4) occur on the same appearance of the oriented branch ε. Then

�i1 = �i2 = �i3 = �i4 =: � and similarly �′ := �ij+1 (1 ≤ j ≤ 4). Since R is forward
minimal, the attachments on ε of the considered bridges follow each other in the direction
of ε:

ε(R′
1) < ε(R1) ≤ ε(R′

2) < ε(R2) ≤ ε(R′
3) < ε(R3) ≤ ε(R′

4) < ε(R4) . (2)

Let F be the face in which the subchain R embeds R3, and let F ′ be the face of R′
3

(possibly F = F ′). Let e = type(ε), type(C) = {e, f} and type(C′) = {e, f ′}. Denote
by ε1 the occurrence of ε used by the embedding R3[�], and by ε2 the occurrence used
by R′

3[�
′]. By (2), ε1 
= ε2. Let f1 and f2 be the occurrences of f used by R3[�] and

R3[¬�]. Define similarly f ′
1 and f ′

2 as the occurrences of f
′ used by R′

3[�
′] and R′

3[¬�′],
respectively. It may happen that f1 = f2 or f ′

1 = f ′
2. The bridges R3 and R′

3 overlap on
ε. Therefore ε1, f ′

2, and f1 occur on F in that order (using the direction of the boundary
of F determined by ε1). By (M5), these basic pieces appear on F ′ in order ε2, f2 and,
f ′
1 (determined by the orientation of ε2).
Embeddings R3[�] and R′

3[�
′] split the union F ∪ F ′ into several subfaces. Let F1

be the subface of F containing right(ε1), and let F2 be the subface of F ′ containing
right(ε2). If F = F ′, it may happen that F1 = F2. At most one of the subfaces F1,
F2 (even when F = F ′) contains an occurrence of left(ε) and an occurrence of right(ε).
Such a subface is said to be degenerate. Let S be the segment of ε which is “on both degenerate

sides” blocked by the embedded bridges Rj and R′
j (1 ≤ j ≤ 4), i.e.,

S = (ε(R1), ε(R4)) ∩ (ε(R′
1), ε(R

′
4)).

The choice of F1 and F2 is such that the union F1 ∪ F2 contains on its boundary at
most one occurrence of left(ε). Properties (C1) and (C3) imply that for i > i4, the
embeddings of Rj and R′

j (1 ≤ j ≤ 3) determined by R overlap neither with Bi[1] nor
with Bi[2].

Lemma 6.1 Using the above notation and assumptions, each bridge Bi (i > i4) from
R satisfies:

(a) Bi has at least one of its admissible embeddings in F1 ∪ F2. If exactly one of its
embeddings is in F1 ∪ F2, then that embedding is in a nondegenerate subface.

(b) If Bi is attached to ε before the segment S, then Bi is 3
2 -embeddable and ε is its

base.
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Proof. The proof is by induction on i. The case i = i4 + 1 is the base of induction.
By (2), Bi4+1 = R′

4 is attached to ε after R3 and R′
3. Hence, both its embeddings are

in F1 ∪ F2. This proves the claim.
To prove the induction step, suppose that the claim is true for Bi. Let ε′ be the

oriented branch on which Bi and Bi+1 overlap and let e′ = type(ε′). By (M3), the
admissible embeddings of Bi+1 are attached to distinct occurrences of e′. The same
holds for the embeddings of Bi.

We shall first prove (a). Suppose that e′ 
= e, f, f ′. If both embeddings of Bi can be
realized in F1 ∪ F2, then both occurrences of e′ lie entirely in the boundary of F1 ∪ F2.
Therefore also both embeddings of Bi+1 are in F1∪F2. If only one embedding of Bi can
be made in F1∪F2, then by induction hypothesis this embedding lies in a nondegenerate
subface F̃ . In particular, one of the occurrences of e′ is on the boundary of F̃ . Hence
Bi+1 has an embedding in the nondegenerate face F̃ , and this implies (a).

The case when e′ = f or e′ = f ′ is much harder. We shall distinguish several cases.

(a) (b) (c) (d)

f1 f1 f1 f1

ε1 ε1 ε1 ε1

ε2 ε2

ε2 ε2

f1
’

1 2FF =

2F

1F
1F 1F

2F 2F

2
’f 2

’f

2
’f 2

’f

2f

R3 R3 R3
R3

’R3
’R3

’R3 ’R3

Figure 5: Possible layouts in case (i) when F = F ′.

(i) Suppose that C 
= C′ and that the bridges from clusters C and C ′ are not 3
2 -

embeddable. The occurrences of f and f ′ on the boundary of F1∪F2 are such that
either both occurrences of left(ε′) and right(ε′) lie on the boundary of F1∪F2 or at
least one of the occurrences of e′ entirely lies on the boundary of a nondegenerate
subface. If F 
= F ′, this claim is obvious, while the possibilities in case when
F = F ′ can be verified by using Figure 5. The dotted segments of ∂F show that
f and f ′ do not occur on that segments. Since the admissible embeddings of Bi+1

use distinct occurrences of e′, (a) follows easily.

(ii) Suppose that C 
= C′ and that the bridges from at least one of the clusters C, C′ are
3
2 -embeddable. Then F = F ′. The clusters C and C′ overlap on e. Hence e is not
the base. By (P7), the base is precisely one of f or f ′, and the union of all bridges
from the corresponding cluster is attached to it at a single vertex, call it u. It is
easy to see from Figure 6 that if e′ is not the base branch, it has an appearance
which entirely lies on the boundary of the a nondegenerate subface. Therefore
Bi+1 admits an embedding in that nondegenerate subface. The other case is when
e′ is the base branch. The occurrence of e′ in the admissible embedding schemes
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(a) (b) (c) (d)
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Figure 6: Possible layouts in case (ii).

