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Summary. Let Q be a nonbipartite quadrangulation of the projective plane.
Youngs [You96] proved that @ cannot be 3-colored. We prove that for every
4-coloring of @) and for any two colors a and b, the number of faces F of @, on
which all four colors appear and colors a and b are not adjacent on F, is odd. This
strengthens previous results that have appeared in [You96, HRS02, Moh02, CT04].
If we form a triangulation of the projective plane by inserting a vertex of degree 4
in every face of (), we obtain an Eulerian triangulation T of the projective plane
whose chromatic number is 5. The above result shows that T is never 5-critical. We
show that sometimes one can remove two, three, or four, vertices from 7" and ob-
tain a b-critical graph. This gives rise to an explicit construction of 5-critical graphs
on the projective plane and yields the first explicit family of 5-critical graphs with
arbitrarily large edge-width on a fixed surface.
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1 Introduction

Youngs [You96] proved that a quadrangulation of the projective plane which
is not bipartite is never 3-colorable, and its chromatic number is 4. Youngs’
proof also implies that in any 4-coloring of a nonbipartite quadrangulation ()
of the projective plane, there is a 4-face with all four vertices of distinct colors.
This fact appears in a slightly extended version (where 4-colorings are replaced
by k-colorings, k > 3) in [HRS02]. A strengthening of that result, proved in
[Moh02], states that under every k-coloring of @, there are at least three faces
on which all four vertices have distinct colors. This in particular implies that
k > 4. Collins and Tysdal [CT04] found that every 4-coloring of @ has a
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face F on which all four colors appear and in which colors 1 and 2 are used
on opposite vertices of F'. In this paper we give further extensions of these
results in Theorems 2.1 and 3.1.

Let G be a graph and k a positive integer. We say that G is k-critical
if its chromatic number is k, but every proper subgraph of G has chromatic
number at most k — 1.

For a fixed surface S and every k > 8, there are only finitely many k-critical
graphs that can be embedded in S. This follows easily from Euler’s formula
and the fact that a k-critical graph cannot have vertices of degree smaller
than k£ — 1. Slightly more involved arguments imply that the same holds
for 7-critical graphs on a fixed surface. See [Edw92, Moh93] or [MTO01, Sec-
tion 8.4]. Thomassen [Tho97] extended this to 6-critical graphs (and the proofs
became much more complicated at this point). A corollary of these results is
that for every surface S, there is a polynomial time algorithm to decide if a
given graph G embedded in S has chromatic number at least 5, and if so, the
algorithm also outputs x(G).

On the other hand, 3-coloring planar graphs is NP-hard [GJ79], so it is NP-
hard to 3-color graphs on any fixed surface. It is an open problem if 4-coloring
on fixed surfaces is polynomially decidable. It is known to be so for planar
graphs [RSST96], but unknown for other surfaces.

It is known that every nonplanar surface S contains infinitely many
5-critical graphs. There is a rather “straightforward” argument showing this.
The proof goes as follows (see also [MTO01, Corollary 8.4.13]). Let T be a trian-
gulation of S such that all vertices of T' have even degree except two of them
whose degree is odd and are adjacent. Such triangulations are easy to con-
struct on every nonplanar surface. They are called Fisk triangulations after a
result of Fisk, who proved in [Fisk78] that T cannot be 4-colorable, since every
4-coloring of a triangulation with precisely two vertices of odd degree uses the
same color on both vertices of odd degree. For every nonplanar surface S and
every integer k, there exists a Fisk triangulation Ty on S whose edge-width
(the length of a shortest noncontractible cycle) is at least k. Now, let Ry, be
a 5-critical subgraph of T}. Since x(Ry) > 5, Ry is nonplanar and hence it
contains a cycle that is noncontractible in the induced embedding. That cycle
is also noncontractible in 7} and hence it has at least k vertices. In particular,
|Ry| > k, and hence there are infinitely many nonisomorphic graphs in the
sequence Rj, Rs, R3,. ... The reader may have observed that the above simple
argument is not entirely elementary since it uses the 4-color-theorem.

