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ABSTRACT
It is well-known (Feige and Kilian [24], H̊astad [39]) that
approximating the chromatic number within a factor of n1−ε

cannot be done in polynomial time for ε > 0, unless coRP =
NP. Computing the list-chromatic number is much harder
than determining the chromatic number. It is known that
the problem of deciding if the list-chromatic number is k,
where k ≥ 3, is Πp

2-complete [37].
In this paper, we focus on minor-closed and odd-minor-

closed families of graphs. In doing that, we may as well
consider only graphs without Kk-minors and graphs with-
out odd Kk-minors for a fixed value of k, respectively. Our
main results are that there is a polynomial time approxi-
mation algorithm for the list-chromatic number of graphs
without Kk-minors and there is a polynomial time approxi-
mation algorithm for the chromatic number of graphs with-
out odd-Kk-minors. Their time complexity is O(n3) and
O(n4), respectively. The algorithms have multiplicative er-
ror O(

√
log k) and additive error O(k), and the multiplica-

tive error occurs only for graphs whose list-chromatic num-
ber and chromatic number are Θ(k), respectively.
Let us recall that H has an odd complete minor of order l

if there are l vertex disjoint trees in H such that every two of
them are joined by an edge, and in addition, all the vertices
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of trees are two-colored in such a way that the edges within
the trees are bichromatic, but the edges between trees are
monochromatic. Let us observe that the complete bipartite
graph Kn/2,n/2 contains a Kk-minor for k ≤ n/2, but on
the other hand, it does not contain an odd Kk-minor for
any k ≥ 3. Odd K5-minor-free graphs are closely related
to one field of discrete optimization which is finding condi-
tions under which a given polyhedron has integer vertices,
so that integer optimization problems can be solved as lin-
ear programs. See [33, 34, 64]. Also, the odd version of the
well-known Hadwiger’s conjecture has been considered, see
[28].
Our main idea involves precoloring extension. This idea

is used in many results; one example is Thomassen’s proof
on his celebrated theorem on planar graphs [69].
The best previously known approximation for the first re-

sult is a simple O(k
√
log k)-approximation following algo-

rithm that guarantees a list-coloring with O(k
√
log k) colors

for Kk-minor-free graphs. This follows from results of Kos-
tochka [54, 53] and Thomason [67, 68].
The best previous approximation for the second result

comes from the recent result of Geelen et al. [28] who gave
an O(k

√
log k)-approximation algorithm.

We also relate our algorithm to the well-known conjecture
of Hadwiger [38] and its odd version. In fact, we give an
O(n3) algorithm to decide whether or not a weaker version
of Hadwiger’s conjecture is true. Here, by a weaker version
of Hadwiger’s conjecture, we mean a conjecture which says
that any 27k-chromatic graph contains a Kk-minor. Also,
we shall give an O(n2500k) algorithm for deciding whether or
not any 2500k-chromatic graph contains an odd-Kk-minor.
Let us mention that this presentation consists of two pa-

pers which are merged into this one. The first one consists
of results concerning minor-closed classes of graphs by two
current authors, and the other consists of results concerning
odd-minor-closed classes of graphs by the first author.

Categories and Subject Descriptors
G.2 [Discrete Math]: Combinatorics; G.2.2 [Graph The-
ory]: Combinatorics—Graph algorithms,Computations on
discrete structures
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General Terms
Algorithm, Theory

Keywords
Graph coloring, List coloring, Graph minor, Odd-minor,
Hadwiger Conjecture

1. INTRODUCTION

1.1 History and background
Graph coloring is one of the central subjects in both Dis-

crete Mathematics and Theoretical Computer Science. Graph
coloring is a mapping from V (G) to a set of colors C so that
any two adjacent vertices of G receive different colors. The
chromatic number χ(G) is the minimum number of colors for
which there exists a coloring of G. The book by Jensen and
Toft [41] is an excellent reference about the current research
related to colorings of graphs.
Also, it is one of the central problems in combinatorial op-

timization, and it is one of the hardest problems to approx-
imate. In general, the chromatic number is inapproximable
in polynomial time within factor n1−ε for any ε > 0, unless
coRP = NP , cf. Feige and Kilian [24] and H̊astad [39]. Even
for 3-colorable graphs, the best known polynomial approx-
imation algorithm achieves a factor of O(n3/14 logO(1) n) in
[6]. An interesting variant of the classical problem of prop-
erly coloring the vertices of a graph with the minimum pos-
sible number of colors arises when one imposes some restric-
tions on the colors or the number of colors available to par-
ticular vertices. This variant received a considerable amount
of attention by many researchers, and that led to several
beautiful conjectures and results. This subject, known as
list-coloring , was first introduced in the second half of the
1970s, in two papers by Vizing [72] and independently by
Erdős, Rubin and Taylor [23].
If G = (V,E) is a graph, and f is a function that assigns

to each vertex of v in G a positive integer f(v), we say that
G is f-choosable (or f-list-colorable) if for every assignment
of sets of integers S(v) ⊆ Z, where |S(v)| = f(v) for all
v ∈ V (G), there is a proper vertex coloring c : V → Z so
that c(v) ∈ S(v) for all v ∈ V (G).
The smallest integer k such that G is f -choosable for

f(v) = k (v ∈ V (G)) is the list-chromatic number χl(G).
Clearly, χ(G) ≤ χl(G), and there are many graphs for which
χ(G) < χl(G). A simple example is the complete bipartite
graph K2,4, which is not 2-choosable. Another well-known
example is the complete bipartite graph K3,3. In fact, it is
easy to show that for every k, there exist bipartite graphs
whose list-chromatic number is bigger than k. It is actually
NP-hard to determine the list-chromatic number of bipar-
tite graphs, see [71]. Let us mention that list coloring is well
motivated in a sense of providing natural interpretations for
various kinds of scheduling problems, see [4, 5, 8]. Further
applications include issues in VLSI theory.
In this paper, we are interested in approximating the list

chromatic number in minor-closed class of graphs, and ap-
proximating the chromatic number of odd-minor-closed class
of graphs.

1.2 Approximating the list chromatic number
in a minor-closed class of graphs

Although there are many negative results as stated above,
there are some positive results, which are mainly related to
the Four Color Theorem and coloring planar graphs. One
celebrated example is Thomassen’s result on planar graphs
[69]. It says that every planar graph is 5-choosable, and
its proof is within 20 lines and gives rise to a linear time
algorithm to 5-list-color planar graphs. In contrast with
the Four Color Theorem, there are planar graphs that are
not 4-choosable [73]. It is well-known that planar graphs
are closed under taking minor operations; that is, deleting
edges, deleting vertices and contracting edges. So one nat-
ural question is: can we extend the result of Thomassen to
more general minor-closed families of graphs? This is our
main motivation. Our main theorem is the following.

Theorem 1.1. Let M be a minor-closed family of graphs
and suppose that some graph of order k is not a member
of M. Then there is a polynomial time algorithm for list-
coloring graphs in M with O(k) colors. If a coloring is not
found, the algorithm finds a small certificate that the graph
is not Θ(k)-choosable. The time complexity is O(n3).

Previously, the best known result needed O(k
√
log k) col-

ors was using a theorem of Thomason and Kostochka [67,
68, 54, 53]. Their result says that any graph without Kk-
minors is O(k

√
log k)-degenerate, i.e., any induced subgraph

contains a vertex of degree O(k
√
log k). Hence it implies a

linear time algorithm to list-color graphs withoutKk-minors
with at most O(k

√
log k) colors.

The above discussion also shows that the algorithm of
Theorem 1.1 can also be viewed as an approximation algo-
rithm for the list-chromatic number of graphs without Kk-
minors, whose additive error is O(k) for graphs whose list-
chromatic number is O(k), and whose multiplicative error is
O(

√
log k) if the list-chromatic number is Θ(k).

Our main idea involves precoloring extension. This idea is
used in many results; one example is Thomassen’s proof on
his celebrated theorem on planar graphs [69]. Actually, the
starting point of the investigation on precoloring extension
was the observation that, on interval graphs, it provides an
equivalent formulation of a practical problem on scheduling.
For instance, this occurs if some of flights have to be assigned
to a given number of airplanes according to the schedule
of a timetable under an additional condition that the fixed
maintenance schedule assigned to each airplane must not be
obeyed [5].
Let us state our main result more precisely. We say that

a number f(k) which depends on the parameter k is com-
putable if f(k) can be expressed as a specific value, depend-
ing on k. In the next result we meet such values. The
reader interested in specific expressions yielding these con-
stants should consult [9]. Here is our main result.

Theorem 1.2. Let k be an integer. There is a com-
putable constant f(k) and there is an O(n3) algorithm whose
input is a graph G of order n, a 15.5k-list-assignment L :
V (G) → 2N, a set Z ⊆ V (G) with |Z| ≤ 6(k + 1) and an
L-coloring of G[Z]. The algorithm either

(1) finds an L-coloring of G extending the precoloring of
Z, or

(2) concludes that G contains Kk as a minor, or
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(3) finds a subset Z′ ⊆ V (G) with |Z′| ≤ 6(k + 1), an L-
coloring of Z′, and a Kk-minor-free subgraph H of G
of bounded size such that the precoloring of Z′ cannot
be extended to an L-coloring of H.

If (3) holds in Theorem 1.2, then H is a counterexample to
the list-coloring version of Hadwiger’s conjecture. In fact,
this would be a counterexample to the weaker conjecture
that every graph whose list-chromatic number is at least
9.5k−6 hasKk as a minor. If (2) holds, then we can actually
detect a Kk-minor by the result of Robertson and Seymour
[59]. The conclusion of Theorem 1.2(3) that such a subgraph
has bounded number of vertices is an interesting theoretical
outcome of the algorithm.

Corollary 1.3. Let k be an integer. There is a com-
putable constant f(k) such that every graph without Kk mi-
nors is either 15.5k-choosable, or it contains a subgraph of
order at most f(k) that is not (9.5k − 6)-choosable.
Another corollary given below is also of interest since there

are no efficient algorithms for checking (nontrivial cases of)
choosability questions for large classes of graphs.

Corollary 1.4. For every fixed k, there is a computable
constant f(k) and an algorithm with running time O(n3) for
deciding either that

(1) G is 15.5k-choosable, or

(2) G contains a Kk-minor, or

(3) G contains a subgraph H of bounded size which does
not contain a Kk-minor and is not (9.5k−6)-choosable.