either lies partially on the boundary of F1 and partially on F2, or lies partially
on the boundary of the union F1 ∪ F2 and partially out of it (see Figure 6). Let
us remark that in the latter case we have F1 = F2, hence there is no degenerate
subface. By (M4), the second occurrence e′2 of e′ also lies on F . If e′2 appears
in a nondegenerate subface, (a) is obviously true. The same is true if e′2 is in
the degenerate subface since then its first occurrence e′1 lies entirely in F1 ∪ F2.
The last possibility is when e′2 lies out of the boundary of F1 ∪ F2. In that case,
Bi has one of the embeddings out of F1 ∪ F2, so the other one must be in a
nondegenerate subface. If this is the embedding Bi[�i], then also Bi+1[¬�i+1] lies
in a nondegenerate subface. So, assume that Bi[�i] is not in F1 ∪F2. Suppose that
Bi+1 has no admissible embeddings in nondegenerate subfaces. The vertex u splits
e′ into two closed segments S1, S2 with common end u. We may assume that S1 lies
on the occurrence e′1 in the nondegenerate subface. Clearly, the attachments of Bi

on e′ are all in S1, and the attachments of Bi+1 are in S2. Since Bi, Bi+1 
∈ C ∪ C′,
(C2) implies that also the bridges B−

i and B+
i are entirely attached to S1, and

(C1) implies that B−
i+1 and B

+
i+1 are attached to S2. This contradicts (Fm).

(iii) Suppose that C = C′ and F 
= F ′. Then F1 and F2 are both nondegenerate. If (a)
does not hold, then we easily see that Bi, Bi+1 
∈ C. If the embedding Bi[�i] is in
F1 ∪ F2, then also Bi+1[¬�i+1] is in F1 ∪ F2. Hence we may assume that Bi[�i] is
not in F1 ∪ F2.

Since Bi and Bi+1 overlap on e′, e′ = f = f ′ is a branch. Let φ be the oriented
branch f whose orientation is induced by ε and the embedding scheme of R3[�].

Suppose first that the orientation φ′ of f induced by ε and R′
3[�

′] is equal to φ.
Suppose also that the embedding Bi[�i] lies in F . Then (C1) and the induction
hypothesis imply φ(Bi) ≤ φ(R1) ≤ φ(R′

3) ≤ φ(Bi). Therefore Bi, R2, and R′
2 are

attached to f only at one vertex, say u. Similarly, if the embedding Bi[�i] is in F ′,
bridges Bi, R′

1, and R3 are attached to f only at u. In each case one of the bridges
B−

i , B
+
i is attached to the branch φ strictly before u, while the other one is after.

But then the union B−
i [�i] ∪ B+

i [�i] has no common embedding with R2 ∪ R′
2, a

contradiction with (C1).
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On the other hand, if φ 
= φ′, then (C1) and (C2) imply that the union R1∪R2∪R3

is attached to f only at u. By the same argument, R′
1 ∪ R′

2 ∪ R′
3 has only one

attachment, say v. If u 
= v, then the segment [u, v] of f lies on the boundary of F1

and of F2. Hence, each bridge that is attached to f (e.g., Bi+1) has an embedding
in F1∪F2. We are left with the case u = v. If Bi+1 cannot be embedded in F1∪F2,
then its only attachment to f is u. Similarly as in the case when φ = φ′, the union
B−

i+1[�i+1] ∪B+
i+1[�i+1] has no common embedding with R2 ∪R′

2, a contradiction.

(iv) Suppose that C = C ′, F = F ′ and f1 
= f2. If at least one of the bridges Bi, Bi+1

belongs to C, ε(Bi+1) > ε(R3), hence both embeddings are in F1 ∪F2. Otherwise,
let φ be the oriented branch f whose orientation is induced by ε and R3[�]. Note
that by (P7), this orientation is the same as the one induced by ε and R′[�′]. Let
u1 = φ(R3) and u2 = φ(R′

3). Since Bi and Bi+1 are not in C and e′ = f , none of
them has an attachment to f strictly between u1 and u2. Let u be either u1 or
u2, whichever appears first on φ. Observe that no occurrence of the part of the
branch φ which is strictly before u does not lie on the boundary of a nondegenerate
face and that at most one such occurrence is in the degenerate face (the reader
may draw a figure similar to Figures 5, 6 with all four possibilities). By the
induction hypothesis, the attachments of Bi to φ are all in u or after. If Bi has
an attachment distinct from u, then both embeddings of Bi are in F1 ∪ F2. Then
also Bi+1[¬�i+1] is in F1 ∪ F2. The embedding Bi+1[�i+1] uses distinct occurrence
of f than Bi+1[¬�i+1]. If Bi+1[¬�i+1] is in a degenerate subface, then left(f) and
right(f) on the occurrence of f used by Bi+1[�i+1] are contained in F1 ∪F2, hence
the claim follows. Finally, if the only attachment of Bi on f is u, then the bridges
B−

i and B+
i cannot have a common embedding with R3 and R′

3, a contradiction.

(v) The last case is when C = C′ and f1 = f2. By (P7) and (C1)–(C2), all bridges
Rj and R′

j (1 ≤ j ≤ 3) are attached to f at a single vertex u. Observe that the
subfaces F1 and F2 are nondegenerate. Suppose that both embeddings of Bi+1 are
out of F1 ∪ F2. Then the second occurrence of f does not lie on the boundary of
F1∪F2, and also the embedding Bi[�i] is out of F1∪F2. There are two possibilities.
First, if F1 = F2, then Bi is attached to f only in u. But then the embeddings R3[�]
and R′

3[�
′] obstruct the embedding B+

i [¬�i], a contradiction with (C3). Second, if
F1 
= F2, then Bi+1 is attached to f only in u. Now, the embedding B+

i+1[�i+1] is
obstructed by R3[�] ∪R′

3[�
′], a contradiction with (C1).

The last case in the proof of (a) is when e′ = e. By induction, Bi is attached to ε
after the segment S. Hence, both embeddings of Bi are in F1 ∪F2. If Bi[�i] is in a non-
degenerate subface, then also Bi+1 can be embedded in that subface. Otherwise, Bi[�i]
is in the degenerate subface. Since this embedding overlaps on ε with Bi+1[¬�i+1], also
Bi+1 must be attached to ε after the segment S. Then Bi+1[�i+1] lies in a nondegenerate
subface. This proves (a).

To prove (b), suppose that Bi+1 is attached to ε before the segment S. Then Bi+1

has no embedding in a nondegenerate subface. Hence, both its embeddings are in F1∪F2.
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Since this union contains on its border only one occurrence of left(ε), both embeddings
of Bi+1 use the same occurrence. Hence, Bi+1 is 3

2 -embeddable and ε is its base. This
completes the proof.