Fisk triangulations are never 5-critical. To see this, let T" be a Fisk triangu-
lation, and let x,y be its vertices of odd degree. Let M be the subgraph of T
obtained by deleting the two edges xz,yz in a facial triangle containing the
edge zy. The new face of M is bounded by a cycle C of length 5, and all ver-
tices of M have even degree. Suppose now that A has a 4-coloring. Then some
vertex u € V(C) has a color which does not appear on other vertices of C.
By adding two edges connecting u with the two vertices which are “opposite”
on C, we obtain a Fisk triangulation with a 4-coloring, a contradiction.
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Let ¢ be a coloring of a graph G. If G is embedded in some surface and
F is a face, we say that F' is multicolored if all vertices of F' have distinct
colors under the coloring c¢. The results about nonbipartite quadrangulations
of the projective plane mentioned above show that by triangulating every face
of such a quadrangulation by inserting a new vertex of degree 4, we obtain a
triangulation whose chromatic number is 5, but such a graph is never 5-critical.

In Section 4, we describe some 5-critical subgraphs of triangulated quad-
rangulations, and we use them to show the following:

o) 0,

(a) (b)
Fig. 1. Projective quadrangulations (o and Q1

Theorem 1.1. Let (), be the quadrangulation of the projective plane shown
in Figure 1(b), and let A, B,C be the faces of Q1 as shown in the same
figure. Let QQ be a quadrangulation of the projective plane that can be obtained
by successively replacing a face distinct from A, B,C by one of the graphs
K or L shown in Figure 2. Denote by T (Q; A, B, C) the graph obtained from @
by adding a new vertex in each face F distinct from A, B,C and joining that
vertex to all four vertices on the facial walk of F. Then T(Q;A,B,C) is
5-critical.

The proof of Theorem 1.1 is given in Section 4.

Fig. 2. Subdividers K, L, and M
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Of course, replacements of faces of @)1 by the graphs K and L from Figure 2
has to be done in such a way that a quadrangulation is obtained. In order
to achieve this, replacement of a face F' by K requires to replace also the
faces above and below F' (or left and right of F' if K is rotated by angle
/2 before the replacement); similarly for L. After making the first round
of replacements, we can repeat the procedure with the faces of the resulting
quadrangulation, etc. In this way we can obtain quadrangulations whose edge-
width is as large as we want. Henceforth, the family of graphs described in
Theorem 1.1 is the first explicitly described family of 5-critical graphs with
arbitrarily large edge-width on a fixed surface.

Other constructions of 5-critical graphs on the projective plane are given
in Section 4.

Graphs in this paper are finite; multiple edges are allowed, while loops
are excluded. If G is a graph, then |G| denotes its order. A quadrangulation
is a connected graph together with a 2-cell embedding in a closed surface
such that every facial walk is of length 4. Note that a pair of edges joining
the same pair of vertices can form a contractible curve on the surface of the
quadrangulation, but it does not bound a face since all faces are of lenth 4.

2 Quadrangulations of the Sphere

Let @ be a quadrangulation of the sphere. It is easy to see that @ is bipartite
and hence 2-colorable. Therefore, it may seem surprising if we would be able
to say something about global properties of 4-colorings of ). In this section,
we uncover some surprising properties.

Let ¢ be a k-coloring of an embedded graph. We say that a face F' is mul-
ticolored if all its vertices have distinct colors. Suppose that the coloring uses
colors 0,1,...,k— 1. If F = zyzw is a multicolored 4-face and ¢(z) = 0, then
the color ¢(z) of z is said to be the type of F. If the surface is orientable,
we may assume that all faces are equipped with the positive orientation. As-
suming this and assuming that k& = 4, we can refine the notion of the type
of multicolored 4-faces. We say that the type of F'is 17,1%,27,2%,37, or 3*
if the clockwise cyclic order of colors on F' is 0213,0312,0123,0321,0132, or
0231, respectively. (So, the “minus” in the type says that ¢(y) < c¢(w), and
the “plus” says the converse.)

