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Abstract. If G is an embedded graph, a vertex-face r-coloring is a mapping that assigns a
color from the set {1, ..., r} to every vertex and every face of G such that different colors
are assigned whenever two elements are either adjacent or incident. Let x,;(G) denote the
minimum r such that G has a vertex-face r-coloring. Ringel conjectured that if G is planar,
then x,s(G) < 6. A graph G drawn on a surface S is said to be 1-embedded in S if every edge
crosses at most one other edge. Borodin proved that if G is 1-embedded in the plane, then
x (G) < 6. Thisresult implies Ringel’s conjecture. Ringel also stated a Heawood style theorem
for 1-embedded graphs. We prove a slight strengthening of this result. If G is 1-embedded in
S, let w(G) denote the edge-width of G, i.e. the length of a shortest non-contractible cycle in
G. We show that if G is 1-embedded in S and w(G) is large enough, then the list chromatic
number ch(G) is at most 8.
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1. Background

Let G be an embedded graph. Suppose you wish to color the vertices and faces of
G so that two elements get different colors whenever they are adjacent or incident.
If G is planar, then you could use four colors on the vertices and an additional four
colors on the faces. It is natural to wonder if fewer colors might suffice. In 1966,
Ringel [14] showed that seven colors suffice and conjectured that six colors would
also suffice. This was verified by Borodin [4]. Recent papers on vertex-face coloring
planar graphs include those of Borodin, Kostochka, Raspaud, and Sopena [5], Lam
and Zhang [12], and Wang and Liu [19].

Suppose that a graph G is embedded in some surface. Let F(G) denote the set
of faces. An assignment ¢ : V(G) U F(G) — {1,2,...,r}is called a vertex-face
r-coloring if ¢(x) # c(y) whenever x, y are adjacent vertices, adjacent faces, or an
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incident vertex and face. This inspires the definition of G ¢, the vertex-face graph
of an embedded graph. More precisely, V(G,r) = V(G) U F(G) and E(G,y) col-
lects all of the pairwise incidences and adjacencies of the vertices and faces of the
embedded graph G. The vertex-face chromatic number of G, denoted by x,r(G), is
the minimum r such that G has a vertex-face r-coloring. Clearly, x,r(G) = x(Gyf).

We shall mainly consider list colorings, a notion that generalizes usual colorings.
Suppose that for every vertex v of G, a nonempty set L(v) is given. The set L(v)
is called the list of v, or the set of allowable colors for v. A list coloring assigns to
each vertex a color from its list in such a way that adjacent vertices receive distinct
colors. The graph is list r-colorable or r-choosable if for every selection of lists L(v)
(v € V(G)), each of which contains at least r allowable colors, there exists a list
coloring of G. The minimum r for which G is r-choosable is called the choice num-
ber or the list chromatic number of G and is denoted by ch(G). For vertex-face list
colorings of an embedded graph G, we define chyr(G) = ch(Gy).

A graph drawn on a surface S so that each edge crosses at most one other edge
is said to be 1-embedded in S. If G is embedded in S, then the natural construction
of superimposing the dual of G onto the embedding of G and adding the vertex-
face incidences gives a 1-embedding of G,¢ in S. Borodin [4] actually showed that
every graph that is 1-embeddable in the plane can be 6-colored, thus proving a
strengthening of Ringel’s conjecture mentioned above.

It is straightforward to draw a 1-embedding of K¢ in the plane. Thus Borodin’s
result is best possible. However, it is easy to see that K # G ¢ for any plane graph
G.If G = K30K); (the triangular prism) is embedded in the plane, then G,; has
eleven vertices. No three of these vertices are independent so x(G,r) > 6. On the
other hand, suppose that we have a list of 6 admissible colors for every vertex and
face of G. Clearly, there exists a list coloring of the faces of G. Any such coloring
yields lists of three allowable colors on every vertex of G. Since K3OK> is list 3-col-
orable, ch,r(G) = 6. It is worth mentioning that if one first 3-colors the vertices of
G, then this will not extend to a 6-coloring of G.

The idea of coloring first the faces and then list coloring the vertices suffices to
show that cubic planar graphs are vertex-face 6-choosable. Dualizing, we immedi-
ately see that planar triangulations are also vertex-face 6-choosable. Similar argu-
ments work on arbitrary surfaces. For example since the toroidal dual of K7 is 3-list
colorable, x,r(K7) =17.

It is not surprising that the value of x,7(G) can depend on the embedding of G.
For instance, if K5 is embedded on the torus so that all faces are quadrilaterals, then
xvf (K5) = 5. Hutchinson notes that an alternative embedding of K5 in which one
face is a pentagon has y,r(Ks) = 7 [6]. Figure 1 exhibits a toroidal embedding of
C% for which x,r = 7. We know of no graph G that embeds on the torus or Klein’s
bottle that has y,r(G) > 7.