Suppose now that the subchain R contains forcings Bij [�ij ]→ Bij+1[�ij+1] (1 ≤ j ≤
5), where all bridges Bij belong to C, all bridges Bij+1 belong to C′, and all overlappings
are on the oriented branch ε. Suppose also that �i1 = . . . = �i5 and �i1+1 = . . . = �i5+1.
Moreover, suppose that indices ij (1 ≤ j ≤ 5) have been chosen such that for ij (1 ≤
j ≤ 4), these are the first such overlappings in R, while for i5, this is the last such
overlapping in R. Split R at the bridges Bij and Bij+1 (1 ≤ j ≤ 5) such that these
bridges become subchains of length 1. Let R′ be the part of R between Bi4+1 and Bi5 .
Among all new subchains, only R′ may contain the same type of overlapping as above.

Let e = type(ε). Suppose that R′ contains overlappings Ri[�] → R′
i[�

′] (1 ≤ i ≤ 5)
such that all bridges Ri belong to the cluster C1, all bridges R′

i belong to C′
1, and the

overlappings are on the oriented branch ε′, where ε′ is one of the orientations of e.
Suppose also that {C1, C′

1} 
= {C, C′}. By Lemma 6.1, all bridges Ri and R′
i are attached

to branch ε after Bi4 and Bi4+1. Since they do not belong to the same pair of clusters,
they must be attached also after Bi5 and Bi5+1. We now distinguish two subcases.

If ε′ = ε, then we get a contradiction with Lemma 6.1, since Bi5 and Bi5+1 appear
in R after Ri and R′

i, while on ε they overlap before.
If ε′ = ε, let R be the reverse subchain R. If Ri and R′

i belong to distinct clusters,
then they overlap in R on the branch ε′ or on ε′. Since R satisfies (M5), they indeed
overlap on ε′. On the other hand, if they are in the same cluster, let type(C1) = {e, f}.
We may assume that f is a branch of K. Let φ be the orientation of f induced by ε′

and Ri[�]. For i > 1, Ri and R′
i overlap in the chain R′ on the branch ε′ or on φ. Since

ε′(R′
i) < ε′(Ri), we may assume that they overlap on ε′ = ε. Lemma 6.1 again yields a

contradiction since Bij and Bij+1 (1 ≤ j ≤ 4) appear in R after Ri and R′
i (2 ≤ i ≤ 5),

while they are attached to ε before them.
Consequently, for each orientation ε′ of e and for each pair of clusters C1, C ′

1 distinct
from the pair C, C′, at most five pairs of consecutive bridges that overlap on ε′ appear
in R′.

Let us repeat the splittings of clusters described above also for other branches f and
pairs of clusters whose embeddings overlap on f . The number of subchains obtained by
this process from the original subchain is bounded. Therefore, we have achieved that
our obstruction Ω is composed of a bounded number of subchains where each essential
subchain R satisfies one of the following:

(M6a) All bridges in R belong to the same cluster.

(M6b) R contains bridges from at least two clusters. The embeddings determined by
R use the same embedding scheme for all bridges in the same cluster. For each
branch e of K, all overlappings from R on e occur from pairs of bridges from the
same pair of distinct clusters. For each cluster, the order of bridges determined
by the embedding of R is the same as the order of their appearances in R.
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The subchain has property (M6), if it either satisfies (M6a) or (M6b).
Suppose that B ∈ C and that B[�] appears in R and that bridges of C overlap in R

on the oriented branch ε with bridges from cluster C′. Suppose that R satisfies (M6b).
Then C 
= C′. We may assume that all embeddings in R are the first embeddings. By
(M6b), B[1] → B′[1] for each B′ ∈ C′ with an attachment on ε before ε(B). By (Fm),
all such bridges, except the bridge that follows B[1] in R, must appear in R before
B[1]. By (M5), for each B′ ∈ C ′ with ε(B) < ε(B′), we have B[2] → B′[2]. Again, all
such bridges, except possibly one, appear in R after B[1]. Suppose now that R satisfies
(M6a). Let type(C) = {e, f} where e = type(ε). We distinguish several possibilities. If
ε and embeddings of B induce the same orientations of f , then we have an overlapping
R[�] → R′[�] in R if and only if R[¬�] → R′[¬�′]. Hence the embedding B[i] (i = 1, 2)
overlaps only with its neighbors in R. If the induced orientations of f are distinct and
all bridges of R are attached to f a single vertex, then the overlappings behave similarly
as in the previous case. Otherwise, they behave similarly to the case when R satisfies
(M6b).

Suppose that R is an essential subchain in the obstruction Ω satisfying (M6). Let
δ1, . . . , δk (k ≥ 2) be the admissible embedding schemes that appear in R. We define
a directed graph � with vertex set V (�) = {1, . . . , k} where vertex i corresponds to
δi as follows. If ε is an oriented branch on which embeddings of bridges in R overlap,
then (M6) implies that there are uniquely determined embedding schemes δu and δv
which overlap on ε. If R contains consecutive bridges where the first is δu-embedded
and the second is δv-embedded, then we have a directed edge from u to v in �. The
edge uv is said to be associated with ε. Let us remark that � may contain two edges associated

from u to v associated with distinct oriented branches if R has property (M6a). By
construction, � contains a directed Hamiltonian path and by (M6), each vertex of � is
adjacent (irrespective of directions of edges) to at most two other vertices.