Theorem 2.1. Let (Q be a quadrangulation of the sphere and c its 4-coloring.
Then for every type t € {1,2,3}, the number of multicolored faces of type
t~ has the same parity as the number of multicolored faces of type t+. In
particular, the number of multicolored faces of type t is even.

Proof. The proof is by induction on the number N which is the sum of the
number of vertices n = |@Q| and the number of multicolored faces of Q. If
@ has no multicolored faces, there is nothing to prove. So, we assume that
there is at least one multicolored face (and hence we have n > 4).
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If @ has a face F' = zyzw in which ¢(z) = ¢(z), then we identify x and z
(and delete F' and replace resulting parallel edges by single edges). This oper-
ation gives rise to a smaller 4-colored quadrangulation @'. We say that )’ has
been obtained by squeezing F'. Clearly, all other faces and their coloring re-
main the same as in (), so we just apply the induction hypothesis to @’ and
thus complete the proof.

In the next paragraph we will apply an operation for which we need that
there are no parallel edges in @. If there were, we could apply the induction
hypothesis, first to the interior of the disk bounded by a couple of parallel
edges between vertices x,y, and then to the exterior of the same disk.

We may now assume that all faces of ) are multicolored. Let zy be an edge
of Q, and let F' = zyzw and F' = zw'z'y be the facial walks containing the
edge zy. Supose that ¢(z) = ¢(z') (and hence ¢(w) = ¢(w')), i.e., F and F' are
of the same type. In this case we remove faces F' and F”, identify w with w' and
y with y" and keep only single edges between x and w and y and z, respectively.
This gives rise to a smaller 4-colored quadrangulation @' in which the faces
have the same types as before. By applying the induction hypothesis and
observing that F' and F' were of the same type, but with different signs, we
easily complete the proof.

From now on we also assume that no adjacent faces are of the same type.
Then it is easy to see that every face of type ¢+ or ¢t~ is adjacent to four faces
of precisely the same four types as shown in Figure 3. This implies that the
dual graph of @ is a covering graph of the dual graph of the cube (which is the
octahedron graph) shown in the figure. In particular, the number of faces of
any of the types t* or ¢~ is equal to the degree of the corresponding covering

projection. This completes the proof.
2 1
.
3 0
3" I 3"
1 2
9+
0 3

I
Fig. 3. Types of faces in a 4-colored cube
If @ is a connected plane graph whose interior faces are all 4-sided and the

exterior face is of length k, then we say that @ is a k-near-quadrangulation.
Note that & must be even since @ is bipartite.
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Corollary 2.2. Let Q) be a planar 6-near-quadrangulation and let ¢ be a
4-coloring of Q. Fort € {1,2,3}, let m; be the number of multicolored 4-faces
of Q whose type ist. Thenmqi =mas =m3 =1 (mod 2) if and only if under
the coloring c, every pair of opposite vertices on the exterior face are colored
the same.

Proof. If a pair of opposite vertices z,y have distinct colors, we add the
edge xy and obtain a 4-colored quadrangulation. With respect to the coloring
of this quadrangulation, at most two of the values m; can change. Therefore,
the one that has not been changed is even by Theorem 2.1. On the other hand,
if opposite vertices have the same colors, we quadrangulate the outer face by
adding a vertex of degree 3 and color this vertex by the color that does not
appear on the exterior face. Then the new faces are all multicolored and of
all three types. Again, Theorem 2.1 shows that the values mj, msy, and mg
(in Q) are all odd. This completes the proof. o

We will need another result which will enable us to construct colorings
with few multicolored faces.

Lemma 2.3. Let () be an 8-near-quadrangulation that is isomorphic to one
of K or L shown in Figure 2, and let x,y,z,w be the four corner vertices.
Suppose that co is a 4-coloring of x,y, z,w such that co(x) # co(y) # co(z) #
co(w) # co(z). For every interior 4-face F of @, there exists a 4-coloring ¢
of QQ which extends co and has the following properties:

(a) The vertices on the segment of the outer face from x to y are 2-colored
with colors co(z) and co(y), the vertices from y to z with colors co(y)
and ¢o(2), and similarly for the segments from z to w, and from w to x.
There is one exception to this rule if F is the “middle” face having an
edge on one of these segments, as shown in Figure /(dy) and (dz) for the
segment from x to y. In that case, one of the vertices is not colored as
stated, and we may choose either of the two vertices to be this exception.
See Figure 4(dy) and (d2), where the exceptions are emphasized by little
circles.