We also consider algorithms on the arboricity of graphs
in minor-closed families. An arboreal k-coloring of G is a
partition of the vertices of G into at most k classes, each
of which induces an acyclic subgraph of G (a forest). The
arboricity of G, denoted by a(G), is the the minimum num-
ber k for which G has an arboreal k-coloring. The problem
of computing a(G) for a given graph G is known to be NP-
hard. However, a good upper bound on a(G) is also known
in the literature. Suppose G is d-degenerate. Then it is easy
to see that a(G) is at most 1 + d/2. Let us remark that the
problem of finding arboreal colorings of graphs has applica-
tions in the domain of design for testability in VLSI circuits,
see [30, 63] for details.
Arboricity has been extensively examined for planar graphs.

There is a linear-time algorithm for finding an arboreal 3-
coloring of planar graphs. This was also extended to K5-
minor-free graphs and K3,3-minor-free graphs. See [16, 18,
17] for details. These algorithms produce arboreal color-
ings which use at most a(G) + 1 colors. We are interested
in extending these results to general minor-closed families
of graphs, for which we may assume that they are without
Kk-minors.

Theorem 1.5. Let M be a minor-closed family of graphs
such that Kk is not its member. There is an O(n3) time
algorithm which either finds an arboreal coloring of a given
graph G ∈ M using O(k) colors, or concludes that some
minor of G has arboricity Θ(k).

Previously, the best known algorithm would useO(k
√
log k)

colors, being based on the afore-mentioned result of Thoma-
son and Kostochka.
To prove Theorems 1.15 and 1.5, we need the following

result from [9].

Theorem 1.6 ([9]). For every k, there exists a con-
stant N(k) such that every 2k-connected graph with min-
imum degree at least 31k

2
and with at least N(k) vertices

contains Kk as a minor.

Actually, in the proof of Theorem 1.2, we need a slightly
stronger corollary of the main result in [9]. See Section 2.

1.3 Approximating the chromatic number in
odd-minor-closed classes of graphs

Odd-minor-closed classes of graphs seem to be a much
weaker concept than minor-closed families. Let us remind
that we say that H has an odd complete minor of order l if
there are l vertex disjoint trees in H such that any two of
them are joined by an edge, and in addition, all the vertices
of the trees are two-colored in such a way that the edges
within the trees are bichromatic, but the edges between trees
are monochromatic. Clearly, an odd minor is a special case
of a minor. Let us observe that the complete bipartite graph
Kn/2,n/2 contains a Kk-minor for k ≤ n/2, but does not
contain any odd Kk-minor when k ≥ 3. In fact, any graph
G without Kk-minors is O(k

√
log k)-degenerate, i.e, every

induced subgraph has a vertex of degree at most O(k
√
log k),

see [67, 68, 54, 53]. So G has at most O(k
√
log k n) edges.

On the other hand, graphs without odd-Kk-minors may have
Θ(n2) edges. So a given graph may be dense. This seems
to make huge difference. On the other hand, as we shall see
later, odd minors are actually motivated by graph minor
theory and graph structural theory, and many researchers
believe that there would be some analogue of graph minor
theory, and some connection to the well-known conjecture
of Hadwiger [38].
There is another motivation for odd minors. A long-

standing area of interest in the field of discrete optimization
is finding conditions under which a given polyhedron has
integer vertices, so that integer optimization problems can
be solved as linear programs. In the case of a particular set
covering formulation for the maximum cut problem, there is
a nice structure theorem, which has something to do with
odd-minors. Let us give the notation. A signed graph is a
pair (G,Σ), where G = (V,E) is an undirected graph and
Σ ⊆ E. Call a set of edges, or a path or a circuit odd (even,
respectively) if it contains an odd (even) number of edges in
Σ. An odd circuit cover is a set of edges intersecting all odd
circuits. Following Grötschel and Pullyblank [32], a signed
graph (G,Σ) is called weakly bipartite if each vertex of the
polyhedron determined by

1. x(e) ≥ 0 for each edge e,
2.

P
e∈C x(e) ≥ 1 for each odd circuit C,

is integral, that is, the incidence vector of an odd circuit
cover. Weakly bipartite graphs are important since a maxi-
mum capacity cut in such graphs can be found in polyno-
mial time (by using the ellipsoid method [31]). Let us ob-
serve that the problem of solving the related integer program
contains the maximum cut problem, which is NP-hard.
Guenin [33, 34] gave a characterization of weakly bipar-

tite graphs in terms of forbidden minors, and thus proving
a special case of the well-known conjecture of Seymour [65].
The theorem says that a signed graph (G,

P
) is weakly bi-

partite if and only if G does not contain odd-K5-minors.
Also, this generalizes the result of Seymour [65] who proved
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that a signed graph (G,
P
) is strongly bipartite if and only

if G does not contain odd-K4-minors. For the definition of
strongly bipartite graphs, we refer to [33, 34, 64]. Guenin’s
result [33, 34] has motivated several remarkable subsequent
papers, see [29, 64].
As mentioned abovee, odd minors have been used to prove

structure theorems in discrete optimization. For usual mi-
nors, there are important graph minor results, due to Robert-
son and Seymour. Since odd-minors generalize the usual
ones, for which there exist powerful algorithmic results, one
may want to extend these to odd-minors. This is motiva-
tion of our work. Let us first present some results concerning
minor-closed families of graphs using the Graph Minor The-
ory of Robertson and Seymour.
The seminal Graph Minor Theory of Robertson and Sey-

mour gives a powerful structural theorem. At a high level,
the theorem says that every graph without Kk-minor can be
decomposed into a collection of graphs each of which can “al-
most” be embedded into a bounded-genus surface, combined
in a tree structure. The algorithmic part of the Graph Minor
Theory is a polynomial-time algorithm for testing the exis-
tence of fixed minors [59] which, combined with the proof of
Wagner’s Conjecture, implies the existence of a polynomial-
time algorithm for deciding any minor-monotone graph prop-
erty.
This consequence has been used to prove existence of

polynomial-time algorithms for several graph problems, some
of which were not previously known to be decidable [25]. Al-
gorithms for H-minor-free graphs for a fixed graph H have
been studied extensively; see e.g. [12, 36, 15, 52, 57, 20].
In particular, it is generally believed that several algorithms
for planar graphs can be generalized to H-minor-free graphs
for any fixed H [36, 52, 57, 20]. The decomposition theorem
provides the key insight into why this might be possible: first
extend an algorithm for planar graphs to handle bounded-
genus graphs, then extend it to graphs “almost-embeddable”
into bounded-genus surfaces, and finally to tree decomposi-
tions of such graphs. The highlight of this approach was
done in [20] to lead a 2-approximation algorithm for the
graph coloring problem and a constant factor approxima-
tion for tree-width and the size of grid-minor.
But this approach may not work for odd-minor-closed

graphs. First, “almost-embeddable” graphs into bounded-
genus surfaces are rather sparse. For example, planar graphs
can have at most 3n− 6 edges, and bounded-genus surfaces
have at most 3n− 6 + 6g edges with Euler genus g. On the
other hand, dense(complete) bipartite graphs cannot con-
tain any odd Kk-minor for k ≥ 3. It seems that the ar-
gument of a a constant factor approximation for tree-width
and the size of grid-minor in [20] should fail completely, and
the 2-approximation algorithm for the graph coloring prob-
lem fails unless there is a polynomial time algorithm to get a
feasible structure for graphs with no odd-Kk-minor. Second,
it is not easy to figure out which edge is possible to contract
because we need to keep the ”parity” in odd-minor-closed
graphs. Deleting edges and vertices certainly keep the par-
ity, but it is not clear when we can contract edges. This
causes a lot of trouble for the algorithm since we may need
a reduction process.
Recently, however, Geelen et al. [28] proved that any

graph G without odd Kk-minors is O(k
√
logk)-colorable.

Their result implies an O(k
√
log k)-approximation algorithm

for the graph coloring problem of graphs with no odd-Kk-

minor. (Geelen et al. [28] did not explicitly state the al-
gorithm for the coloring, but we shall give a sketch of an
algorithm for the completeness.) Motivated by this work,
we obtain our second main result.

Theorem 1.7. There is an O(k)-approximation graph col-
oring algorithm for graphs with no odd Kk-minors.

Actually, the main result is the following.

Theorem 1.8. Let k be an integer. There is a com-
putable constant f(k) and there is an O(n4) algorithm whose
input is a graph G of order n, a set Z ⊆ V (G) with |Z| ≤
192k and a precoloring of G[Z]. The algorithm either

(1) finds a 496k-coloring of G extending the precoloring of
Z, or

(2) concludes that G contains an odd-Kk-minor (actually
detects an odd-Kk-minor), or

(3) finds a subset Z′ ⊆ V (G) with |Z′| ≤ 192k, a coloring
of Z′, and an odd-Kk-minor-free subgraph H of G of
bounded size such that the precoloring of Z′ cannot be
extended to a 496k-coloring of H.

If (3) holds in Theorem 1.8, then H is a counterexample
to the odd version of Hadwiger’s conjecture. In fact, this
would be a counterexample to the weaker conjecture that
every graph whose chromatic number is at least 304k has an
odd Kk-minor. The conclusion of Theorem 1.8(3) that such
a subgraph has bounded number of vertices is a theoretical
outcome of the algorithm worth to be mentioned.

Corollary 1.9. Let k be an integer. There is a com-
putable constant f(k) such that every graph without odd-Kk

minors is either 496k-colorable, or it contains a subgraph of
order at most f(k) that is not 304k-colorable.

Another corollary given below is also of interest since this
corollary gives rise to an algorithm for Theorem 1.8.

Corollary 1.10. For every fixed k, there is a computable
constant f(k) and an algorithm with running time O(n4) for
deciding either that

(1) G is 496k-colorable, or

(2) G contains an odd-Kk-minor, or

(3) G contains a subgraph H of bounded size which does
not contain an odd-Kk-minor and is not 304k-colorable.

The approximation algorithm follows from the following
theorem together with Theorem 1.8.

Theorem 1.11 (Geelen et al. [28]). There exists a
constant c such that any graph with no odd Kk-minor is
ck

√
log k-colorable.