The sequence of all bridges B1, B2, . . . , Bs in R determines a directed walk W of
length s − 1 in �. For each uv ∈ E(�), mark its first and last appearance in W and
split R at these places. Let L′

1, L
′′
1 and R′

1, R
′′
1 be the bridges that overlap at the first

and the last, respectively, appearance of uv. We make our splitting of R so that L′
1,

L′′
1, R

′
1, R

′′
1 become trivial subchains of length 1. We repeat the procedure on all new

essential subchains. Let us remark that some edges of � no longer appear in subwalks of
W corresponding to particular subchains. The splitting process is repeated 2k+8 times.
The entire process assures that for each (remaining) essential subchain M , we call it a
millipede, and each oriented branch εj (1 ≤ j ≤ k) for which there is an overlapping millipede

on εj in M , there are bridges L′(j)
i , L′′(j)

i , R′(j)
i , R′′(j)

i (1 ≤ i ≤ 2k + 8, 1 ≤ j ≤ k),
we call them the (left and the right) outer bridges of M , such that L′(j)

i and L
′′(j)
i are outer bridges

obtained as L′
1 and L

′′
1 in the ith level of the splitting process and they overlap in R on

εj . Similarly, the right outer bridges R
′(j)
i and R′′(j)

i are obtained on the ith level of the
process and they overlap on εj . By construction, outer bridges from distinct levels are
distinct. However, some bridges from the same level may participate in overlappings on
distinct branches. For example, it may happen that L′′(j)

i = L
′(j+1)
i . The closure M̃ of closure
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the millipede M is the subchain of R between the first and the last outer bridge of M .
The closure contains all outer bridges of M and all left outer bridges appear before M
and all right bridges appear after M . Similarly, if i < p and j, q are arbitrary, then L′(j)

i

and L
′′(j)
i appear before L′(q)

p and L′′(q)
p .

The branches of K on which there are overlappings in the millipede M are called
inner branches of M . Appearances of other basic pieces containing attachments of inner branches

bridges from M are outer basic pieces of M . The millipede has at most two outer basic outer basic pieces

pieces.

xx

x

y

xy

Figure 7: Examples of 2-millipedes: thick, thin, and skew.

Millipedes that contain bridges from one cluster only are called 2-millipedes. Such 2-millipedes

(and only such) millipedes occur, for example, in the EEPs in the cylinder [M2] and the
Möbius band [JM]. Results of [M2, JM] show that they can be classified as thick, thin,
or skew. Examples are shown in Figure 7. If a millipede contains bridges from more
than one cluster, then it is called a multi-millipede. An example of a multi-millipede in multi-millipede

the torus with k = 4 is shown in Figure 8.
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Figure 8: A multi-millipede.

Let M be a multi-millipede. Denote by ε1, . . . , εl the inner branches of M . Clearly,
l ∈ {k − 1, k}. Assume that εj (1 ≤ j ≤ l) are enumerated in such a way as they
appear in a Hamiltonian path in �, and that under the embedding determined by M ,
all bridges in M get their first embeddings. Let Cj , Cj+1 (1 ≤ j ≤ l) be the clusters
that in M overlap on εj (with Ck+1 = C1 if l = k). From each cluster Cj (1 ≤ j ≤ k)
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we choose a left outer bridge L(j) and a right outer bridge R(j). By (C3), there exists
a common embedding of all outer bridges of M such that the left outer bridges are
embedded compatibly with their first, and the right outer bridges with their second
admissible embedding scheme. Let F be the face containing L(1)[1] ∪ R(2)[2] ∪ · · ·.
The above implies that the appearances of εj (1 ≤ j ≤ l) used by embeddings L(j)[1]
(j = 1, 3, . . .) and Ri[2] (j = 2, 4, . . .), follow each other in ∂F as follows: ε1, ε2, . . . , εl (in
the direction determined by ε1). Any two consecutive oriented branches in this sequence
are oriented differently. The same property holds for the appearances of branches used
by the embeddings L(j)[1] (j = 2, 4, . . .) and R(j)[2] (j = 1, 3, . . .). If M̃ satisfies (M4b),
then the face in which the bridges are embedded, can be split into two subfaces such
that occurrences of εj (1 ≤ j ≤ l) used by L(j)[1] (j = 1, 3, . . .) and R(j)[2] (j = 2, 4, . . .)
are on the boundary of one, all other on the boundary of the second subface.

Let us remark without a proof that millipedes also have the following properties.
From (C1)–(C3) it follows that no outer basic piece is an occurrence of an inner branch.
Two distinct embedding schemes may use the same outer basic piece. In such a case,
if the millipede has embeddings in two faces, then all bridges from the cluster C1 are
attached to the outer basic piece at a single vertex, and similarly for the bridges from
Ck. These two vertices are in general distinct. On the other hand, if the bridges of the
millipede all lie in one face, then the bridges from exactly one of C1, Ck may have several
attachments on the corresponding outer basic piece. The bridges from the other cluster
are attached to the outer basic piece at a single vertex and the outer basic piece is their
base.

Consider an inner branch ε = εj of M . The open segment of ε determined by
the intersection (ε(L′(j)

3 ), ε(R′(j)
3 ))∩ (ε(L′′(j)

3 ), ε(R′′(j)
3 )) is called the inner segment of M inner segment

corresponding to ε. Similarly we define the outer segments as those segments of outer outer segments

basic pieces which are covered by embeddings of the corresponding outer bridges from
the fifth level.

With possible further splitting of millipedes we can achieve that for each multi-
millipede with a nonempty outer segment on the outer branch ε, the left and the right
outer bridge from the sixth level that are attached to ε have attachments in the outer
segment.

7 Minimal obstructions

In this section we shall make further analysis of the structure of overlappings among
the bridges in millipedes. This will enable us to efficiently minimize obstructions for
2-EEPs. Let us first show how to achieve that to each inner segment of a millipede M
only bridges from the closure M̃ are attached.

Lemma 7.1 Let Ω be an obstruction for the 2-EEP Ξ obtained by a BF-implementation
of Algorithm Extend. Suppose that Ω is composed of (one or) two forcing chains R1

and R2. Let M be a millipede in R1. If there is a bridge B ∈ Ω\M̃ which is attached
to an inner segment of M , then B 
∈ R1 and Ω\B is also an obstruction for Ξ.
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Proof. Denote by ε the oriented branch containing the inner segment to which B is
attached. Let C and C′ be clusters which in M overlap on ε. Since the inner segments
are defined by using the third level outer bridges, there are outer bridges of M attached
to ε before B and after B, respectively. By (Bf), B has a simultaneous embedding with
these outer bridges. Therefore B belongs either to C or C′. Since B 
∈ M̃ , the same
argument shows that B 
∈ R1. In particular, Ω is composed of two forcing chains. We
may assume that B ∈ C and that B[�] appears in R2.

