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Abstract

Let K be an induced non-separating subgraph of a graph G, and let B be the
bridge of K in G. Obstructions for extending a given 2-cell embedding of K to an
embedding of G in the same surface are considered. It is shown that it is possible to
find a nice obstruction which means that it has bounded branch size up to a bounded
number of “almost disjoint” millipedes. Moreover, B contains a nice subgraph B̃ with
the following properties. If K is 2-cell embedded in some surface and F is a face of
K, then B̃ admits exactly the same types of embeddings in F as B. A linear time
algorithm to construct such a universal obstruction B̃ is presented. At the same
time, for every type of embeddings of B̃, an embedding of B of the same type is
determined.

1 Introduction

Let K be a subgraph of a graph G. A K-bridge (or a bridge of K) in G is a subgraph of K-bridge

bridgeG which is either an edge e ∈ E(G)\E(K) (together with its endvertices) which has both
endvertices in K, or a connected component of G − V (K) together with all edges (and
their endvertices) between this component and K. Each edge of a K-bridge B having
an endvertex in K is a foot of B. Vertices of B ∩ K are the vertices of attachment of foot

vertices of attachmentB. A vertex of K of degree different from 2 is a main vertex of K. For convenience, if a
main vertexconnected component of K is a cycle, then we choose an arbitrary vertex of it and declare

it to be a main vertex of K as well. A branch of K is any path in K (possibly closed) branch

whose endvertices are main vertices but no internal vertex on this path is a main vertex.
If a K-bridge is attached to a single branch of K, it is said to be local. The number of local

branches of K is called the branch size of K. branch size

Let K ⊆ G, and suppose that we are given a 2–cell embedding of K in some surface.
The embedding extension problem asks whether it is possible to extend the given embed- embedding extension

problemding of K to an embedding of G in the same surface. In one of the strategies how to solve
this problem [2, 6, 7, 19, 16], it is important to decide in which faces of K one can embed
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each of the K–bridges. A particular case of the embedding extension problem is solved
by Juvan and Mohar [15]. They obtained a linear time algorithm that solves the embed-
ding extension problem in case when every K–bridge is restricted (or allowed) to have
only two essentially different embeddings in the faces of K. In particular, this algorithm
solves the embedding extension problem in case when no face of K is singular. Clearly, if
an embedding extension exists, each K–bridge B must be embeddable in at least one of
the faces of K. If B cannot be embedded in any face, then we want a simple certificate
for this. We provide such a certificate in the form of an obstruction — a subgraph Ω of
B that has embeddings exactly in those faces of K in which B can be embedded. It is
convenient if the branch size of Ω is bounded. Then it is easy to check that Ω has no
embedding in faces for which it is claimed that B cannot be embedded in. Our main
result, Theorem 5.1, characterizes obstructions within a single bridge. It is stated in a
more general and abstract form than just in terms of embedding extensions and shows
that also such more general obstructions are nice. Moreover, we devise a linear time
algorithm that for all K–bridges simultaneously determines all faces of K in which each
of them is embeddable. The algorithm also determines all such embeddings, whenever
they exist, and for every K–bridge B provides an obstruction Ω = Ω(B) contained in B
that has exactly the same types of embeddings as B. Moreover, any embedding of Ω in
a face of K can be extended to an embedding of B of the same type. The time used by
the algorithm is bounded by cn where n = |E(G)|, and c is a number that depends only
on the branch size of K. Moreover, Ω is either bounded (i.e., the branch size of K ∪ Ω
is bounded by a constant depending only on the branch size of K), or it has a special
structure. In the latter case, Ω can be written as the union of a graph Ω0 of bounded
branch size and a bounded number of (almost) disjoint subgraphs M1, . . . ,Mt (called
millipedes). Each of the millipedes Mi is attached only to a distinct segment of a branch
of K. It is possible to replace some of the branches of K by other branches joining the
same endvertices so that our obstruction becomes a subgraph of bounded branch size in
the complement of the new graph.