(b) No interior face different from F' is multicolored.

(c) The colors on F' in the clockwise cyclic order are either co(x), co(y), co(2),
co(w), or the reverse of this.

Proof. Extensions (up to symmetries) are shown in Figure 4, where a = ¢o(z),
b = co(y), ¢ = ¢o(2), and d = co(w); the face F' is shaded.

Lemma 2.3 has a generalization which we include for the sake of complete-
ness.

Proposition 2.4. Let () be a quadrangulation of the sphere without multiple
edges. If F1, F» are distinct faces of @), then there is a 4-coloring of ) such
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d c d c d c d c
(d) (dy)
Fig. 4. Extensions of ¢p in K or L

that F\ and Fy are multicolored but no other face is multicolored. If the se-
quence of colors in the clockwise direction on Fy is cicaczeq, then the cyclic
sequence of colors on F» is its reverse cicqcsca. In particular, Fy and Fy are
of the same type t € {1,2,3}, but of different signs, i.e., one is of type tT, the
other one of type t—.

Proof. The proof is by induction on n = |Q|. If @ is just a 4-cycle, the state-
ment clearly holds. If ) contains a 4-cycle C that is not facial, let @1 be its
interior. We may assume that F} is a face of Q1. Let Q2 be the exterior of C'.
Now, C is facial in Q1 and in Q5. If F5 is a face in @)o, then we apply induction
to Q1 (with faces Fy and C to be multicolored) and then to Q2 (with multi-
colored C' and F3). By permuting the colors in @2, the two colorings coincide
on C, and their union gives a required coloring of Q.

Suppose now that F5 is in 1. Then we first apply induction on (; with
Fy, F5 to be multicolored. The face C is not multicolored. We may assume
that its coloring is 1213 or 1212. Let 2 € V(C) be the vertex of color 3 (if
it exists). Now we color ()2 with colors 1 and 2 (except for the vertex z) so
that its coloring on C' coincides with the coloring from 1. The colorings of
@1 and @2 can now be combined to obtain a required coloring of Q.

Suppose now that every 4-cycle in @ is facial. There is a face F' = zyzw
distinct from F; and Fs. Now, let Q' be obtained by identifying z and z and
squeezing F'. Since every 4-cycle is facial, Q' is a quadrangulation. However,
we have to be certain that Q' does not contain parallel edges (since then the
claim may not hold any more). By excluding parallel edges, we also make sure
that each of the faces F| and F5 has four distinct vertices in Q'. If Q' has
parallel edges, then z and z have a common neighbor u ¢ {y,w}. Since @ is
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planar and bipartite, y and w cannot have a common neighbor distinct from
z and z. Therefore, we can squeeze F' by identifying y and w instead.

By applying the induction hypothesis to @', we get a coloring of @' which
can also be used as a required coloring of Q.

3 Quadrangulations of the Projective Plane

Let G be a graph embedded in a surface S. If C is a cycle in G that is
contractible in the surface, then C' bounds a disk in S. That disk (together
with its boundary C) is called the interior of C.

In this section we prove an extension of known results about 4-colorings
of nonbipartite quadrangulations of the projective plane obtained in [You96,
HRS02, Moh02, CT04]. Claim (a) of Theorem 3.1 is reproduced from [Moh02].
Part (b) extends a result that was obtained previously (with an essentially
different proof) by Collins and Tysdal [CT04].

In the proof of Theorem 3.1, we will use the following easy fact. In a
nonbipartite quadrangulation of the projective plane, all contractible cycles
have even length and all noncontractible cycles have odd length. In particular,
if we allow multiple edges, they can never form a noncontractible 2-cycle.

Theorem 3.1. Let ) be a monbipartite quadrangulation of the projective
plane, and let k be an integer.