Suppose first that C 
= C ′. By (M6b), we may assume that bridges in M all use their
first embeddings. Let L ∈ C and R ∈ C be the left and the right outer bridge of M ,
respectively, from the third level. Bridges L and R are attached to ε before and after
B, respectively. Suppose that B′[�′] → B[�] → B′′[�′′] in R2. (If B[�] is the last bridge
in R2, B[�]→ B′′[�′′] is the additional forcing in R2.) If B′[�′]→ L[�] and B′[�′]→ R[�],
then we argue as follows. If L[�] ∪R[�] forces B′′[�′′], then obviously B can be removed
from Ω. Otherwise, B′′ ∈ C and B′′ is attached to ε between L and R. Hence � 
= �′′.
Because of BF-implementation, B′′ has a simultaneous embedding with B and all outer
bridges, a contradiction. The remaining possibility is that B′[�′]→ L[�] or B′[�′]→ R[�].
If B′[�′] → L[1] or B′[�′] → R[2], then the subchain L[1] → . . . → R[1] from M̃ proves
as above that B is superfluous. If B′[�′] → R[1], then there exists a left outer bridge
L′ ∈ C ′ ofM which is attached to ε after L and such that R[1]→ L′[1] and L′[1]→ L[1].
(For L′ we can take the left outer bridge from the fifth level.) Similarly in the case
when B′[�′] → L[2]. Then there is a right outer bridge R′ such that L[2] → R′[2] and
R′[2]→ R[2]. In both cases we argue as before that B is redundant.

It remains to see what happens in the case when C = C′. Now, the proof is similar to
the above except that we use bridges L,R ∈ C from M̃ such that under the embedding
of M̃ , B lies between L and R and no bridge of M̃ lies between L and R. Since the
arguments are similar as above, we leave the details to the reader.

Lemma 7.1 enables us to achieve in linear time that for each millipede M in R1 and
for each inner segment S of M , only the bridges from M̃ are attached to S. The next
lemma will be used to achieve the same property also for the outer segments.

Lemma 7.2 Let Ω be an obstruction for the 2-EEP Ξ obtained by a BF-implementation
of Algorithm Extend. Suppose that Ω is composed of two forcing chains R1 and R2.
For i = 1, 2, let Mi be a millipede in Ri. Select a cluster C and an outer branch ε of M1,
and denote by B the set of those bridges from C that belong to M2\M̃1 and are attached
on ε to the outer segment Sε of M1. If the union of bridges from B is attached to ε in
more than one vertex, then B contains at most two bridges that are not redundant in Ω.
Moreover, redundant bridges can be identified in linear time.

Proof. If both admissible embeddings of bridges from C use the same occurrence of ε,
then ε is an outer branch of M2. By (P7), the union of all bridges from C that are inM2

is attached to ε in a single vertex. Therefore we may assume henceforth that admissible
embeddings of bridges from C use distinct occurrences of ε.
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Suppose that inM1 bridges from C1 are attached to ε. If both admissible embeddings
of bridges from C1 use the same occurrence of ε, then (P7) implies that the outer segment
on ε is empty, hence the claim. Therefore we may as well assume that the admissible
embeddings of bridges from C1 use distinct occurrences of ε. Let L,R ∈ C1 be the bridges
that determine Sε. We may assume that in M̃1 embeddings L[1] and R[1] appear. By
possibly reversing the order of bridges inM2 we also assure that in M2 the bridges from
C use different occurrence of ε than L[1] and R[1]. Let B1, B2 ∈ C be the first and the
last (respectively) bridge from M2 which are attached to Sε. Assume also that in M2,
embeddings B1[�] and B2[�] occur.

Suppose that C 
= C1. Then either L[1]→ Bi[�] (i = 1, 2) or R[1]→ Bi[�] (i = 1, 2).
Similarly, either B1[�] → L[1] or B1[�] → R[1]. In the first case, we can substitute
the part of M2 between B1 and B2 with forcings B1[�] → L[1] → B2[�] or B1[�] →
L[1] → . . . → R[1] → B2[�]. If B1[�] → R[1], then L[1] does not force B1[�] since the
BF-implementation of Algorithm Extend would find L[1] → B1[�] → R[1] instead of
the part of the forcing chain between L and R in M̃1. The part of M2 between B1 and
B2 can therefore be replaced by B1[�]→ R[1]→ B2[�].

We are left with the case C = C1. Then � = 2. Let ε1 be the inner branch of M1

used by bridges from C1. By Lemma 7.1 and since the definition of outer segments of
millipedes uses outer bridges from level five, none of the bridges B1, B2 is attached to the
segment S = [ε1(L), ε1(R)]. If ε1(B1) < ε1(L) and ε1(B2) < ε1(L), then B1[2] → L[1]
since L[2]∪R[2] exists. Now, we replace the part ofM2 between B1 and B2 by the chain
B1[2] → L[1] → B2[2]. Similarly in the case when both bridges have an attachment
on ε1 after S: we take B1[2] → R[1] → B2[2]. If B1 is attached before S, while B2

is attached after, we take B1[2] → L[1] → . . . → R[1] → B2[2] for replacement. The
remaining possibility would be when B1 is attached after S, and B2 is attached before
S. However, in that case either the embedding L[2] ∪ R[2] or B1[2] ∪ B2[2] does not
exist, a contradiction.

Let us now show how to achieve (in linear time):

(M7) If M is a millipede in Ω, then only the bridges of M̃ are attached to each inner or
outer segment of M .

Let us consider a forcing chain R1 in Ω and let M be a millipede in R1. Lemma 7.1
enables us to assume (M7) for inner segments. Suppose now that ε is an oriented outer
branch of M with nonempty outer segment S. Let x and y be the endvertices of ε. We
may assume that the order of bridges in M agrees with the order of their attachments
on ε. For i = 1, 2, let Bi be the set of those bridges from Ω\M̃ that have an attachment
in S and belong to the forcing chain Ri. Since R1 is forward minimal, all bridges in
B1 (except possibly the last bridge of R1) are 3