In the conclusion, we shall explain the algorithm to color
graphs without odd-Kk-minors with at most ck

√
log k-colors.
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1.4 Hadwiger’s Conjecture and the Odd
Hadwiger Conjecture

Hadwiger’s Conjecture from 1943 suggests a far-reaching
generalization of the Four Color Theorem [1, 2, 58] and is
considered by many as the deepest open problems in graph
theory. It claims the following.

Conjecture 1.12. For every k ≥ 1, every k-chromatic
graph has a Kk-minor.

Conjecture 1.12 is trivially true for k ≤ 3, and reasonably
easy for k = 4, as shown by Dirac [22] and Hadwiger himself
[38]. However, for k ≥ 5, Conjecture 1.12 implies the Four
Color Theorem. In 1937, Wagner [74] proved that the case
k = 5 of Conjecture 1.12 is, in fact, equivalent to the Four
Color Theorem. In 1993, Robertson, Seymour and Thomas
[62] proved that a minimal counterexample to the case k = 6
is a graph G which has a vertex v such that G− v is planar.
By the Four Color Theorem, this implies Conjecture 1.12
for k = 6. Hence the cases k = 5, 6 are each equivalent to
the Four Color Theorem [1, 2, 58]. Conjecture 1.12 is open
for k ≥ 7. For the case k = 7, Toft and the first author
[50] proved that any 7-chromatic graph has K7 or K4, 4 as
a minor. Recently, the first author [43] proved that any
7-chromatic graph has K7 or K3, 5 as a minor.
It is not known if there exists an absolute constant c such

that any ck-chromatic graph has a Kk minor. So far, it is
known that there exists a constant c such that any ck

√
log k-

chromatic graph has a Kk-minor [53, 54, 67, 68].
So it would be of great interest to prove that a linear

function of the chromatic number is sufficient to force Kk

as a minor. We refer to [70] for further information on the
Hadwiger Conjecture.
When relaxing the Hadwiger Conjecture to allow ck col-

ors, the following conjecture from [47] involving list colorings
may also be true:

Conjecture 1.13. There is a constant c such that every
graph without Kk minors is ck-choosable.

Conjecture 1.12 does not hold for list colorings. For ex-
ample, there exist planar graphs (without K5 minors) which
are not 4-choosable. However, Conjecture 1.13 is formulated
in such a way that it may also be true for c = 1. We believe
that Conjecture 1.13 holds at least with c = 3

2
.

Gerards and Seymour (see [41], page 115) conjectured the
following.

Conjecture 1.14. For all l ≥ 1, every graph with no odd
Kl+1 minor is l-colorable.

This is an analogue of Conjecture 1.12. Clearly, Conjec-
ture 1.14 implies Hadwiger’s conjecture. Again, Conjecture
1.14 is trivially true when l = 1, 2. In fact, when l = 2,
this means that if a graph has no odd cycles, then it is
2-colorable. The l = 3 case was proved by Catlin [11]. Re-
cently, Guenin [35] announced a solution of the l = 4 case.
This result would imply the Four Color Theorem because a
graph having no K5-minors certainly contains no odd-K5-
minors. Conjecture 1.14 is open for l ≥ 5.
It is not known if there exists a constant c such that any

ck-chromatic graph contains Kk as a minor. We show in
this paper that from an algorithmic point of view, we can
“decide” this problem in O(n3) time. We also prove the
following.

Theorem 1.15. For every fixed k, there is an algorithm
with running time O(n3) for deciding either that

(1) a given graph G of order n is 27k-colorable, or

(2) G contains Kk-minor, or

(3) G contains a minor H of bounded size which does not
contain a Kk-minor and has no 27k-colorings.

Let us remark the following:

(a) If (3) holds, then H is a counterexample to Hadwiger’s
conjecture. In fact, this would be a counterexample to the
weaker conjecture that any 27k-chromatic graph hasKk as a
minor. The conclusion of Theorem 1.15(3) that such a minor
has bounded number of vertices is an interesting theoretical
outcome of the algorithm.

(b) If (1) holds, we can actually color the graph using at
most 27k colors. If (3) holds, we can exhibit the minor H

by means of a subgraph H̃ of G whose contraction yields H .
If (2) holds, then we can actually detect a Kk-minor.

(c) We need the result of [9] (Theorem 1.6) in order to
prove correctness of the algorithm, but we do not need com-
plicated algorithmic results from the Graph Minor series.
However, the proof of Theorem 1.6 given in [9] depends on
Robertson and Seymour’s deep results, see [9, 61, 60].

Related to Hadwiger’s Conjecture, Chartrand, Geller, Hedet-
niemi [13], and Woodall [75] proposed the following (m,n)-
Contraction-Conjecture:

Conjecture 1.16. For integers 1 ≤ n ≤ m, every graph
G without a Km+1-minor and without a K�m+2

2 �,�m+2
2 �-minor,

has a partition of G into m−n+1 parts, each part inducing a
subgraph without aKn+1-minor and without a K� n+2

2 �,�n+2
2 �-

minor.

This conjecture is true for m ≤ 4 as proved by Chartrand,
Geller and Hedetniemi [13] except for the case (m,n) =
(4, 1), which is equivalent to the Four Colour Theorem. In
these cases, the conjecture is best possible in the sense that
there are graphs whose vertex set cannot be partitioned into
fewer sets with the desired property. That there exist planar
graphs of arboricity 3 was first shown by Chartrand and
Kronk [14]. Several interesting applications are obtained in
[21].
It is not known if there exists a constant c such that any

graph without Kk as a minor has arboricity at most ck. We
show in this paper that from an algorithmic point of view,
we can “decide” this problem in polynomial time.

Theorem 1.17. Let k be an integer. There is a com-
putable constant f(k) and there is an O(n3) algorithm whose
input is a graph G of order n, a set Z ⊆ V (G) with |Z| ≤
6(k + 1) and a precoloring of G[Z]. The algorithm either

(1) finds an 8k-coloring of G extending the precoloring of
Z such that each color class is a forest, or

(2) concludes that G contains Kk as a minor, or

(3) finds a minor H of G, a subset Z′ ⊆ V (H) with |Z′| ≤
6(k+1), and an arboreal coloring of Z′ such that H has
bounded size, has no Kk-minor, and the precoloring of
Z′ cannot be extended to an arboreal 8k-coloring of H.
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Let us observe that if the output is (3), then H is a coun-
terexample to Conjecture 1.16. In fact, this would be a
counterexample to the weaker conjecture as we shall see be-
low. The above theorem has the following corollary.

Corollary 1.18. For every fixed k, there is a computable
constant f(k) and an algorithm with running time O(n3) for
deciding either that

(1) G has arboricity at most 8k,

(2) G contains a Kk-minor, or

(3) G contains a minor H of bounded size which does not
contain a Kk-minor and has arboricity more than 2k.

It is not known if there exists a constant c such that any
ck-chromatic graph contains an odd-Kk-minor. We show in
this paper that from an algorithmic point of view, we can
“decide” this problem in polynomial time. Actually, the
time complexity is O(n2496k).

Theorem 1.19. For every fixed k, there is an algorithm
with running time O(n2496k) for deciding either that

(1) a given graph G of order n is 2496k-colorable, or

(2) G contains an odd-Kk-minor, or

(3) G contains an odd-minor H of bounded tree-width which
does not contain an odd-Kk-minor and has no 2496k-
colorings.

Let us remark the following:
(a) If (3) holds, then H is a counterexample to the odd

Hadwiger’s conjecture. In fact, this would be a counterex-
ample to the weaker conjecture that any 2496k-chromatic
graph has an odd-Kk-minor.

(b) If (1) holds, we can actually color the graph using at
most 2496k colors. If (2) holds, then we can actually detect
the odd-Kk-minor.

(c) We need the result of [9], Theorem 1.6, but we do
not need any result in Graph Minor series. However, the
proof of Theorem 1.6 given in [9] depends on Robertson and
Seymour’s deep results, see [9, 61, 60].

Consider the following problem: Does every 2497k-chromatic
graph contain an odd-Kk-minor?
Our proof of Theorem 1.19 has the following remarkable

corollary.

Corollary 1.20. There are only finitely many minimal
counterexamples to the above problem.

Let us point out that the best previous known ratio for
the chromatic number in the above problem is O(k

√
logk),

which follows from Theorem 1.11. Although we do not know
whether or not chromatic number being linear in k is enough
to force an odd Kk-minor, the above corollary shows that
there are only finitely minimal counterexamples, so the prob-
lem can be answered for every graph in polynomial time.
Another corollary of our proof of Theorem 1.19 is that ev-

ery minimal counterexample to the odd Hadwiger’s conjec-
ture for fixed k is k/2497-connected. This is the first result
showing that minimal counterexamples have linear connec-
tivity. This strengthens Guenin’s result [35] which says that
minimal counterexamples are 4-connected.
The detailed proof will be given in the full paper. Let

us point out that the idea is similar to that of the weaker
Hadwiger’s conjecuture case, but it is more involved and
quite lengthly.

2. COLORING EXTENSION AND LIST
COLORINGS

In this section, we provide details about the proof of The-
orem 1.2. We will use a corollary of the following result from
[9].

Theorem 2.1. For any integers k, s and t, there exists
a computable constant N0(k, s, t) such that every (3k + 2)-
connected graph of minimum degree at least 15.5k and with
at least N0(k, s, t) vertices either contains Kk,st as a topo-
logical minor or a minor isomorphic to s disjoint copies of
Kk,t.

Let A and B be induced subgraphs of G such that G =
A ∪ B. If V (A) \ V (B) �= ∅ and V (B) \ V (A) �= ∅, then
we say that the pair (A,B) is a separation of G. The order
of this separation is equal to |V (A ∩ B)|. Let Z ⊆ V (G)
be a vertex set. We say that the separation (A,B) of G is
Z-essential if (A− Z,B − Z) is a separation of G− Z. If l
is a positive integer, we say that G is l-connected relative to
Z if it has no Z-essential separations of order less than l.
We will need the following corollary of Theorem 2.1:

Theorem 2.2. For any integers k and z, there exists a
constant N1(k, z) such that for every graph G and every ver-
tex set Z ⊆ V (G) of cardinality at most z, if G is (3k + 2)-
connected relative to Z, the degree of every vertex in V (G)\Z
is at least 15.5k, and G has at least N1(k, z) vertices, then
G contains the complete graph Kk as a minor.