The case when K has only non-singular faces is relatively easy to deal with. All the
main ideas for this case are presented in [16]. The problem becomes more complicated
when we have doubly or multiply singular faces. Our result are used in a linear time
algorithm for testing (and constructing) embeddability of graphs in any fixed surface [19].

Embeddings in surfaces can be described combinatorially [9] by specifying a rotation
system (for each vertex v of the graph G we have the cyclic permutation πv of its neigh- rotation system

bors, representing their circular order around v on the surface) together with a signature signature

λ : E(G) → {−1, 1} having the property that a cycle of G has an odd number of edges e
with λ(e) = −1 if and only if the cycle is one-sided on the surface (i.e., it has a regular
neighborhood which is homeomorphic to the Möbius band). In order to make a clear
presentation of our algorithm, we use this description only implicitly. Whenever we say
that we have an embedding (either given, obtained by some other algorithm, or produced
inductively by our algorithm) we mean that we have such a combinatorial description.
Whenever used, it is easy to see how one can combine embeddings of some subgraphs of
the graph into an embedding of larger subgraphs.

Concerning the time complexity of our algorithms, we assume a random-access ma-
chine (RAM) model with unit cost for basic operations. This model of computation was
introduced by Cook and Reckhow [5]. It is known as the unit-cost RAM where operations unit-cost
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on integers, whose value is O(n), need only constant time (n is the order of the given
graph).

There are linear time algorithms which for a given graph determine whether the graph
can be embedded in the 2-sphere. The first such algorithm was obtained by Hopcroft
and Tarjan [11] in 1974. There are several other linear time planarity algorithms (e.g.,
[3, 8, 25]). Extensions of original algorithms produce also an embedding (rotation system)
whenever the given graph is found to be planar [4], or find an obstruction — a forbidden
Kuratowski subgraph homeomorphic to K5 or K3,3 — if the graph is found to be non- Kuratowski subgraph

planar [25, 26].
It is known [23] that the general problem of determining the genus, or the non-

orientable genus of graphs is NP-hard. However, for every fixed surface there is a poly-
nomial time algorithm which checks if a given graph can be embedded in the surface.
Such algorithms were found first by Filotti et al. [7]. For a fixed orientable surface Σ
of genus g they discovered an algorithm with time complexity O(nαg+β) (α, β are con-
stants) which tests if a given graph of order n can be embedded in Σ. Djidjev and Reif [6]
replaced the exponent depending on g by a constant. For every fixed surface, there is an
O(n3) algorithm using graph minors (Robertson and Seymour [20, 21, 22]). A construc-
tive version is described by Archdeacon in [1] with the running time proportional to n10.
We met the embedding extension problem, whose special case is treated in this paper
(i.e., the embedding extension for a single K–bridge), when looking for more efficient
algorithms for embedding graphs on surfaces. A considerable progress has been made
by the discovery of linear time algorithms for the case of the projective plane [16] and
the torus [13]. The latter one and its extension to an algorithm for embedding graphs
in general surfaces [19] use the results of this paper to replace possibly large bridges
with their subgraphs of bounded branch size and to determine the faces and the types of
embeddings in which each particular bridge can be embedded.

2 Types of embeddings

Let G be a connected graph, and K a subgraph of G with given 2-cell embedding in a
surface Σ. Let F be a face of K. A branch e of K is singular in F if it appears twice singular

on the facial walk ∂F of F . If x is a main vertex of K on ∂F , let sing(x, F ) denote the
number of appearances of x on ∂F decreased by one. Then x is singular if sing(x, F ) ≥ 1,
and the number sing(x, F ) is called the degree of singularity of x in F . The degree of
singularity sing(F ) of F is equal to the sum of sing(x, F ), where x is an arbitrary main degree of singularity

vertex of K on ∂F , plus the number of singular branches on ∂F . The face F is s–singular s–singular

if sing(F ) = s.
Let B be a K–bridge. Two embeddings of B in a face F of K are essentially different essentially different