2 -embeddable and ε is their base. For
each millipede M ′ 
= M in R1, (P7) implies that the bridges of B1 that are in M ′ are
attached to ε at a single vertex. Hence, B1 has only a bounded number of attachments
on ε. By Lemma 7.2, the same holds also for bridges from B2. Suppose now that
B ∈ B1 ∪ B2. If B is attached to ε at a single vertex, then we subdivide the millipede
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M at the following bridges: the last bridge with an attachment in the open segment
(x, ε(B)) which is entirely attached to (x, ε(B)], the first bridge attached to (ε(B), y)
which has all its attachments to ε in [ε(B), y), and the first and the last bridge of M
which are attached to ε only at the vertex ε(B). If M contains a bridge B′ which is
attached to ε before and after ε(B), then we take B′ instead of bridges attached only
to ε(B). All these bridges become trivial subchains, while for the longer subchains we
make sure with further splittings that the required number of outer bridges is obtained.
The same method works if B has more than one attachment on ε. In this case, at most
six bridges of M are attached to (ε(B), ε(B)): if B is not 3

2 -embeddable, this is assured
by (Bf); for 3

2 -embeddable B, this follows from S 
= ∅ and (Fb). Therefore we can
use the following bridges as the splitting points of the chain: the last bridge in M with
an attachment in (x, ε(B)) and the first bridge with an attachment in (ε(B), y) (and
possibly the bridges ofM that have all attachments in the segment [ε(B), ε(B)]). These
splittings of M do not give rise to new bridges attached to the inner or outer segments
of the resulting millipedes.

By repeating the described changes on each millipede of R1, we achieve that the
millipedes in R1 satisfy (M7). Since Lemma 7.2 is used to make the desired changes,
the forcing chain R2 may change and we may lose some of its properties. The easiest
solution is to leave R1 as it is and to perform the algorithm Forcing on the obstruction
Ω starting with the embedding B[¬�] where B[�] starts R1. The resulting forcing chain
is again denoted by R2. It may contain some bridges of R1. By appropriate splittings
of R2 we assure that for each millipede M in R2, only bridges from the closure of M
are attached to each inner or outer segment. Since R2 “enters” a millipede M1 in R1

only through M̃1\M1, there is no need to make changes of the millipedes in R1 after
the change of R2 has been done. This shows (M7).

To efficiently minimize Ω we also need the following property of millipedes in Ω:

(M8) If M is a millipede in Ω, then the closure M̃ of M contains bridges from precisely
the same clusters as M .

This property can be achieved by a bounded number of additional subdivisions as follows.
Let C1, . . . , Ck be the clusters participating inM . First, we repeat onM all 2k+8 levels
of subdivisions to obtain the outer bridges and so that all new millipedes and their
closures are contained in M . If one of the new millipedes does not satisfy (M8), its
clusters form a proper subset of {C1, . . . , Ck}. We repeat the splitting on each such
millipede. Clearly, such splittings have to be repeated at most k times in a row. This
proves that after a bounded number of splittings the resulting millipedes satisfy (M8).

Let us now prove the property which is essential for an efficient minimization of
obstructions. Roughly speaking, it says that millipedes behave like an entity: if a bridge
of the millipede M is redundant in the obstruction, then Ω\M is also an obstruction.

Proposition 7.3 Let M be a millipede in the obstruction Ω for the 2-EEP Ξ. Let
B ⊆ Ω be a set of bridges which contains all outer bridges of M and the bridge B ∈ M .
If the millipedes in Ω satisfy (M7)–(M8), then the set B\M forms an obstruction if and
only if the set B\B does.
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Proof. Let B1, . . . , Bs be the bridges in M . Without loss of generality we may assume
that B contains M . If B\M is an obstruction, then also B\B is. Hence it suffices to
show that each embedding of the bridges from B\M can be transformed and extended
to an embedding of B\B.

Suppose that M is a multi-millipede. Choose an arbitrary embedding of B\M .
Choosing notation, we may assume that the embeddings of the bridges Bi (1 ≤ i ≤ s)
in M are Bi[1]. We will distinguish several cases.

Suppose first that there is a left outer bridge L(i)
1 such that under the chosen em-

bedding of B\M it is embedded as L(i)
1 [2]. Since M is a multi-millipede, also L(i+1)

t and
L

(i−1)
t (t ≥ 3) have embeddings L(i+1)

t [2] and L(i−1)
t [2]. The same arguments prove that

for each j (1 ≤ j ≤ k) there is an index tj ≤ 2k − 1 (where k is the number of clusters
in M) such that all left outer bridges L(j)

t (t ≥ tj) have embeddings L
(j)
t [2]. By (M8),

there is a left outer bridge L at level less than 2k such that all bridges from B ∩ M̃ that
follow L in M̃ are embedded consistently with their second embedding scheme. Since
(M7) holds and the subchain M̃ satisfies (C2), the embedding of B\M can be extended
to an embedding of B by selecting the second embedding for all bridges in M .

Secondly, if there is a right outer bridge R(i)
1 whose embedding is R(i)

1 [1], the proof
is the same as in the first case except that we embed bridges using their first embedding
scheme and apply property (C1) of M̃ .

The third possibility is that the left outer bridges L(i)
1 (1 ≤ i ≤ k) have their first

embedding and the right outer bridges R(i)
1 (1 ≤ i ≤ k) use their second embedding.

We may assume that the same holds for all outer bridges from the second till the eighth
level. (Otherwise we proceed as in the first two cases.) Then (M8) implies that all
bridges of B ∩ M̃ , that appear in M̃ before any left outer bridges of level six, also use
their first embedding since their second embedding would force the second embedding
of at least one left outer bridge from level eight. Similarly, all bridges that in M̃ follow
the right outer bridges of level six, must use their second embedding. Let BL ⊆ B be
the set of those bridges that appear in M̃ before B and after some left outer bridge
from level six. Similarly, let BR ⊆ B be the set of bridges that appear in M̃ after B
and before some right outer bridge from level six. By (C3), there is an embedding of
BL ∪BR such that the bridges from BL use their first, and bridges from BR their second
embeddings. By (M7), this embedding does not interfere with the embeddings of the
remaining bridges from B\(BL ∪ BR).

The proof is similar for 2-millipedes except that forcings in M̃ behave slightly dif-
ferent. We leave details to the reader.