Proof. Let G and Z be as assumed in the statement of
the theorem. Let Z′ be the set of all vertices in Z whose
degree is at most 3k + 1 + z. Let D be a set of vertices
in G − Z of cardinality 3k + 2 such that no vertex in Z′ is
adjacent to D. If |V (G)| ≥ (3k+2+ z)z+3k+2 (which we
may assume), then D exists. Let G′ be the graph obtained
from G by adding all edges between Z′ and D.
In G′, every vertex in Z has at least 3k+2 neighbors that

are not in Z. Since G is (3k+2)-connected relative to Z and
is a spanning subgraph of G′, this implies that G′ is (3k+2)-
connected. Suppose that |V (G)| ≥ N0(k, s, t). By Theorem
2.1, G′ either contains a subdivision of Kk,st or a minor
isomorphic to s disjoint copies of Kk,t. Let us take s = z+1
and t = 3k + 2 + z. If G′ has s copies of Kk,t as a minor,
then G′ contains a Kk,k-minor (and hence also a Kk-minor)
that is disjoint from Z. As for the other alternative, when
G′ contains a subgraph K which is a subdivision of Kk,st,
none of the vertices of degree st in K belong to Z′ since the
vertices in Z′ have degree less than (3k+2+ z)z+3k+2 <
(3k + 2 + z)(z + 1) = st. Therefore, G′ − Z′ contains a
subgraph which is a subdivision of Kk,st−z. Since st−z ≥ k,
G has Kk,k and hence also Kk as a minor. So, the theorem
holds for the value N1(k, z) = N0(k, z + 1, 3k + 2 + z).

Let L be a list-assignment for a graph G, and let Z be a
set of vertices of G. By precoloring of Z, we mean that we
L-color the subgraph G[Z] induced by Z.
We will need the following facts.

Fact 2.3. Let Z be a vertex set of G with |Z| ≤ 6k + 4.
Suppose G has a separation (A,B) of order at most 3k + 2
such that both B−A−Z and A−B−Z are nonempty. Then
either |(Z ∩A)∪ (A∩B)| ≤ 6k+4 or |(Z ∩B)∪ (A∩B)| ≤
6k + 4.
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Fact 2.4. For every fixed k, every 15.5k-list-assignment
L, every Z ⊆ V (G) with |Z| ≤ 6k+6, and every precoloring
of Z, if G has a separation (A,B) of order at most 3k + 2
such that both B−A−Z and A−B−Z are nonempty and
|(Z ∩ B) ∪ (A ∩ B)| ≤ 6k + 4, and if the precoloring of Z
can be extended to an L-coloring of A ∪ Z, then either the
resulting coloring of (Z ∩ B) ∪ (A ∩ B) can be extended to
B (and hence the precoloring of Z can be extended to the
whole graph G), or B has a Kk-minor, or B has a subgraph
H which does not contain a Kk-minor and contains a vertex
set Z′ with |Z′| ≤ 6k + 4 such that some precoloring of Z′

cannot be extended to an L-coloring of H.

Fact 2.5. Let Z be a vertex set of G with |Z| ≤ 192k.
Suppose G has a separation (A,B) of order at most 64k such
that both B−A−Z and A−B−Z are nonempty. Then either
|(Z ∩A) ∪ (A ∩B)| ≤ 192k or |(Z ∩B) ∪ (A ∩B)| ≤ 192k.

Fact 2.6. For every fixed k, every Z ⊆ V (G) with |Z| ≤
192k, and every precoloring of Z, if G has a separation
(A,B) of order at most 96k such that both B − A − Z and
A − B − Z are nonempty and |(Z ∩ B) ∪ (A ∩ B)| ≤ 192k,
and if the precoloring of Z can be extended to a coloring of
A∪Z, then either the resulting coloring of (Z∩B)∪ (A∩B)
can be extended to B (and hence the precoloring of Z can be
extended to the whole graph G), or B has an odd-Kk-minor,
or B has a subgraph H which does not contain an odd-Kk-
minor and contains a vertex set Z′ with |Z′| ≤ 192k such
that some precoloring of Z′ cannot be extended to a coloring
of H.

A Kl- minor in a graph G can be thought as a subgraph
of G consisting of l vertex disjoint trees T1, . . . , Tl, called the
nodes of the minor, together with

`
l
2

´
edges joining all pairs

of distinct nodes. We call such a minor even if the union of
the nodes and connecting edges is bipartite. We call such
a minor odd if its vertices can be two-colored so that the
edges in the nodes are bichromatic but the edges between
the nodes are monochromatic.
Recall that a block of a graph H is a maximal 2-connected

subgraph of H . We need the following result.

Theorem 2.7. Let N be a K
32k, (16k−1)(32k

16k)+1
-minor in

a graph G. Then either G has an odd-Kk-minor or G has
a vertex set X of order at most 8k such that G − X has a
bipartite block F containing all but at most 8k nodes of N .

This was proved in [49], but for the completeness, we shall
include the proof. To prove this theorem, we need the fol-
lowing.
Geelen et al. [28] proved the following result.

Theorem 2.8. If G has an even complete minor N of
order at least 16k, then either G has an odd complete minor
of order k or G has a vertex set X with |X| < 8k such that
G−X has a bipartite block F containing more than 8k nodes
of N .

We can think of a K
32k, (16k−1)(32k

16k)+1
-minor as follows:

There are 32k + (16k − 1)`32k
16k

´
+ 1 disjoint trees

T1, . . . , T32k, T
′
1, . . . , T

′
(16k−1)(32k

16k)+1
such that there

is an edge between Ti and T ′
j for any i, j with

1 ≤ i ≤ 32k and 1 ≤ j ≤ (16k − 1)`32k
16k

´
+ 1.

We first two-color the trees T1, . . . , T32k (using colors 1
and 2) such that each Ti is bichromatic. Then for each j, we
two-color T ′

j in such a way that T
′
j is bichromatic and there

are at least 16k bichromatic edges between T ′
j and

S32k
i=1 Ti,

for 1 ≤ j ≤ (16k − 1)`32k
16k

´
+ 1. This is possible since we

have two choices for two-coloring of T ′
j . Then by the Pigeon-

hole Principle, there are 16k disjoint trees in {T1, . . . , T32k},
say trees T1, . . . , T16k, and there are 16k disjoint trees in
{T ′

1, . . . , T
′
(16k−1)(32k

16k)+1
}, say trees T ′

1, . . . , T
′
16k, such that

the edge of the minor joining Ti and T ′
j is bichromatic for

i = 1, . . . , 16k and j = 1, . . . , 16k.
Now let T ∗

i = Ti ∪ T ′
i , where i = 1, . . . , 16k. ClearlyS16k

i=1 T
∗
i is bipartite and forms an even complete minor of

order 16k in G. By Theorem 2.8, either G has an odd com-
plete minor of order k or G has a vertex set X of order at
most 8k such that G − X has a bipartite subgraph F and
each odd cycle is contained in either components of G−X
that do not intersect F or components after deleting a cut
vertex to F .
This completes the proof of Theorem 2.7.

Let us remark that in the above proof, once we detect a
K

32k, (16k−1)(32k
16k)+1

-minor, then we can find an even com-

plete minor of order 16k in linear time. By the result of
Robertson and Seymour [59], we can detect the minor in
O(n3) steps. It remains to find a polynomial time algorithm
for Theorem 2.8. The proof of Theorem 2.8 in [28] certainly
implies the polynomial time algorithm to find the desired
conclusion. Actually, it detects either a desired odd minor
or a vertex set X of bounded size in G such that G−X has
a bipartite subgraph F and each odd cycle is contained in
either components of G−X that do not intersect F or com-
ponents after deleting a cut vertex to F . Geelen et al. [28]
reduced the problem to the problem of finding a maximum
matching that can be solved in O(n3) time, see [26, 55, 19,
27].

3. ALGORITHM FOR APPROXIMATING
LIST-CHROMATIC NUMBER
IN MINOR-CLOSED CLASSES

Algorithm for Theorem 1.2

Input: A graph G, 15.5k-list-assignment L, a set Z ⊆
V (G) with |Z| ≤ 6k + 6, and a precoloring of G[Z].

Output: As described in Theorem 1.2.

Running time: O(f(k)n3) for some function f : N → N.

Description:

Step 1. If G has a vertex of degree at most 15.5k − 1
in V (G) \ Z, then we delete it. We continue this procedure
until there are no vertices of degree at most 15.5k− 1 apart
from those in Z. This can be done in linear time. Let G′ be
the resulting graph. Proceed to Step 2.

Step 2. Test whether G′ has a separation (A,B) of order
at most 3k + 1 such that both B − A − Z and A − B − Z
are nonempty. Suppose first that G′ has no such separation.
If |G′| ≥ g(k) := max{N1(k, z) | 0 ≤ z ≤ 6k + 6}, then it
follows from Theorem 2.2 that G′ contains Kk as a minor.
So, we output that G has Kk as a minor. If |G′| < g(k),
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then we can check (1), (2) and (3) of Theorem 1.2 in constant
time and output the outcome.
If G′ has such a separation, then go to Step 3.

Step 3. Detect a separation (A,B) of G′ of minimum
order (≤ 3k+1) such that both B−A−Z and A−B−Z are
nonempty. This can be done in polynomial time by standard
methods. The best known algorithm is that of Henzinger,
Rao, and Gabow [40] which needs O(n2) time for this task.
By Fact 2.3, either |(Z ∩A) ∪ (A ∩ B)| ≤ 6k + 4 or |(Z ∩

B)∪(A∩B)| ≤ 6k+4. Suppose |(Z∩B)∪(A∩B)| ≤ 6k+4.
Then, we test A ∪ Z (recursively), starting from Step 1.

If A ∪ Z has an L-coloring extending the precoloring of Z,
then we precolor A ∩ B by this coloring. Then we test B
(recursively) with Z′ = (Z ∩ B) ∪ (A ∩ B) and using the
corresponding precoloring of A ∩B and Z ∩B. If B has an
L-coloring extending the precoloring of A∩B and Z∩B, this
give rise to an L-coloring of their union, and this coloring
gives rise to an L-coloring of G′. Of course, we can extend
this coloring of G′ to G.
If either A∪Z or B contains a Kk-minor, then we obtain

a Kk-minor in G′. Similarly, if outcome (3) appears for
A ∪ Z, we get the same outcome for G′. Also, if outcome
(3) appears for B, we get the same outcome for G′.