(a) If Q is k-colored, then there are at least three multicolored faces. In par-
ticular, k > 4.

(b) If k =4, then for every type t € {1,2,3}, the number of multicolored faces
of type t is odd.

Proof. Suppose that () is not bipartite, that it is k-colored, and that it is a
counterexample to either (a) or (b) with the minimum number of vertices. Let
F1 be the set of multicolored faces. Denote by F the set of all faces which are
not in JF7.

We allow multiple edges. However, we shall prove that they do not appear
in Q. If @ would have a pair of edges joining vertices x and y, the corresponding
2-cycle C' would be contractible since all noncontractible cycles are odd. Hence,
C would bound a disk D. By deleting the interior of D and identifying the
two parallel edges, we would get a smaller counterexample (where we apply
Theorem 2.1 to D when proving (b)), which would contradict our choice of Q.

Suppose now that @) has a facial walk xyzw € F such that z and z have
the same color. Clearly, x # z since () has no parallel edges. Then we can
squeeze the face by identifying = and z. The resulting graph is a nonbipartite
k-colored quadrangulation of the projective plane with the same multicolored
faces, which yields a contradiction to the minimality of ().

The conclusion of the above is that 7 = @ (and that @ does not have
multiple edges). Since F; # (), the quadrangulation @ has n > 4 vertices. For
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quadrangulations on the projective plane, Euler’s formula implies that the
number of faces is n — 1 > 3. This proves (a). As it only remains to prove (b),
we assume henceforth that k = 4.

Now we proceed in the same way as in the proof of Theorem 2.1. First
we exclude the case when two faces of the same type share an edge. Having
done that, we conclude that the dual graph of @ covers the dual graph R
of the K -quadrangulation. Observe that R has three vertices and that any
pair of them is joined by two edges forming a noncontractible 2-cycle in the
projective plane. It follows that the number of faces of @ is 3d, where d is the
degree of the covering projection. If d = 1, then @) = K4, which has a unique
4-coloring, with one multicolored face of each type. This concludes the proof
for d = 1.

If d > 1, then @ has a vertex u of degree 3 which is adjacent to a vertex v
whose degree is more than 3. (This follows from Euler’s formula by using
standard counting arguments.) In this case, the coloring around u and v is
as shown in Figure 5, and we can make a reduction shown in that figure,
and finally apply the induction hypothesis. There are some minor technical
details about this reduction that are worth mentioning. First, the reduction
shown in Figure 5 gives rise to a loopless 4-colored graph since the added
edges join vertices of distinct colors. However, there is a possible trouble if
x = u. In that case, the vertex x is not present after the deletion of w. If
this happens, we apply a similar reduction at the vertex y (see Figure 5). Let
us observe that in this case y # u, since if it were, u would be contained in
four quadrangular faces, contradicting the fact that its degree is 3. Lastly,
by performing this reduction, four multicolored faces of types 1, 2, 2, 3 are
replaced with two multicolored faces, whose types are 1 and 3, and one face
which is not multicolored. Hence, the parities of the numbers of multicolored
faces of specific types remain unchanged.

This completes the proof. O

Fig. 5. Another reduction

Let @ be a quadrangulation and F a collection of some of the faces of Q.
The pair (Q,F) is called a bordered quadrangulation, and we think of it as
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being the 2-cell complex obtained from () by deleting the 2-cells corresponding
to the faces in F. A 4-coloring of the bordered quadrangulation is soft if
all faces of @) distinct from those in F have at most three colors. Observe
that this notion is natural when passing from (bordered) quadrangulations
to (bordered) triangulations in which each face is triangulated. A 4-coloring
of Q can be extended to a 4-coloring of the corresponding triangulations if
and only if it is soft. See Section 4.
A corollary of Theorem 3.1(b) is the following

Lemma 3.2. Let A, B,C be distinct faces of a nonbipartite quadrangulation
Q of the projective plane. If B = xyzw and xy C AN B, zw C BN C, then
(Q,{A, B,C}) has no soft 4-coloring.