2. Surfaces of Higher Genus

Although it would be natural to consider vertex-face colorings of graphs embed-
ded on surfaces of higher genus, it appears that not much work on this has been done.
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Fig. 1.

Ringel found an analogue of Heawood’s Theorem for the chromatic number of 1-
embeddable graphs. His result is that if G is 1-embeddable in the orientable surface

S of genus g > 1, then x(G) < L9+—V624g+17J [15]. Ringel asserts that the proof of
this inequality will appear elsewhere, but a search of MathSciNet reveals no such
paper. We now fill that gap and extend Ringel’s result not only to nonorientable sur-
faces but also to list colorings. Korzhik has a proof of this upper bound among other
results in the unpublished paper [9] and has shown Ringel’s inequality is sharp for
infinitely many surfaces [8]. We begin with an upper bound on the number of edges
in a 1-embeddable graph. This is a slight improvement of a result of Schumacher
[17].

Theorem 1. Let G be a graph with V vertices and E edges. If G is 1-embedded in a
surface of Euler genus g and has t vertices of odd degree, then E < 4V — 8 +4g — %t.

Proof. Suppose G is a graph that is maximally 1-embedded on S, a surface of Euler
genus g. Here, maximally means that it is not possible to insert additional edges
without having some edge crossing two others. We also allow multiple edges subject
to the provision that there is no face with just two boundary edges. Let G be the
graph obtained from G by removing every pair of crossing edges. Gy is naturally
embeded on S. Let Vy (= V), Ey, and Fj denote the number of vertices, edges, and
faces in Go and suppose F; denotes the number of faces with exactly i boundary
edges in Gy. Since G is maximal, the embedding of Gy is a 2-cell embedding and
every face in G is either a triangle or a quadrilateral. Thus Fy = F3 + Fy.

Euler’s Formula for Gy embedded on S is Vy — Eg + Fy = 2 — g. Counting
edge-face incidences yields 2Ey = 3F3 + 4F4 = 4Fy — F3. This gives

8 —4g=4(Vy— Eo+ Fy) =4Vy — (Eog +2F4) — 3Eq + 6Fy — 2F3.
Rearranging this equation and noting that £ = Ey + 2Fy, we get

E=4V —8+4g —3E+6F) —2F3 =4V —8 +4¢g — 1 Fs. (1)
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Suppose now that G is not edge maximal as assumed above. Suppose also that
s edges have been added to get a maximally 1-embedded graph G’ containing G.
If s > /6, then (1) implies the statement of the theorem. Otherwise, G’ contains
at least t — 25 > 0 odd degree vertices. Consequently, G has at least one triangle

incident with each of these vertices, so F3 > ! *325 . Using (1) we get:

E<4V —-8+4g— 2 —5 <4V —8+4g— L.
O

Theorem 1 yields a generalization of Ringel’s bound [15] to arbitrary surfaces,
its strengthening in the sense of Dirac’s extension of Heawood’s theorem (see [3]),
and its extension to list colorings.

Corollary 1. Let R(g) = L%(9 + /32¢ + 17)]. If G is 1-embedded in a surface of
Euler genus g, then ch(G) < R(g). Moreover, if g = 2 or g > 4, then ch(G) = R(g)
if and only if G contains the complete graph of order R(g) as a subgraph.

Proof. If g = 0, the corollary is just Borodin’s Theorem [4]. When g = 1, the average
degree of G is less than R(1) = 8 by Theorem 1. Thus every graph on the projective
plane contains a vertex of degree less than R(1), and ch(G) < R(1).

Suppose that G is a 1-embedded graph that is list critical for list-r-colorings (i.e.,
itis r-choosable, but there is a list assignment of r — 1 colors to each vertex such that
there is no list coloring of G, and every proper subgraph of G is (r — 1)-choosable).
By Theorem 1, E < 4V +4g — 8. If G is a complete graph K, then by Theorem 1,
(5) < 4r — 8 4 4g. This implies that r < R(g) and ch(G) < R(g).

Suppose now that G # K,. [tis easy to see that every graph on r + 1 vertices that
does not contain K, is r-choosable. Therefore, V > r + 2. Kostochka and Stiebitz
[11] proved that every list critical graph distinct from the complete graph satisfies

2E> @ —1)V+r-—3.
This inequality combined with Theorem 1 implies
r—9V+r—-8g+13<0. 2)

Since r = R(g) > 9 for g > 2, inequality (2) and the condition that V > r 4+ 2 imply
that r —9)(r +2) +r — 8g + 13 < 0. Solving this quadratic inequality shows that
r<Ri(g) = L%(6 + /56 + 32g)]. If g > 11, then it is easy to see that

36 +/56+32¢) +1 < 19+ /17+329)

which in turn implies that Ri(g) < R(g) — 1. For g = 2 and for 4 < g < 10, the
same conclusion can be drawn (by simply calculating the values R (g) and R(g)). O

The analogue of Dirac’s theorem in the preceding corollary is not true for g = 0
since ch((K30K>),r) = 6. Whether it is true for g = 1 and 3 remains open.