This algorithm stops when either the current graph is
small or when it has no separation (A,B) of order at most
3k+1 such that both B−A−Z and A−B−Z are nonempty,
and minimum degree is at least 15.5k. By Fact 2.4, it is easy
to see that this algorithm correctly gives one of outcomes in
Theorem 1.2 for G′. Then it is easy to extend the coloring
of G′ to G.
Finally, let us estimate time complexity of the algorithm.

All steps used in the algorithm can be done in quadratic
time. Another factor of n pops up because of applying
the recursion in Step 3. This completes the analysis of the
correctness and of the stated time complexity of the algo-
rithm.

4. ALGORITHM FOR ARBORICITY
In this section, we shall give a proof of Theorem 1.17.
The following fact is easy to prove.

Fact 4.1. If G is (16k − 1)-degenerate, then G has ar-
boricity at most 8k and an arboreal 8k-coloring can be found
in linear time.

The algorithm below is quite close to the one in Theorem
1.2, except that we need to take care of one issue.

Algorithm for Theorem 1.17

Input: A graph G, a set Z ⊆ V (G) with |Z| ≤ 6k + 6,
and a precoloring of Z.

Output: As described in Theorem 1.17.

Running time: O(f(k)n3) for some function f : N → N.

Description:

Step 1. If G has a vertex of degree at most 16k − 1 in
V (G) \ Z, then we delete it. We continue this procedure
until there are no vertices of degree at most 16k − 1 apart
from those in Z. This can be done in linear time. Let G′ be
the resulting graph. Proceed to Step 2.

Step 2. Test whether G′ has a separation (A,B) of order
at most 3k + 1 such that both B − A − Z and A − B − Z
are nonempty. Suppose first that G′ has no such separation.
If |G′| ≥ g(k) := max{N1(k, z) | 0 ≤ z ≤ 6k + 6}, then it
follows from Theorem 2.2 that G′ contains Kk as a minor.
So, we output that G has Kk as a minor. If |G′| < g(k), then
we can check (1), (2) and (3) of Theorem 1.17 in constant
time and output the outcome.
If G′ has such a separation, then go to Step 3.

Step 3. G′ has a separation (A,B) of order at most 3k+1
such that both B − A − Z and A − B − Z are nonempty;
detect such a separation (A,B) of minimum order. This
can be done in polynomial time by standard methods [40]
in time O(n2).
By Fact 2.3 we may assume that |(Z ∩ B) ∪ (A ∩ B)| ≤

6k + 4.
Then, we test A ∪ Z (recursively), starting from Step 1.

If A ∪ Z has a coloring extending the precoloring of Z such
that each color class is a forest, then we precolor A ∩ B
by this coloring. Then we test B (recursively) with Z′ =
(Z ∩ B) ∪ (A ∩ B) and using the corresponding precoloring
of A ∩ B and Z ∩ B. There is one catch here. Suppose
that there are two vertices a, b in A ∩ B such that both a
and b have the same color in A ∪ Z. Also, suppose we can
color B ∪Z by extending Z′ = (Z ∩B)∪ (A ∩B) such that
each color class is a forest. Then certainly both a and b
receive the same color in B. There may be a path joining
a and b in A such that each vertex on this path receives
the same color. The same may happen in B. Then this is
not a desired coloring. In order to avoid this situation, we
do the following. If there is a path joining a and b in A
such that each vertex on this path receives the same color,
then we add the edge ab to A ∩ B. Then we (recursively)
test B together with all edges that have been added in the
above operation, with Z′ = (Z ∩ B) ∪ (A ∩ B) and using
the corresponding precoloring of A ∩ B and Z ∩ B. Let us
observe that the resulting graph here is a minor of G. If
B has a coloring extending the precoloring of A ∩ B and
Z ∩ B such that each color class is a forest, this give rise
to a coloring of their union, and this coloring gives rise to
a coloring of G′ such that each color class is a forest. Of
course, we can extend this coloring of G′ to G.
If either A∪Z or B contains a Kk-minor, then we obtain

a Kk-minor in G′. Similarly, if outcome (3) appears for
A ∪ Z, we get the same outcome for G′. Also, if outcome
(3) appears for B, we get the same outcome for G′.

This algorithm stops when either the current graph is
small or when it has no separation (A,B) of order at most
3k+1 such that both B−A−Z and A−B−Z are nonempty,
and minimum degree is at least 16k. By Fact 2.4, it is easy
to see that this algorithm correctly gives one of outcomes
in Theorem 1.17. Actually, we need the arboricity version
of Fact 2.4, but Fact 2.4 still works for the arboricity (even
with the additional hassle of having added edges in A ∩B).
Also it is easy to see that if there is a vertex of degree less
than 16k, then by Fact 4.1, we can color such a vertex. The
only issue we need to take care of is that there may be a
path joining a and b in A such that each vertex on this path
receives the same color, and there may be a path joining a
and b in B such that each vertex on this path receives the
same color, too. In order to avoid this situation, we add an
edge ab to A∩B if there is a path joining a and b in A such
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that each vertex on this path receives the same color. Then
we test B (recursively) with Z′ = (Z ∩ B) ∪ (A ∩ B) and
using the corresponding precoloring of A ∩ B and Z ∩ B.
This certainly avoids the above problem. Also, it is easy to
see that the resulting graph here is a minor of G.
Finally, let us estimate time complexity of the algorithm.

All steps used in the algorithm can be done in quadratic
time. Another factor of n pops up because of applying
the recursion in Step 3. This completes the analysis of the
correctness and of the stated time complexity of the algo-
rithm.

5. ALGORITHMIC ASPECT OF HADWIGER
CONJECTURE

In this section we describe an algorithm for Theorem 1.15.
We shall need the following results.

Highly linked graphs

A graph L is said to be k-linked if it has at least 2k vertices
and for any ordered k-tuples (s1, . . . , sk) and (t1, . . . , tk) of
2k distinct vertices of L, there exist pairwise disjoint paths
P1, . . . , Pk such that for i = 1, . . . , k, the path Pi connects
si and ti. Such collection of paths is called a linkage from
(s1, . . . , sk) to (t1, . . . , tk).
An important tool is the following theorem due to Thomas

and Wollan [66].

Theorem 5.1. Every 2k-connected graph G with at least
5k|V (G)| edges is k-linked.

Theorem 5.1 implies that every 10k-connected graph is
k-linked. Prior to this result, Bollobás and Thomason [10]
proved that every 22k-connected graph is k-linked, and
Kawarabayashi, Kostochka and Yu [45] proved that every
12k-connected graph is k-linked.
The following result is a variation of an old theorem of

Mader [56]. Its non-algorithmic counterpart appeared in [9,
51]. For completeness, we include its proof which is needed
to establish the algorithmic part.

Theorem 5.2. Let G be a graph and k an integer such
that

(a) |V (G)| ≥ 5
2
k and

(b) |E(G)| ≥ 25
4
k|V (G)| − 25

2
k2.

Then |V (G)| ≥ 10k+2 and G contains a 2k-connected sub-
graph H with at least 5k|V (H)| edges. If G has n vertices,
then H can be found in time O(n3).

Proof. Clearly, if G is a graph on n vertices with at least
25
4
kn− 25

2
k2 edges, then 25

4
kn − 25

2
k2 ≤ `

n
2

´
. Hence, either

n ≤ 25
4
k + 1

2
− 1

4

p
(25k + 2)2 − 400k2 < 5

2
k or n ≥ 25

4
k +

1
2
+ 1

4

p
(25k + 2)2 − 400k2 > 10k + 1. Since |V (G)| ≥ 5

2
k,

we get the following:

Claim 1. |V (G)| ≥ 10k + 2.
Suppose now that the theorem is false. Let G be a graph

with n vertices and m edges, and let k be an integer such
that (a) and (b) are satisfied. Suppose, moreover, that

(c) G contains no 2k-connected subgraph H with at least
5k|V (H)| edges, and

(d) n is minimal subject to (a), (b) and (c).

Claim 2. The minimum degree of G is more than 25
4
k.

Suppose that G has a vertex v with degree at most 25
4
k, and

let G′ be the graph obtained from G by deleting v. By (c),
G′ does not contain a 2k-connected subgraphH with at least
5k|V (H)| edges. Claim 1 implies that |V (G′)| = n−1 ≥ 5

2
k.

Finally, |E(G′)| ≥ m − 25
4
k ≥ 25

4
k|V (G′)| − 25

2
k2. Since

|V (G′)| < n, this contradicts (d) and the claim follows.

Claim 3. m ≥ 5kn.

The claim follows easily from (b) by using Claim 1.

By Claim 3 and (c), G is not 2k-connected. Since n >
2k, this implies that G has a separation (A1, A2) such that
A1 \A2 �= ∅ �= A2 \A1 and |A1 ∩A2| ≤ 2k− 1. By Claim 2,
|Ai| ≥ 25

4
k+1. For i ∈ {1, 2}, let Gi be a subgraph of G with

vertex set Ai such that G = G1 ∪G2 and E(G1 ∩ G2) = ∅.
Suppose that |E(Gi)| < 25

4
k|V (Gi)|− 25

2
k2 for i = 1, 2. Then

25

4
kn− 25

2
k2 ≤ m = |E(G1)|+ |E(G2)| <

25

4
k(n+ |A1 ∩ A2|)− 25k2 ≤ 25

4
kn− 25

2
k2,

a contradiction. Hence, we may assume that |E(G1)| ≥
25
4
k|V (G1)|− 25

2
k2. Since n > |V (G1)| ≥ 25

4
k+1 andG1 con-

tains no 2k-connected subgraph H with at least 5k|V (H)|
edges, this contradicts (d), and the existence of H is estab-
lished.
The above proof yields an O(n3) algorithm for finding H .

First, we remove vertices of degree at most 25
4
k as long as

the minimum degree is more than 25
4
k. This can be done

in linear time – first we form the list of all vertices whose
degree is at most 25

4
k. Then we start removing one by one.