Proof. If ¢ is a soft 4-coloring of (Q,{A, B,C}), then A, B,C are all multi-
colored by Theorem 3.1(b), and they are of diffierent types. We may assume
that ¢(z) =0, c(y) =1, ¢(2) = 2, ¢(w) = 3, so B is of type 2. Then A must
be of type 3. Now, color 1 is opposite to z or opposite to w in C. It follows
that C cannot be of type 1, a contradiction. O

Now we shall add some specific examples.

Lemma 3.3. Let A,B,C,D be the faces of the projective planar quadran-
gulation Qo as shown in Figure 1(a). Then the bordered quadrangulation
(Qo,{A,B,C,D}) has no soft 4-colorings. On the other hand, if F' ¢ {A, B,
C, D} is another face of Qq, then (Qo,{A, B,C, F}) admits a soft 4-coloring.

Proof. Soft colorings of (Qo, {4, B,C, F'}) are shown in Figure 6 for different
choices of F' (up to symmetries). The types of the three multicolored faces are
shown inside small circles.

To prove the first part of the lemma, let A = zyzw, where x € V(D),
B = wzts and C = stuwv, where v € V(D) is opposite to z in D. Suppose now
that (Qo, {4, B,C, D}) has a soft 4-coloring ¢. By Theorem 3.1(b), precisely
three of the faces A, B, C, D are multicolored. By Lemma 3.2, D is necessarily
one of them, and we will assume that it is of type 1 and that ¢(z) = 0 and
c(v) =1.

Suppose first that A, B, D are multicolored. Since A is not of type 1 and
colors 2, 3 have not yet been introduced, we may assume that A is of type 2,
so that ¢(z) = 2. Then B is of type 3, and hence ¢(t) = 0 and ¢(w) = 3. Since
B is multicolored, it follows that ¢(s) = 1, a contradiction since its neighbor
v is colored 1.

The case when B, C, D are multicolored is symmetric to the above, so it
remains to consider the case when A, C, D are multicolored. Again, we may
assume that A is of type 2, so ¢(z) = 2. Since C is of type 3, we conclude
that {c(s),c(u)} = {0,3} and ¢(t) = 2. But this is a contradiction since the
neighbor z of ¢ is also colored 2. O
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Fig. 6. Soft colorings of (Qo, {4, B,C,F})

A bordered quadrangulation (@, F) is soft-4-critical if it does not have a
soft 4-coloring but for every face F' of @), where F' ¢ F, (Q,F U {F}) has a

soft 4-coloring

Some soft-4-critical bordered quadrangulations of the form (Qo,F) are
presented in Figure 7, where the faces in F are represented by circles. Criti-
cality of the first one is a direct consequence of Lemma 3.3. For the other two,
the proof is similar, and we leave details to the reader.

O

O
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Fig. 7. Some soft-4-critical bordered quadrangulations
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An unfortunate property of the above examples is that they cannot be
used directly to construct soft-4-critical bordered quadrangulations of large
edge-width. This is repaired in the examples given in the sequel.

Let Qo be the quadrangulation shown in Figure 1(a). For k£ > 1, let @, be
the projective planar quadrangulation obtained from Qg as follows. First, sub-
divide the six edges e; (1 < ¢ < 6) passing “through the crosscap” (the outside
edges), each with 2k new vertices v; ;;, where 1 < j < k and [ = 1,2. These
vertices subdivide e; in the respective order v; 1,1,052,1,- -, Vi k.15 Vik,2,-- -
v;1,2. Finally, we add k cycles of lenth 12, each surrounding the “outer”
12-cycle of the 3 x 3 grid in @g. The jth cycle passes through vertices
Vij,1s--5V6,5,1,V1,5,2,--5V6,j2. In Figure 1, quadrangulations () and @; are
shown.

Theorem 3.4. Let k > 1 be an integer, and let A, B,C be the faces of the
projective quadrangulation Qy, as shown in Figure 1. Then the bordered quad-
rangulation (Q,{A, B,C}) is soft-4-critical.