if there is a point on ∂F such that B is attached to it under one of the embeddings, and
is not attached to it under the other embedding. We will only distinguish embeddings
that are essentially different. If no two embeddings of B in F are essentially different,
then B is said to have essentially unique embedding in F . This is true, in particular, essentially unique

when sing(F ) = 0.
Let e be a branch of K with at least one interior vertex. Then e with its endvertices

removed is called an open branch. Main vertices and open branches of K are called basic open branch
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pieces of K. We will also use oriented basic pieces. They correspond to basic pieces with basic pieces

oriented basic piecesthe distinction that open branches bear an orientation. Thus, every open branch gives
rise to two oppositely oriented basic pieces. If one of them is σ, the other one is denoted
by σ−. Clearly, (σ−)− = σ.

Suppose now that B is embedded in a face F of K in Σ. Let σ1, σ2, . . . , σt be those
appearances of oriented basic pieces on ∂F that B is attached to, enumerated and oriented
in the same order as they appear on ∂F . (Note that some appearances of basic pieces on
∂F may not participate in this sequence.) The embedding of B determines the sequence
σ1, . . . , σt up to cyclic shifts and up to its reflection. Denote by �σ1, . . . , σt
 the set of all
sequences σi, σi+1, . . . , σt, σ1, . . . , σi−1 and their inverses, σ−

i−1, σ
−
i−2, . . . , σ

−
1 , σ−

t , . . . , σ−
i ,

1 ≤ i ≤ t. Then we say that the given embedding of B in F is of type ∆ = �σ1, . . . , σt
. type

Types of embeddings of B can also be considered in cases when B has no appropriate
embedding of that type. Types of embeddings of B are partially ordered: We say that
(an embedding of) type ∆′ is simpler than (an embedding of) type ∆, ∆′ � ∆, if ∆′ simpler

contains a sequence that is a subsequence of an element of ∆. If ∆′ � ∆ and if B has an
embedding of type ∆′, then this embedding will also be considered as an embedding of
type ∆.

The above and all the succeeding definitions also hold if ∆ is a type that does not
necessarily correspond to a face of some 2-cell embedding of K. It is required that every
basic piece of K that B is attached to appears in ∆ at least once and that no other basic
pieces of K appear in ∆. Moreover, every open branch appears in ∆ at most twice (with
the same or opposite orientations). Given ∆ = �σ1, . . . , σt
, we define a (hypothetical)
face F corresponding to ∆ as follows. Take basic pieces σ1, . . . , σt of ∆ and join them face

into a cycle in the obvious way (respecting orientations of oriented open branches). We
will denote this cycle by ∂F . Paste a disk on ∂F to get the face F . An embedding
of B in F (necessarily an embedding of type ∆) is any embedding of B in F with the
obvious identification of ∂F with the vertices of attachment of B. Let σ be a basic piece
that B is attached to. The degree of singularity of σ in ∆ is defined as the number of degree of singularity

occurrences of σ and σ− in any of the sequences in ∆ minus 1. Open branches have
degree of singularity in ∆ at most 1. ∆ is admissible if the degree of singularity of any admissible

main vertex x of K is at most degK(x)− 1. Every type of embeddings of B with respect
to a face F of a 2-cell embedding of K is admissible but the converse is not necessarily
true. Define the degree of singularity of the type ∆, sing(∆), as the sum of degrees of degree of singularity

singularities of basic pieces in ∆.
The treatment of types of embeddings of B has several advantages over considering

actual 2-cell embeddings of K and its faces, although our main applications concern
only the latter case. The approach by using types is more combinatorial and also more
general. It will also become clear that most of our results will not really depend on K.
Only the way how B is attached to main vertices and branches of K is important.