At each step, degrees change only at the neighbors of the
removed vertex, and it takes constant time to decrease their
degrees by one and to move those, whose degree drops to
� 25

4
k�, into the list of vertices to be removed.
Next, we check if G is 2k-connected. This can be done in

O(n2) time by an algorithm of Henzinger, Rao, and Gabow
[40]. At the same time we find a separation (A1, A2) of
order less than 2k if one exists. As shown above, one of the
corresponding subgraphs G1 or G2 can be used to continue
the process. The recursion brings another factor of n to the
time complexity, so the subgraph H can be found in O(n3)
time.

By Theorem 5.1, every 2k-connected graph G with at least
5k|V (G)| edges is k-linked. Hence, Theorem 5.2 implies the
following:

Corollary 5.3. Let G be a graph of order n and k be an
integer such that

(a) |V (G)| ≥ 5
2
k and

(b) |E(G)| ≥ 25
4
k|V (G)| − 25

2
k2.

Then G contains a k-linked subgraph, and such a subgraph
can be found in O(n3) time.
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Connectivity and clique-sums

Let (A,B) be a separation in a graph G and let S =
V (A) ∩ V (B). Let S1 ∪ · · · ∪ Sr be a partition of S. Then
we say that A can be contracted to S1, . . . , Sr if A contains
pairwise disjoint connected subgraphs T1, . . . , Tr such that
Si ⊆ V (Ti) for i = 1, . . . , r.
The following lemma was originally proved in [44], but for

completeness, we include its proof.

Lemma 5.4. Let G be a graph with minimum degree d.
Let (A,B) be a separation in G of minimum order, let S =
V (A) ∩ V (B) and s = |S|. If s ≤ � 2d

27
�, then for every

partition S1 ∪ · · · ∪ Sr of S, A (and B) can be contracted to
S1, . . . , Sr. The corresponding disjoint connected subgraphs
T1, . . . , Tr in A (resp. B) can be found in O(n3) time, where
n = |V (G)|.
Proof. We may assume that A1 = A − S is connected.

Note that all vertices in A1 have degree at least d−s ≥ 25d
27
.

Therefore, |V (A1)| ≥ 25d
27
and |E(A1)| ≥ 25d

54
|V (A1)|. Let

k = � 2d
27
�. By Theorem 5.2, A1 contains a 2k-connected sub-

graph H1 with |E(H1)| ≥ 5k|V (H1)|. By Corollary 5.3, H1

is k-linked. By the minimality of S and Menger’s theorem,
there are s disjoint paths P1, . . . , Ps joining S and V (H1).
Let vj ∈ S and uj ∈ V (H1) be the endvertices of Pj for
j = 1, . . . , s. Since H1 is 2k-connected, there is a match-
ing e1, . . . , es in H1, where ej = uju

′
j for some s vertices

u′
1, . . . , u

′
s in H1.

At this point, we assume that the vertices v1, . . . , vs of
S are enumerated such that v1, . . . , v|S1| ∈ S1, v|S1|+1, . . . ,
v|S1|+|S2| ∈ S2, and so on. Since H1 is k-linked and s ≤ k,
there are s disjoint paths P ′

1, . . . , P
′
s−1 in H1 such that P

′
j

joins uj and u′
j+1 for j = 1, . . . , s − 1. The subgraph of A

consisting of P1, . . . , P|S1|, e1, . . . , e|S1| and the connecting
paths P ′

1, . . . , P
′
|S1|−1 is a tree whose contraction gives rise

to identification of all vertices of S1 into a single vertex.
Similarly, there are such trees for S2, . . . , Sr, and they are
all disjoint. Hence we can contract A to S1, . . . , Sr.
As far as the algorithm is concerned, we can find H1 in

O(n3) time by Theorem 5.2. To find paths P1, . . . , Ps, we
can apply an augmenting path algorithm (s < 2k times),
so we are done in O(n2) time. Finally, disjoint connecting
paths P ′

1, . . . , P
′
s−1 can be found by the graph minors algo-

rithm of Robertson and Seymour [59] in O(n3) time. This
completes the proof of the lemma.

Remark: In the algorithm of Lemma 7.2 we apply the
Robertson and Seymour’s algorithm from [59] to find dis-
joint connecting paths P ′

1, . . . , P
′
s−1. However, when we ap-

ply Lemma 7.2 in the algorithm for Theorem 1.15, we may
assume that the k-linked subgraph H1 is of bounded size.
Namely, if |V (H1)| ≥ N(k), where N(k) is the constant
from Theorem 1.6, then we know that H1 contains Kk as
a minor. Since this is one of the possible outcomes of the
algorithm, we may assume that |V (H1)| < N(k), and hence
P ′

1, . . . , P
′
s−1 can be found in constant time.

Description of the algorithm

A tree decomposition of a graph G is a pair (T, Y ), where
T is a tree and Y is a family {Yt | t ∈ V (T )} of vertex sets
Yt ⊆ V (G), such that the following two properties hold:

(W1)
S

t∈V (T ) Yt = V (G), and every edge of G has both ends
in some Yt.

(W2) If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between
t and t′′, then Yt ∩ Yt′′ ⊆ Yt′ .

The width of a tree decomposition (T, Y ) is maxt∈V (T )(|Yt|−
1).

Algorithm for Theorem 1.15

Input: A graph G.

Output: As described in Theorem 1.15.

Running time: O(f(k)n3) for some function f : N → N.

Description:

Step 1. If G has a vertex of degree at most 27k− 1, then
we delete it. We continue this procedure until there are no
vertices of degree at most 27k−1. This can be done in linear
time. Let G′ be the resulting graph. Proceed to Step 2.

Step 2. Test if the tree-width of G′ is small or not, say
smaller than some value g(k). For simplicity in later steps,
we assume that g(k) ≥ N(k), where N(k) is as in Theorem
1.6. This can be done in linear time by the algorithm of
Bodlaender [7]. If the tree-width is at least g(k), then go to
Step 3. Otherwise, we use the linear-time algorithm of Arn-
borg and Proskurowski [3] to color G′. If G′ can be colored
by at most 27k colors, then we can extend the coloring to
the whole graph G and stop. If G′ cannot be colored with
27k colors, then we check if G′ contains a Kk-minor. Again,
this can be done by using the algorithm of Arnborg and
Proskurowski [3] (or the algorithm of Robertson and Sey-
mour [59]). If G′ contains Kk as a minor, then we output
that G contains Kk as a minor. If G

′ does not contain Kk

as a minor, then we proceed as argued below. The whole
process up to this point can be done in linear time.
Let (T, Y ) be the corresponding tree-decomposition found

above. The dynamic programming approach of Arnborg and
Proskurowski assumes that T is a rooted tree whose edges
are directed away from the root. For tt′ ∈ E(T ) (where
t is closer to the root than t′), define S(t, t′) = Yt ∩ Yt′
and G′(t, t′) be the induced subgraph of G′ on vertices ∪Ys,
where the union runs over all nodes of T that are in the
component of T − tt′ that does not contain the root. The
algorithm of Arnborg and Proskurowski starts at all leaves
of T and computes, for every tt′ ∈ E(T ), the set C(t, t′)
of all 27k-colorings of S(t, t′) which can be extended to the
whole G′(t, t′). If T has a vertex t of very large degree,
then two neighbors t′ and t′′ have S(t, t′) = S(t, t′′) and
C(t, t′) = C(t, t′′). Then G′(t, t′) can be deleted, and we
still have a graph of bounded tree-width without Kk minor
and without 27k-colorings.
If all vertices of T have bounded degree, then T has a long

path and there are distinct edges t1t
′
1 and t2t

′
2 on this path

(where the second one is further from the root) such that
|S(t, t′)| = |S(t, t′′)| and C(t, t′) = C(t, t′′). In the same
way as argued in [9], we may assume that there are |S(t, t′)|
disjoint paths joining S(t, t′) and S(t, t′′). By contracting
these paths and replacing G′(t, t′) with G′(t, t′′), we get a
minor of G′ which is still of bounded tree-width, without
Kk minor, and without 27k-colorings. Repeating this, we
eventually end up with the desired minor of G′ of bounded
size. (The bound is actually a doubly exponential value
expressed in terms of k. More details on this part will be
given in the full paper.)
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Step 3. Test whether G′ is 2k-connected or not. Suppose
first that G′ is 2k-connected. By the assumption in Step 2,
we have |G′| ≥ g(k) ≥ N(k). It follows from Theorem 1.6
that G′ contains Kk as a minor. So, we output that G has
Kk as a minor.
If G′ is not 2k-connected, then go to Step 4.

Step 4. G′ is not 2k-connected; detect a minimal sep-
aration (A,B). This can be done in polynomial time by
standard methods. The best known algorithm is that of
Henzinger, Rao, and Gabow [40] which needs O(n2) time
for this task.
Let S = V (A) ∩ V (B). Then |S| < 2k. Let A′

1 be a com-
ponent of G′−S and A′

2 = G′−A′
1−S. Let S1 be a maximal

independent set in the subgraph G′(S) of G′ induced on S.

Let Si be a maximal independent set in G′(S) − Si−1
l=1 Sl,

for i = 2, 3, . . . . Maximal independent sets can be found
greedily or by means of any other method in constant time
(since |S| < 2k). Next, we identify every nonempty set Si

into one vertex si (i = 1, . . . , r). Then the resulting graph
on S′ = {s1, . . . , sr} is a clique. Let A1, A2 be the corre-
sponding graphs obtained from A′

1, A
′
2 by adding the clique

S′ and the corresponding edges between A′
i and S′.

Finally, we test A1, A2 (recursively), starting from Step 1.
If both graphs A1, A2 have 27k-colorings, they give rise to a
27k-coloring of their union since S′ is a clique. Since vertex
sets Si (i = 1, . . . , r), that were identified into single vertices
si in S′, are independent in G′, this coloring gives rise to a
coloring of G′. Of course, we can extend this coloring of G′

to G.
If one of the graphs, say A1, contains Kk-minor, then we

obtain a Kk-minor in G′ (after contracting A2 onto S′) by
using Lemma 7.2 with d = 27k. Similarly, if outcome (3)
appears for A1, we get the same outcome for G

′ by using a
contraction of A2 onto S′.

This algorithm stops when either the tree-width of the
current graph is small or the current graph is 2k-connected
with minimum degree at least 27k.
Now we shall estimate time complexity of the algorithm.