2 2 3 0 2 1
0 3 0 2
0 1®3 1®2 0 0] 2
3@2 1 2 0 2 ) 2 0<D
0 2 0 2 0
2 0 2
0 2

Fig. 8. Soft colorings for Do and D,

Proof. Let us first observe that () is obtained from @y by replacing each of
the six “exterior” faces Fi, ..., Fg by three quadrangles, i.e., they are replaced
by subdividers M shown in Figure 2. Similarly, Q (k > 2) is obtained from
Q-1 by replacing six faces by subdividers M. In the sequel, we give details
for the proof that @ is soft-4-critical, and leave the general case to the reader.

Let Fi,...,Fg be the “exterior” faces of (Qy, and let e; = a;b; be the
edge shared by F;_; and F; (1 < i < 6; all indices are considered mod-
ulo 6). In other words, the “outer” 12-cycle of the central 3 x 3-grid in Qg
is a1aa...agbiba...bg. In Q1, €; is subdivided by two vertices a},b;, where
we assume that b} is adjacent to a;, and a} is adjacent to b;. Here we
slightly adapt the convention about the notation modulo 6 and assume that
(ala blla alla bl) = (b77 a77, bf?a a7)-

Suppose that ¢ is a 4-coloring of Q)¢ with the following properties:
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(a) At most one of the faces F;, 1 < i < 6, is multicolored.

(b) If F = F; = a;a;11b;11b; is multicolored, then either the color ¢(a;)
appears twice in F;_; and ¢(b;+1) appears twice in Fj;1, or ¢(b;) appears
twice in F;_1 and ¢(a;+1) appears twice in Fjqq.

Now we extend ¢ to (); as follows. If neither F; nor F; 1 is multicolored,
we set c(a}) := c(a;) and ¢(b}) := ¢(b;). If F; is multicolored, then we assume
that the color ¢(a;) appears twice in F;_; and ¢(b;11) appears twice in Fj;q.
(The other possibility provided by (b) can be handled similarly.) Then we set
c(aj) := c(a;) and ¢(bi ;) = c(bit1). This choice guarantees that the new
faces in F;_; and Fj4q will not be multicolored. For the colors of b} and a 1
we use one of the following three possibilities: twice the color ¢(b;), colors
c(ai+1) and ¢(b;) (respectively), or twice the color ¢(a;4+1). Each of these three
possibilities gives rise to a different multicolored subface of Fj;.

The described extension of the colorings from Figure 6 (which satisfy
(a) and (b)) prove that (Q1,{A4,B,C, F}) has a soft 4-coloring for all faces
F ¢ {A,B,C,Dy,D;,D>} (where the faces Dy, D1, Dy are those shown in
Figure 1(b). Finally, for F' € {Dy, D1}, the corresponding soft 4-colorings are
exhibited in Figure 8, and the case of F' = D, is symmetric to the case when

F = Dy. The proof is complete. O
(o4
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Fig. 9. Two 4-colorings of the projective quadrangulation Q'

Another family of quadrangulations can be derived from Q. If we replace
each of the four faces in the “middle” by the subdivider M (see Figure 2),
we obtain @)}, which is shown in Figure 9. If we repeat the same with the
new four faces forming the middle Mdbius strip, we obtain ). By doing this
k times all together, we get Q). (k > 1).

Theorem 3.5. Let k > 1 be an integer, and let A, B,C be the faces of the
projective quadrangulation Q. corresponding to the faces of Qo shown in Fig-
ure 1. Then the bordered quadrangulation (Q},,{A, B,C}) is soft-4-critical.
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Proof. The proof is similar to the proof of Theorem 3.4. The necessary soft
4-colorings of (Q1,{A,B,C,Dy}) and (Q},{A, B,C,D;}) are shown in Fig-
ure 9 (where Dg and D; are the multicolored faces shown in the figure). The
details are omitted.

4 Eulerian Triangulations

A graph is Fulerian if all its vertices have even degree. It is well known
that Eulerian triangulations of the plane are 3-colorable. However, Eulerian
triangulations on other surfaces may have arbitrarily large chromatic number.
It is easy to find examples on the projective plane whose chromatic number is
equal to 3, 4, or 5, respectively, and it is easy to see that the chromatic number
of an Eulerian triangulation of the projective plane cannot be more than 5.
In [Moh02], a simple characterization and a polynomial time algorithm are
given to decide if an Eulerian triangulation of the projective plane is 3-, 4-,
or 5-colorable.