Lemma 2.1 Suppose that K has no isolated vertices. Then the degree of singularity of
every admissible type ∆ for embeddings of B satisfies:

0 ≤ sing(∆) ≤ 3ε0 − ν0 , (1)

where ε0 and ν0 denote the number of (closed) branches and main vertices of K, respec-
tively, that are intersecting B. The number of admissible types for embeddings of B is at
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most
4ε0(4ε0)! . (2)

Proof. The bound on sing(∆) is easy since the sum of degrees of all the main vertices
of K is equal to twice the number of branches of K. Let k be the number of basic pieces
that B is attached to, and let m be the number of (open) branches among them. The
number of types with degree of singularity s is at most 4m(k + s − 1)!. Thus the total
number of types is bounded above by:

3ε0−ν0∑

s=0

4m(k + s− 1)! ≤ 4ε0(3ε0 − ν0 + 1)(4ε0 − 1)!

which yields (2).

Lemma 2.2 Suppose that B is attached to k ≥ 2 basic pieces of K, m of which are (open)
branches. Then the number of admissible types with the degree of singularity bounded by
d is at most 4m(k + d)! .

Proof. The bound is easily established by using the same method as above.

3 Obstructions

Throughout this section, we let ∆ be a type of embeddings of B and F a hypothetical
face corresponding to ∆. We will also assume that B is attached to all vertices on the
boundary of F . Several objects (numbers, sets, or graphs) will be referred to as bounded. bounded

This means that they are bounded above (for sets and graphs their cardinality and the
branch size is bounded, respectively) by a certain constant C◦ that depends only on the
degree of singularity of ∆. We are allowed to change our mind (a few times) about the
choice of C◦. Thus, any bounded number of arithmetic operations performed on bounded
numbers gives rise to a bounded result.

An obstruction in B is a subgraph Ω of B. If Ω has no embedding with certain obstruction

properties, then Ω is said to obstruct embeddings of B with these properties. Usually, Ω obstruct

will have no embeddings of type ∆, in which case Ω obstructs embeddings of this type.
An obstruction Ω is bounded if Ω ∪ ∂F has bounded branch size. Since we are assuming bounded

that sing(∆) is bounded, this is equivalent to the requirement that Ω has bounded branch
size and bounded number of feet.

To measure the size of Ω ⊆ B we will use the number b(Ω) which is equal to the
number of branches of K ∪ Ω that are contained in Ω. If K is connected, or if K has no
vertices of degree 1, then Ω is bounded if and only if b(Ω) is bounded.

Let Φ0 be the set of feet of B. If B is embedded in F , then the feet of Φ0 are
cyclically ordered according to their attachment on ∂F . Their order is well determined
also when several feet attach to the same appearance of a vertex on ∂F . According to
this motivation, we will consider cyclic sequences of feet of B. Let Ω be a subgraph of B cyclic sequences

with feet Φ ⊆ Φ0, and let Π be a cyclic sequence of Φ. If Ω has an embedding in F whose
cyclic order of feet agrees with Π, then Ω has an embedding in F for all placements of
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feet on ∂F whose cyclic order is Π or Π−1 (the cyclic inverse). If Ω has no embedding
in F with the cyclic order of its feet equal to Π, then Ω is said to be an obstruction for
the cyclic sequence Π in F since it obstructs embeddings of B in F inducing the cyclic
order Π on Φ. Let us say that Π is ∆–admissible if the induced cyclic order of vertices ∆–admissible

of attachment of Ω corresponding to Π is a subsequence of vertices on ∂F (in one or the
other direction). Clearly, cyclic sequences that are not ∆–admissible are obstructed in
F . On the other hand, if Ω obstructs a ∆–admissible cyclic sequence Π in F , then Ω
obstructs Π in any other (hypothetical) face. Then we say that Ω obstructs Π, or that obstructs