All steps except the application of Lemma 7.2 can be done
in time proportional to n2. Another factor of n pops up be-
cause of applying the recursion in Step 4. Finally, Lemma
7.2 is applied only when we backtrack from the recursion.
If we apply it on the graph A1 of order n1, we spend O(n3

1)
time, but we never use it again on the same vertices. There-
fore applications of Lemma 7.2 use only O(n3) time all to-
gether. This completes the proof of the correctness and of
the stated time complexity of the algorithm.

6. COLORING IN ODD-MINOR-CLOSED
CLASSES OF GRAPHS

We are ready to describe the algorithm of Theorem 1.8.

Algorithm for Theorem 1.8

Input: A graph G, a set Z ⊆ V (G) with |Z| ≤ 192k, and
a precoloring of Z.

Output: As described in Theorem 1.8.

Running time: O(f(k)n4) for some function f : N → N.

Description:

Step 1. If G has a vertex of degree at most 496k − 1 in
G− Z, then we delete it. We continue this procedure until
there are no vertices of degree at most 496k − 1 apart from
Z. This can be done in linear time. Let G′ be the resulting
graph. Proceed to Step 2.

Step 2. Test whether G′ has a K
32k, (16k−1)(32k

16k)+1
-minor

or not. If it has, then go to Step 3. Otherwise, go to Step 6.
This can be done by the result of Robertson and Seymour
[59] in O(n3) time.

Step 3. Find an even K16k-minor by using the argument
in the proof of Theorem 2.7. This can be done in linear time
after detecting K

32k, (16k−1)(32k
16k)+1

-minor in Step 2.

Step 4. Detect a separation X of order |X| < 8k as
described in Theorem 2.7. The proof in Geelen et al. [28]
reduces our problem to the task of finding the maximum
matching, which can be solved in O(n3) time, see [26, 55,
19, 27].

Step 5. We have one big component W in G − X such
that W contains a bipartite subgraph F and each odd cycle
is contained in a component (after deleting a cut vertex to
F ) of G − X that does not contain F . If there is either a
block or a component, say B, in G−X such that |B∩Z|+|X|
is at least 192k, then we first apply this algorithm to B ∪X
with Z ∩B being the precolored set. Then we color F with
two colors except possibly for the vertices in Z ∪ B. Note
that there is at most one such a component (after deleting
a cut vertex to F ) B by Fact 2.3. If there is no such a
component (after deleting a vertex to F ), then we select an
arbitrary component B (after deleting a cut vertex to F ),
and then apply this algorithm to B ∪ X with Z ∩ B being
the precolored set.
In each block and component B′ of G−X −B such that

|B′ ∩ Z| + |X| ≤ 192k, we apply this algorithm recursively
with X ∪ {v} ∪ (B′ ∩ Z) being precolored, where v is a cut
vertex of G− X − B if B′ is a component (after deleting a
cut vertex to F ).

Step 6. Test whether G′ has a separation (A,B) of order
at most 96k such that both B − A− Z and A−B − Z are
nonempty. Suppose first that G′ has no such separation.
If |G′| ≥ g(k) := max{N1(k, x, z) | 0 ≤ z ≤ 192k}, where
x ≥ (16k − 1)`32k

16k

´
+ 1, then it follows from Theorem 2.2

that G′ contains K
32k, (16k−1)(32k

16k)+1
as a minor. Hence this

cannot happen by Step 2. If |G′| < g(k), then we can check
(1), (2) and (3) of Theorem 1.8 in constant time and stop.
If G′ has such a separation, then go to Step 7.

Step 7. G′ has a separation (A,B) of order at most 96k
such that both B − A − Z and A − B − Z are nonempty;
detect such a separation (A,B) of minimum order. This can
be done in O(n2) time (Henzinger, Rao, and Gabow [40]).
By Fact 2.5, either |(Z ∩ A) ∪ (A ∩ B)| ≤ 192k or |(Z ∩

B)∪ (A ∩B)| ≤ 192k. Suppose |(Z ∩B)∪ (A ∩B)| ≤ 192k.
Then, we test A∪Z (recursively), starting from Step 1. If

A∪Z has a coloring extending the precoloring of Z, then we
precolor A∩B by this coloring. Then we test B (recursively)
with Z′ = (Z ∩ B) ∪ (A ∩ B) and using the corresponding
precoloring of A∩B and Z∩B. If B has a coloring extending
the precoloring of A∩B and Z∩B, this give rise to a coloring
of their union, and this coloring gives rise to a coloring of
G′. Of course, we can extend this coloring of G′ to G.
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If either A ∪ Z or B contains an odd-Kk-minor, then we
obtain an odd-Kk-minor in G′. Similarly, if outcome (3)
appears for A∪Z, we get the same outcome for G′. Also, if
(3) appears for B, we get the same outcome for G′.

This algorithm stops when either the current graph is
small or when it has no separation (A,B) of order at most
96k such that both B−A−Z and A−B−Z are nonempty,
and minimum degree is at least 496k. In fact, in the second
case, it has still bounded number of vertices since there is
no K

32k, (16k−1)(32k
16k)+1

-minor by Step 2 and Theorem 2.2.

By Fact 2.6, it is easy to see that this algorithm correctly
gives one of outcomes in Theorem 1.8. Also, in Steps 3, 4
and 5, by Theorem 2.7, since we know that G has no odd-
Kk-minors, it must contain a separation X as described in
Theorem 2.7. If there is either a block or a component, say
B, in G−X such that |B∩Z|+ |X| is at least 192k, then we
can first apply this algorithm to B∪X with Z∩B precolored.
Note that there is at most one such a block or a component
B by Fact 2.5. Then we can color the bipartite subgraph
F easily, and hence we can use our algorithm to each block
and component B′ in G−X−B recursively. More precisely,
in each block and component B′ of G − X − B such that
|B′ ∩ Z| + |X| ≤ 192k, we apply this algorithm recursively
with X ∪ {v} ∪ (B′ ∩ Z) being precolored, where v is a cut
vertex of G−X − B if B′ is a component (after deleting a
cut vertex to F ).
Finally, let us estimate time complexity of the algorithm.

All steps used in the algorithm can be done in quadratic
time, except for detecting the minor of K

32k, (16k−1)(32k
16k)+1

in Step 2. This takes O(n3) by [59]. Also it takes O(n3)
to detect X in Step 4, as we remarked just after the proof
of Theorem 2.7. Another factor of n pops up because of
applying the recursion in Step 5. So, in Step 5, we run O(n4)
times. In Step 7, we need to detect the separation (A,B).
This can be done by the algorithm of Henzinger, Rao, and
Gabow [40] in O(n2) time. This has to be multiplied by a
factor of n because of applying recursion in Step 7. Hence
it takes O(n3) time in total. This completes the analysis
of the correctness and of the stated time complexity of the
algorithm.
Let us observe that we can detect the odd Kk-minor if

the outcome (2) holds. To see this, if G′ is small, then as
in Step 6, we can use find one in constant time. If G′ is
96k-connected and has minimum degree at least 500k (see
Theorem 7.1 below), then as in Step 2, we first detect a
K

32k, (16k−1)(32k
16k)+1

-minor by Robertson and Seymour [59].

Then the argument in the proof of Theorem 2.7 gives rise
to detect the desired odd-minor, as we remarked just after
the proof of Theorem 2.7. As we noted before, the proof
of Theorem 2.8 in [28] implies polynomial time algorithm
to find the desired conclusion of Theorem 2.8. Actually,
it detects either a desired odd minor or a vertex set X of
bounded size in G such that G−X has a bipartite subgraph
F and each odd cycle is contained in either components of
G − X that do not intersect F or blocks with a cut vertex
to F . The time complexity is O(n3). Hence we can detect
the desired odd-minor if the outcome (2) holds.

7. ALGORITHMIC ASPECT OF THE ODD
HADWIGER CONJECTURE

In this section, we shall give sketch of the proof for The-
orem 1.19.
Let us observe that Theorem 2.7 implies the following.

Theorem 7.1. For any k, there exists a constant N(k)
such that every 500k-connected graph with at least N(k) ver-
tices has either an odd Kk-minor or a vertex set X of order
at most 8k such that G−X is bipartite. In fact, the connec-
tivity 500k can be replaced by 96k provided that the minimum
degree is at least 500k.

To see this, by Theorem 2.1, there exists a constant N(k)
such that every 96k-connected graph with minimum degree
at least 500k and at least N(k) vertices has the complete
bipartite K

32k, (16k−1)(32k
16k)+1

-minor. Thus, Theorem 2.7 im-

plies Theorem 7.1 since G is 96k-connected and has mini-
mum degree at least 500k, so there are no blocks and com-
ponents as described in Theorem 2.8.
Let (A,B) be a separation in a graph G and let S =

V (A) ∩ V (B). Let S1 ∪ · · · ∪ Sr be a partition of S. We
color all the vertices of S by 1. Then we say that A can be
contracted to S1, . . . , Sr if A contains pairwise disjoint trees
T1, . . . , Tr such that Si ⊆ V (Ti) for i = 1, . . . , r, and in ad-
dition, Ti can be colored by 1 and 2 so that Ti is bichromatic
and each vertex of Si receives color 1 for all i. If there is
a desired contraction in G, then we say that G has a clique
reduction. We also say that G has a trivial reduction if there
is a separation (A,B) of order at most 2496k − 2 such that
either B − A or A−B is bipartite. Our main result in this
section is the following.

Lemma 7.2. Let G be a graph with minimum degree 2496k.
Let (A,B) be a separation in G of minimum order, let S =
V (A) ∩ V (B) and s = |S|. If s ≤ 96k, then either there is
a trivial reduction or for every partition S1 ∪ · · · ∪ Sr of S,
A (and B) can be contracted to S1, . . . , Sr. Hence there are
clique reductions in both A and B.

Our proof of Lemma 7.2 uses the method in [48]. It is
concerning with the parity disjoint paths problems. The
proof is lengthly, so we omit it, and refer the reader to the
journal version of the first author’s paper.
Let us point out that the corresponding disjoint connected

trees T1, . . . , Tr in A (resp. B) can be found in O(n3) time
if there is no trivial reduction.

Lemma 7.2 has applications. Consider the following prob-
lem: Does every 2497k-chromatic graph have an odd-Kk-
minor?