Proposition 7.3 enables us to test in linear time which bridges from Ω are redundant
in the obstruction. LetM1, . . . ,Mp be the millipedes andB1, . . . , Bq the trivial subchains
which form the obstruction Ω. First we check for each millipede Mi (1 ≤ i ≤ p) if it is
redundant or not. This task is performed by selecting an arbitrary bridge B ∈ Mi and
applying Algorithm Extend on Ω\B. If this is still an obstruction, then we may remove
from Ω all bridges of Mi by Proposition 7.3. Otherwise, Proposition 7.3 guarantees that
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all these bridges must participate in any minimal obstruction contained in Ω. This
way we eliminate (one after another) all redundant millipedes. Then we check which
bridges of the trivial subchains are redundant. Since p and q are bounded by a constant
depending only on bsize(K), this procedure can obviously be performed in linear time.
Hence we proved:

Theorem 7.4 There is a linear time algorithm which for a given 2-EEP Ξ = (G,K,Π,D)
satisfying (P1)–(P7) either finds a solution for Ξ or returns a minimal obstruction Ω.
In the latter case, Ω is composed of a bounded number of bridges and a bounded number
of pairwise disjoint millipedes, where the bounds depend only on bsize(K).

8 Compression of obstructions

Minimal obstructions may have arbitrarily large branch size. In this section we prove
that it is possible to replace the subgraph K by a homeomorphic subgraph K ′ with
the same main vertices and their incident edges such that the (minimal) obstruction Ω
for the 2-EEP Ξ changes into an obstruction of bounded branch size. Of course, the
equivalence classes of (2-cell) embeddings of K ′ are in natural bijective correspondence
with the embeddings of K. Additionally, our change preserves the types of bridges.
Therefore, Ξ determines a 2-EEP Ξ′ for K ′, and the bounded branch size obstruction
mentioned above is an obstruction for Ξ′. The replacement of K by K ′ and of Ω by a
bounded size obstruction (as described in the sequel) will be referred to as a compression. compression

The branches of K will be changed only in inner segments of the millipedes contained
in Ω. Let Π′ be the embedding of K ′ which corresponds to Π. Let us consider the 2-EEP
Ξ′ = (G,K ′,Π′,D′) corresponding to the 2-EEP Ξ = (G,K,Π,D). The basic pieces of
K and K ′ are in bijective correspondence, x �→ x′. Let B′ be a nonlocal K ′-bridge which
is not a K-bridge in G. The change of K as described in the sequel will assure that B′

consists of parts of bridges and parts of inner branches of K from the same millipede.
Such a bridge B′ is attached only to two open branches e′, f ′ of K ′, and in K there is
a cluster C of K-bridges attached to e and f . Then D′(B′) consists of the admissible
embeddings for the cluster C. In the rest of this section we describe the compression in
more details.

ε ε

Bi

Bi+1

Bi+2

B
~

Figure 9: A local change of K.
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Let M = B1 ∪ · · · ∪ Bs be the bridges of a millipede in a minimal obstruction Ω.
Denote by εi the oriented branch of K on which Bi and Bi+1 overlap. Suppose that
M contains three consecutive bridges Bi, Bi+1, Bi+2 such that ε := εi = εi+1. Then
ε(Bi+1) < ε(Bi) ≤ ε(Bi+2) < ε(Bi+1). Now we replace the segment (ε(Bi+1), ε(Bi+1)) of
ε by a path from ε(Bi+1) to ε(Bi+1) in the bridge Bi+1 (such that the path is internally
disjoint from K). See Figure 9 where k = 4 and p = 1. (The same millipede is also
presented in Figure 8.) Denote the new subgraph by K ′ and observe that Bi and Bi+2

merge into a single K ′-bridge, say B̃. We may view B̃ as a bridge from the same cluster
as Bi and Bi+2. (We may also replace B̃ by a subgraph of bounded branch size [M3]
to make sure that the bridges remain of bounded size.) The parts of Bi+1 which do
not lie in K ′ or B̃ are omitted. All other bridges in Ω remain unchanged. This change
gives rise to a new millipede M̃ = B1 ∪ · · · ∪Bi−1 ∪ B̃ ∪Bi+3 ∪ · · · ∪Bs which is shorter
than M . It is easy to see that (Ω\(Bi ∪ Bi+1 ∪ Bi+2)) ∪ B̃ is a minimal obstruction.
By repeated application of the above changes we either achieve that M changes into a
millipede without consecutive forcings on the same (oriented) branch, or it becomes a
trivial subchain consisting of a single bridge.
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Figure 10: A global change of K.

LetM be the millipede resulting after the above changes. Consider the corresponding
graph � of M which was introduced in Section 6. Observe that M is closed and that �
is a directed cycle. Let k = |V (�)|. Then εi = εi+k for each index i. Let κ = k(k + 1).
Suppose that the length s of M is at least κ + 1 and that s − 1 is a multiple of κ. Let
p = (s − 1)/κ. For i = 1, . . . , k, let Pi be a path in K ∪ M joining vertices εi(Bi+1)
and εi(Bpκ−k+i) on εi composed of the paths between the vertices εi+j(Bi+1+j(k+1))
and εi+j+1(Bi+1+j(k+1)) in Bi+1+j(k+1) (0 ≤ j < pk) and segments of branches εi+j+1

between εi+j+1(Bi+1+j(k+1)) and εi+j+1(Bi+1+(j+1)(k+1)) (0 ≤ j ≤ pk − 2). See Figure
10. The paths Pi (1 ≤ i ≤ k) are pairwise disjoint and do not intersect any of the bridges
B1+j(k+1) (0 ≤ j ≤ pk). After replacing segments of the branches εi from εi(Bi+1) to
εi(Bpκ−k+i) by the paths Pi (1 ≤ i ≤ k), the bridges B1+j(k+1) (0 ≤ j ≤ pk) merge
together into a single K ′-bridge B̃ where K ′ is the new subgraph. Since only bridges
from M̃ are attached to the inner branches of M where the change has been done, the
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other K-bridges do not change. Therefore, we have replaced M in Ω by a single bridge
B̃. Since B̃ retains the forcing properties of M in the obstruction Ω, the new set of K ′-
bridges forms a minimal obstruction. The segments of εi (1 ≤ i < k) between εi(Bi+1)
and εi(Bi) and those parts of bridges fromM that belong neither to K ′ nor to B̃ can be
omitted. We also replace B̃ by a subgraph of bounded branch size [M3]. By repeating
the compression described above for all millipedes in Ω, we end up with an obstruction
of bounded branch size.