Ringel notes that for the torus or Klein’s bottle, the inequality of Corollary 1.1
becomes x(G) < 9. He exhibits a 1-embedding of K9 on both these surfaces by
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placing the nine vertices in a 3 x 3 grid and drawing all vertical, horizontal and
diagonal edges [15]. Thus Corollary 1.1 is best possible when g = 2. In contrast, it
is easy to see that there is no toroidal graph G with G,y = Kg. Consequently, we
immediately get the following corollary. Note that Schumacher has obtained the
same result for usual coloring [16].

Corollary 2. If G is a graph embedded in the torus or the Klein bottle, then
Ch(Gvf) <8.

Ringel also showed that Corollary 1.1 is best possible for an orientable surface
with g = 82 [15]. In contrast, unlike the Heawood bound which is optimal for all
surfaces except for the Klein bottle, there are infinitely many cases where Ringel’s
bound is not sharp.

Theorem 2. Let g = %r(r —1)—r—2, wherer is a positive integer that is divisible by §,
and let S be a surface of Euler genus g. Thenr = R(g) and K, cannot be 1-embedded
in S. Consequently, every graph G that is 1-embedded in S has ch(G) < R(g) — 1.

Proof. A routine calculation shows that r = %(9 + 17+ 32g) = R(g). Since r is
even, all vertices of K, have odd degree. By repeating the first (easy) part of the proof
of Corollary 1.1 for G = K,, and applying the stronger version of the inequality
of Theorem 1 with ¢+ = r, we get a contradiction. This implies that K, is not 1-em-
beddable in S. By Corollary 1.1, this implies that the choice number of 1-embedded
graphs in S satisfies the stronger bound. a

3. Locally Planar Embeddings

Given a 1-embedded graph G, the edge-width of G, denoted by w(G), is the length
of a shortest non-contractible cycle in G. This definition generalizes the notion of
the width of an embedded graph introduced in [2]. The notion of width has gained
a prominent place in topological graph theory [13]. Thomassen has shown that if
G is embedded on S, and w(G) is large enough, then x(G) < 5 [18]. A specific
theorem of this type due to Albertson and Hutchinson [1] is that if G is embedded
in a surface S of Euler genus g > 0 and w(G) > 64(28 — 1), then x(G) < 5.

If G is embedded in a surface of Euler genus g, let Gp denote the dual of G.
If we control both w(G) and w*(G) = w(Gp), we can use five colors on the ver-
tices and five different colors on the faces. Formally, if w(G) > 64(28 — 1) and
w*(G) = 64(28 — 1), then x,r(G) < 10. It is not surprising that fewer colors will
suffice.

Theorem 3. Suppose that G is 1-embedded in a surface of Euler genus g. If w(G) >
104g — 204, then ch(G) < 8.

Proof. We know that all graphs that can be 1-embedded in the plane or the pro-
jective plane are 8-choosable. Also, 1-embedded graphs in the torus or Klein bottle
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are 8-choosable if they do not contain K9. However, since the edge-width of Ky
embedded in any surface is 3, while w(G) > 4, K¢ cannot be a subgraph in G.
Suppose now that g > 3 and that, contrary to the desired conclusion, ch(G) > 9.
Then G contains a list-9-critical subgraph, say G’, with V’ vertices and E’ edges.
If G’ = Ky, then w(G) < w(G’) = 3 < 104g — 204. Otherwise, by Gallai’s The-
orem for list colorings, see [10], E' > 4V’ + X—(;. From Theorem 1 we know that
E’ <4V’ — 8 4+ 4g. Combining inequalities yields V/ < 104g — 208 < w(G). Con-
sequently, G’ cannot contain a non-contractible cycle and is therefore 1-embedded
in the plane. Our earlier results now imply that ch(G’) < 8. O

4. Open Questions

We summarize some open problems related to vertex-face colorings of embedded
graphs.

Question 1. If' G is planar, is ch,r(G) < 6 (or 7)?

Schumacher has shown that if G is 1-embedded on the projective plane, then
x(G) < 7, and that there exists G embedded on the projective plane such that
va(G) = T7[16].

Question 2. If G is embedded {resp. 1-embedded} on the projective plane, what is a
best possible upper bound for ch(G,r) {resp. ch(G)} ?

Question 3. If G embeds on either the torus or Klein's bottle, is x,y(G) <17

We do not know of any locally planar 1-embedded graph that requires more
than six colors.

Question 4. Is there a surface such that for every w, there exists a 1-embedded graph
G with w(G) > w and x(G) > 8 (resp. > 7)?

If the answer to the preceding question is affirmative, we still have the following:

Question 5. Is there a surface such that for every w, there exists a graph G embedded
in S with w(G) > w and x,7(G) > 8(resp. = T)?

The last three questions are also open if list coloring replaces standard coloring.
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