The class of graphs embedded in some surface S such that all facial walks
have even length (called locally bipartite embeddings) is closely related to Eu-
lerian triangulations of S. Namely, if we insert a new vertex in each of the
faces of a locally bipartite embedded graph G, and join it to all vertices on the
corresponding facial walk, we obtain an Eulerian triangulation 7 (G) which
contains G as a subgraph. We say that T(G) is a face subdivision of G and
that the set of added vertices U = V(T (G)) \ V(G) is a color factor of T(G).
Since U is an independent set, x(G) < x(T(G)) < x(G) + 1, where x(-)
denotes the chromatic number of the corresponding graph.

Theorem 3.1 applied to a nonbipartite projective planar quadrangula-
tion @ implies that the chromatic number of its face subdivision 7(Q) is
equal to 5. Theorem 3.1 also implies that 7(Q) is not 5-critical since the re-
moval of any two vertices of degree 4 in T(Q) leaves a graph which is not
4-colorable.

Eulerian triangulations of the projective plane with chromatic number 5
may have arbitrarily large face-width and they show that nonorientable sur-
faces behave differently than the orientable ones. Namely, Hutchinson, Richter,
and Seymour [HRS02] proved that Eulerian triangulations of orientable sur-
faces of sufficiently large face-width are 4-colorable.

The concept of face subdivisions extends to bordered surfaces. Given a bor-
dered quadrangulation (@, F), we define 7(Q,F) in the same way as above,
except that we do not subdivide the faces in F. If ¢ is a 4-coloring of 7(Q, F),
then its restriction to @ is a soft 4-coloring of (@, F). Conversely, every soft
4-coloring of (@), F) can be extended to a 4-coloring of 7(Q, F).

Our next result shows that soft-4-criticality of bordered quadrangulations
is essentially equivalent to 5-criticality of their face subdivisions.
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Theorem 4.1. Let (Q,F) be a soft-4-critical bordered quadrangulation of the
projective plane. If every (contractible) 4-cycle of @ bounds a face of Q, then
the graph of the face subdivision T (Q,F) is 5-critical.

Proof. Since (@, F) has no soft-4-colorings, T = T (Q, F) cannot be 4-colored.
Thus, it suffices to see that the removal of any edge uv of T yields a 4-colorable
graph.

Suppose first that u is a vertex which is not in @, i.e., u subdivides some
face F' ¢ F. Soft-4-criticality of (@, F) implies that there is a soft 4-coloring
of (Q,FU{F}). This 4-coloring can be extended to a 4-coloring of T'— u since
it is soft, and it can further be extended to u in T'— uwv since u has degree 3
in T — uw. This proves that T — uw is 4-colorable.

Suppose now that uv € E(Q). Since every contractible 4-cycle of ) bounds
a face in (), Q —uw is 3-colorable, as proved by Gimbel and Thomassen [GT97]
(cf. also [MS02]). Obviously, a 3-coloring of @) — uv can be extended to a
4-coloring of T' — wv. This completes the proof. [l

Theorem 4.1 (together with results of Section 3) gives rise to 5-critical
graphs on the projective plane. By Theorems 3.4 and 3.5, graphs T (Qk,
{A,B,C}) and T(Q},, {4, B,C}) are 5-critical for every k > 1. Theorem 4.1
and Lemma 2.3 imply that adding subdividers K and L in faces distinct from
A, B,C in such a way that another quadrangulation is produced, yields new
soft-4-critical bordered quadrangulations. Consequently, new 5-critical graphs
are obtained as their face subdivisions. This in particular proves Theorem 1.1.

Let us observe that the edge-width of 7(Q},{A, B,C}) can also be made
arbitrarily large by using the subdividers K and L (indeed only K suffices).
Both of these constructions yield the first explicit families of 5-critical graphs
of arbitrarily large edge-width on a fixed surface.
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