In applications we need another improvement of the results proved so far. In solving
more general EEPs, we may need to solve several 2-EEPs, and by solving each new case,
we do not want to change the subgraph K in such a way that previous obstructions
are changed (or even destroyed). Performing compression in previous steps, we may
assume that obstructions of those steps are of bounded branch size. Now, we allow
compression to change only those segments of branches of K that do not contain any
vertex of previous obstructions. More precisely, let U ⊆ V (K) be a set of vertices of
K of bounded size. (In mentioned applications, U may be taken as the set of all main
vertices of K and all vertices of attachment of the bridges in previous obstructions.) If
we interpret all vertices in U as being main vertices of K, the inner segments of the
millipedes will be automatically disjoint from U and hence our goal is achieved. The
time complexity of the entire procedure is still linear (with bigger constant). We say that
the compression is performed with respect to U . Such a compression finds a subgraph compression

with respect toK ′ homeomorphic to K. The homeomorphism is the identity on U and all edges of K
incident with U .

Theorem 8.1 Let Ξ = (G,K,Π,D) be a 2-EEP with properties (P1)–(P7), and let
U ⊆ V (K) be a set of vertices such that each main vertex of K is contained in U . There
is an algorithm that either finds a solution for Ξ or returns a subgraph K ′ homeomorphic
to K and an obstruction Ω obtained by a compression with respect to U . There is an
upper bound on the number of bridges in Ω that depends only on bsize(K) and |U |. The
time complexity of the algorithm is O(κ · |E(G)|) where κ depends only on bsize(K) and
|U |.

Let us conclude this section with some remarks how one could simplify the overall
procedure yielding Theorem 8.1 if we would not insist on finding minimal obstructions
for Ξ, and would only care of getting an obstruction of bounded branch size, allowing
compressions. In that case, we take one of the forcing chains obtained by Algorithm
Extend, make it forward minimal and assure by splitting that each subchain satisfies
(C0)–(C3) and (M1)–(M6). Then we could split the chain into millipedes and perform
the compression. This would make one of the forcing chains consist of a bounded number
of bridges. The same procedure can then be repeated on the second forcing chain, and
because of the bounded number of bridges in the first one, no troubles arise from the
mutual interference of the bridges from both chains.
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9 Extending closed 2-cell embeddings

The algorithm of Theorem 8.1 is a powerful tool in solving more general EEPs [M1,
JMM3, M4]. Let us show some of its strength by presenting a linear time solution for
general EEPs in which the subgraph K is closed 2-cell embedded.

Suppose that K is a 2-connected subgraph of G. Let G3
K be the graph obtained

from G by adding three vertices each of which is adjacent to all main vertices of K. We
assume that G3

K is 3-connected and that there are no local K-bridges in G. Denote by
B the set of all K-bridges in G. Suppose that an EEP Ξ = (G,K,Π,D) is given where
Π is a closed 2-cell embedding of K.

Proposition 9.1 Let G, K, and Ξ be as above. There is an algorithm whose input is
Ξ and a set U0 ⊆ V (K) (containing all main vertices of K) that either finds a solution
for Ξ or returns an obstruction Ω obtained by a compression with respect to U0. The
algorithm spends O(κ·|E(G)|) time where κ depends only on bsize(K) and |U0|. If Ξ has
no solution, then bsize(K ′ ∪ Ω) is bounded with the bound depending only on bsize(K)
and |U0| (where K ′ is the graph obtained from K by the compression).

Proof. Let B0 be the set of K-bridges that have an attachment in an open branch of
K. Denote by D0 the restriction of D to B0. Then the EEP Ξ0 = (K ∪ B0,K,Π,D0) is
a 2-EEP. By construction, Ξ0 satisfies (P1), and since Π is a closed 2-cell embedding,
it also fulfils (P7). By using the auxiliary results from [JMM1, M1], also (P2)–(P6) can
be achieved in linear time. Moreover, results of [M1] show that (P4) can be achieved
also for each bridge in B\B0. Each bridge from B\B0 is attached to main vertices of
K only. We may assume that to each pair of main vertices of K at most one bridge
that is not strongly attached to K is attached. Since in each face of K at most one
strongly attached bridge of each type can be embedded, the number of bridges in B\B0

is bounded in terms of bsize(K) (or we have an obstruction of bounded size).
We start with Ω = B\B0 and with the set U ⊆ V (K) consisting of U0 and all vertices

of attachment of bridges in B\B0. For each D-compatible embedding of bridges B\B0,
the EEP for the remaining bridge set B0 is still 2-restricted. Applying Theorem 8.1 (and
performing the compression with respect to the current set U), we either get a solution
and stop, or we get an obstruction composed of a bounded number of bridges. We add
these bridges in Ω and extend U with all vertices of attachment of these bridges. This
guarantees that after each step, Ω is an obstruction for the already treated embeddings
of B\B0. The compression may give rise to local bridges which can in turn be eliminated
since G3

K is 3-connected [JMM1].
Each B ∈ B\B0 may be embedded in one or more faces of K (whose number is

bounded in terms of bsize(K)). Since Π is a closed 2-cell embedding, all embeddings
of B in the same face use the same appearances of their vertices of attachment. Hence
the number of distinct embeddings of B\B0 that has to be treated is also bounded in
terms of bsize(K). This implies that the time complexity and the branch size of the
obstruction are as claimed.
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If the embedding Π of K in the EEP Ξ is a closed 2-cell embedding, then each bridge
admits at most one embedding scheme in each face of K, and each such embedding is
simple. The following corollary of Proposition 9.1 solves general EEPs whose subgraph
K is closed 2-cell embedded. Note that the assumption on Π implies that for each
K-bridge B, all its embeddings that extend Π are simple.

Corollary 9.2 Let Ξ = (G,K,Π,D) be an EEP where Π is a closed 2-cell embedding
of K. Suppose that for each bridge B, D(B) contains all possible embedding schemes
for B. There is a linear time algorithm that either finds a solution for Ξ, or returns a
subgraph K ′ of G obtained from K by a sequence of compressions and an obstruction
Ω for the corresponding EEP Ξ′. The branch size of K ′ ∪ Ω is bounded by a constant
depending on bsize(K) only.
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J. Discrete Math., in press.

[M1] B. Mohar, Projective plane and Möbius band obstructions, submitted.
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