Lemma 7.2 implies that there are only finitely many mini-
mal counterexamples to the above problem. To see this, it is
easy to prove that the minimum degree of a minimal coun-
terexample G is at least 2497k − 1. If there is a separation
(A,B) of order at most 2497k− 3 such that either B−A or
A−B, say B−A, is bipartite, then we are done since we can
color A by 2497k−1 colors, and there are at most 2497k−3
colors used in A∩B. Therefore, we can color B−A by using
two additional colors. Hence we may assume that there are
no trivial reductions.
Let S = V (A)∩V (B). Then |S| < 96k. Let A′

1 be a com-
ponent of G′−S and A′

2 = G′−A′
1−S. Let S1 be a maximal
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independent set in the subgraph G′(S) of G′ induced on S.

Let Si be a maximal independent set in G′(S) − Si−1
l=1 Sl,

for i = 2, 3, . . . . Next, we identify every nonempty set Si

into one vertex si (i = 1, . . . , r). Then the resulting graph
on S′ = {s1, . . . , sr} is a clique. Let A1, A2 be the corre-
sponding graphs obtained from A′

1, A
′
2 by adding the clique

S′ and the corresponding edges between A′
i and S′. Let us

observe that both A1 and A2 are odd-minors of G since by
Lemma 7.2, we can contract S into S′ so that S′ is a clique,
and all the edges in this clique are monochromatic. If both
graphs A1, A2 have (2497k−1)-colorings, they give rise to a
(2497k−1)-coloring of their union since S′ is a clique. Since
vertex sets Si (i = 1, . . . , r), that were identified into single
vertices si in S′, are independent in G, this coloring gives
rise to a coloring of G. HenceG is no longer counterexample,
a contradiction.
This argument implies that minimal counterexample to

the odd Hadwiger’s conjecture for fixed k is k/2497-connected.
This is the first result showing that every minimal coun-
terexample has linear connectivity. Previously, it was only
proved (Guenin [35]) that minimal counterexamples are 4-
connected.
Having had Lemma 7.2, the algorithm for Theorem 1.19

is similar to that for Theorem 1.7. We omit it, and refer the
reader to the full version of the first author’s paper.

8. CONCLUSION
In this paper, we give polynomial time algorithms for

list-colorings and arboreal colorings of graphs without Kk-
minors, where the number of colors used is not much larger
than needed. One challenging problem is, can we decide the
list-coloring version of Hadwiger’s conjecture? Theorem 1.15
decides the correctness of the weaker Hadwiger’s conjecture
in O(n3) time for every fixed k.
Our additive error of order O(k) also gives a factor O(k)-

approximation. Another challenging problem would be try-
ing to improve theO(k)-approximation to o(k)-approximation
in Theorem 1.1. This is not settled yet, but in our feeling,
this may be hard. Approximating the list-chromatic number
of graphs without Kk-minors within o(k) may be NP-hard.
In [28], Geelen et al. proved that any graph with no

odd Kk-minor is O(k
√
log k)-colorable. More precisely, they

proved that there exists a constant c such that any graph
with no odd-Kk-minor is ck

√
log k-colorable. Their proof

gives a polynomial time algorithm to color such a graph for
fixed k with ck

√
log k-colors, but for the completeness, we

shall sketch the algorithm of the result. We remove vertices
of degree at most ck

√
log k until there are no such vertices

left. The resulting graph G′ has minimum degree at least
ck

√
log k. By a simple local optimization we can find a span-

ning bipartite graph H such that the minimum degree of H
is at least ck

√
log k/2. This can be easily done in linear time.

Let us assume that c/32 is greater than the constant in [67,
68, 54, 53]. Then H has a K16k-minor by [67, 68, 54, 53].
Actually it is an even minor since H is bipartite. Hence, we
can detect this even K16k-minor by the result of Robertson
and Seymour [59] in O(n3) time. As noted above, the proof
of Theorem 2.8 in [28] implies polynomial time algorithm to
find the desired conclusion of Theorem 2.8. Actually, it de-
tects either a desired odd minor or a vertex setX of bounded
size such that G − X has a bipartite subgraph F and each
odd cycle is contained in either components of G− X that
do not intersect F or blocks with a cut vertex to F . The

time complexity is O(n3). Since we assume that G has no
odd Kk-minor, the only case we need to handle is the sec-
ond case. Let us observe that we have already got a kind of
decomposition.
In order to use induction for the structure of this decom-

position, Geelen et al. [28] used precoloring extension as we
used in the proof of Theorem 1.2. See Theorem 13 of [28].
This certainly gives rise to a polynomial time algorithm to
color the graph G with at most ck

√
log k colors. In fact, the

complexity is O(n4).
It remains open whether or not there is a polynomial time

algorithm for an o(k)-approximation of the chromatic num-
ber of graphs with no odd-Kk-minors.
In this paper, we also give a polynomial time algorithm for

deciding whether linear lower bound on the chromatic num-
ber in terms of a parameter k is enough to force a Kk minor.
Recently, Kawarabayashi and Mohar [46] proved that Theo-
rem 1.6 can be improved as follows: For any k, there exists
a constant N(k) such that every 2k-connected graph with
minimum degree at least 9k and with at least N(k) ver-
tices has a Kk-minor. Also, if the tree-width is large (in
a sense that we can apply Robertson and Seymour’s result
from [60] to G, see a detailed description in [9, 46]), then the
minimum degree condition can be improved to 15a

2
. Also,

Kawarabayashi proved in [42] that the order of the separa-
tion (A,B) in Lemma 7.2 can be reduced to 1

6
k. Together

with these results, our algorithm implies that the chromatic
number in Theorem 1.15 can be improved from 27k to 12k.
Robertson and Seymour (private communication) have

the following unpublished result, which would give rise to
a polynomial-time algorithm for k-coloring Kk-minor free
graphs if the Hadwiger Conjecture is true.

Theorem 8.1 (Robertson and Seymour). For ev-
ery fixed k, there is a polynomial-time algorithm for deciding
either that

(1) a given graph G is k-colorable, or

(2) G contains Kk+1-minor, or

(3) G contains a minor H without Kk+1-minors, of order
at most N(k), and with no k-coloring.

Neil Robertson (private communication) pointed out that
in order to prove the above theorem, Robertson and Sey-
mour used the following lemma, which is of independent
interest, and perhaps would be the strongest result in this
direction.

Lemma 8.2. Let k ≥ 4 be an integer. For any graph G
with no Kk+1-minor, one of the followings holds:

(1) There exists an integer f(k) such that G has tree-width
at most f(k).

(2) G contains a vertex of degree at most k.

(3) G contains a vertex v of degree k + 1 whose neighbors
include three mutually nonadjacent vertices.

(4) G has a separation (A,B) of order at most k with
V (A) �= V (G) such that A can be contracted to a clique
on A ∩ B such that each vertex of A ∩ B is contained
in the different node of this clique minor.

(5) G has a vertex set X, |X| ≤ k− 4, such that G−X is
planar.
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Note that (2), (3) and (4) cannot happen in minimal coun-
terexamples to Hadwiger’s conjecture, and (5) is no longer
counterexample, assuming the Four Color Theorem [1, 2,
58]. The proof is complicated and uses the graph minor
structure theory (cf., e.g., [61, 60]) heavily (but does not use
the well-quasi-ordering result). Paul Seymour also pointed
out that outcome (3) can be eliminated on the expense of a
considerably longer proof.
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Kantendichte. Abh. Math. Sem. Univ. Hamburg,
37:86–97, 1972.

[57] S. A. Plotkin, S. Rao, and W. D. Smith. Shallow
excluded minors and improved graph decompositions.
In Proceedings of the 5th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’94), pages
462–470, 1994.

[58] N. Robertson, D. P. Sanders, P. D. Seymour, and
R. Thomas. The four-color theorem. J. Combin.
Theory Ser. B, 70:2–44, 1997.

[59] N. Robertson and P. D. Seymour. Graph minors XIII.
The disjoint paths problems. J. Combin. Theory
Ser. B, 63:65–110, 1995.

[60] N. Robertson and P. D. Seymour. Graph minors.
XVII. Taming a vortex. J. Combin. Theory Ser. B,
77:162–210, 1999.

[61] N. Robertson and P. D. Seymour. Graph minors. XVI.
Excluding a non-planar graph. J. Combin. Theory
Ser. B, 89:43–76, 2003.

[62] N. Robertson, P. D. Seymour, and R. Thomas.
Hadwiger’s conjecture for K6-free graphs.
Combinatorica, 13:279–361, 1993.

[63] A. Roychoudhury and S. Sur-Kolay. Efficient
algorithm for vertex arboricity of planar graphs. In
Proc. 15th Internat. Conf. on Foundations of Software
Technology and Theoretical Computer Science, Lecture
Notes in Computer Science, Springer, Berlin, volume
1026, pages 37–51, 1995.

[64] A. Schrijver. A short proof of Guenin’s
characterization of weakly bipartite graphs. J.
Combin. Theory Ser. B, 85:255–260, 2002.

[65] P. D. Seymour. The matroids with the max-flow
min-cut property. J. Combin. Theory Ser. B,
23:189–222, 1977.

[66] R. Thomas and P. Wollan. An improved linear edge
bound for graph linkages. Europ. J. Combin.,
26:309–324, 2005.

[67] A. Thomason. An extremal function for contractions
of graphs. Math. Proc. Cambridge Philos. Soc.,
95:261–265, 1984.

[68] A. Thomason. The extremal function for complete
minors. J. Combin. Theory Ser. B, 81:318–338, 2001.

[69] C. Thomassen. Every planar graph is 5-choosable.
J. Combin. Theory Ser. B, 62:180–181, 1994.

[70] B. Toft. A survey of Hadwiger’s conjecture. Congr.
Numer., 115:249–283, 1996.

415



[71] Z. Tuza. Graph colorings with local constraints—a
survey. Discuss. Math. Graph Theory, 17:161–228,
1997.

[72] V. G. Vizing. Coloring the vertices of a graph in
prescribed colors. Metody Diskret. Anal. v Teorii
Kodov i Schem (In Russian), 29:3–10, 1976.

[73] M. Voigt. List colourings of planar graphs. Discrete
Math., 120:215–219, 1993.
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