Π is obstructed by Ω. If every ∆–admissible cyclic sequence of Φ is obstructed by Ω, obstructed

then, clearly, Ω has no embedding of type ∆ (and vice versa). Therefore, any obstruction
for embeddings of type ∆ can also be viewed as an obstruction for ∆–admissible cyclic
sequences of feet. It will be convenient to view Ω also as an obstruction for some cyclic
sequences of feet distinct from Φ. Ω is said to obstruct a cyclic sequence Π′ of feet Φ′ ⊇ Φ obstruct

if Π′ induces an obstructed cyclic sequence of Φ. Also, Ω obstructs a cyclic sequence Π′′ obstructs

of Φ′′ ⊆ Φ if it obstructs every cyclic sequence Π of Φ which induces Π′′. The obstruction
Ω is a total obstruction if it obstructs every cyclic sequence of its (and thus also of any total obstruction

other set of) feet.
In Figure 1, two examples of obstructions are presented. The first one obstructs α

and β from being attached to different occurrences of the vertex x on ∂F , i.e., it obstructs
cyclic sequences �α, γ, β, δ
. The second one obstructs α, γ for being embeddable on the
same side (and similarly β and δ). In other words, the cyclic sequences in �α, γ, β, δ
 and
�α, γ, δ, β
 are obstructed.

Figure 1: Obstructions

Let us point out that a bounded obstruction Ω ⊆ B is a simple verifier that certain
kinds of embeddings of B (in F ) do not exist. The requirement that b(Ω) is bounded
guarantees that there is only a bounded number of possibilities to check for embeddability
of Ω in F .

The presence of local bridges of K in G can yield arbitrarily large minimal obstructions
also in cases where this would not occur in the absence of local bridges. Therefore the
following lemma from [16] proves to be useful.
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Lemma 3.1 ([12]) Let G be a 3-connected graph, K ⊆ G, and e a branch of K. Let H
be a subgraph of G consisting of e and all local K–bridges that are local on e. There is
a linear time procedure that either replaces e by another branch e′ ⊆ H joining the same
pair of main vertices as e and such that there are no local bridges of K − e + e′ attached
to e′, or finds a Kuratowski subgraph contained in H.

We will also need the following lemma whose proof can be found in [17]:

Lemma 3.2 ([17]) Let H be a graph, C a cycle in H, and let D be a disk. There is a
linear time algorithm that either finds an embedding of H in D with C on ∂D, or returns
an obstruction Ω for such embeddings such that b(Ω) ≤ 12. Moreover, Ω is either a pair
of disjoint crossing paths, a tripod, or a Kuratowski subgraph contained in a 3-connected
component of H.

Now we continue with our special case when there is only one bridge of K.

Lemma 3.3 Let Ω be an obstruction in B. There is a linear time procedure that either
determines a non-obstructed cyclic sequence of feet of Ω, or finds a total obstruction
Ω0 ⊆ Ω contained in Ω such that b(Ω0) ≤ 11.

Proof. Let Q be the graph obtained from Ω by identifying all its vertices of attachment
to K into a single vertex w. Test planarity of Q. If Q is planar, the local rotation at w
determines a cyclic sequence of feet of Ω that is not obstructed. Otherwise, a Kuratowski
subgraph of Q determines a subgraph Ω0 of Ω. It is easy to see that Ω0 is a total
obstruction and that b(Ω0) ≤ 11.

Given Ω ⊆ B and a cyclic sequence Π of feet of Ω, it is easy to check (in time
proportional to b(Ω)) if Ω is an obstruction for Π. We first construct the split auxiliary
graph Aux(Ω,Π) of Ω and Π. We split each vertex of attachment of Ω into as many new split auxiliary graph

vertices as is the number of feet of Ω at this vertex. Then join all the (new) endvertices
of feet of Ω into the cycle (called the auxiliary cycle) as determined by Π. Finally, add an auxiliary cycle

additional vertex (called the auxiliary vertex) and join it with all vertices on the auxiliary auxiliary vertex

cycle. See an example on Figure 2. It is easy to see that Ω is an obstruction for Π if and
only if Aux(Ω,Π) is not a planar graph. This property gives rise to an efficient checking
procedure to test if given graphs are obstructions or not.

We will also use obstructions for embedding extension problems in case of more than
just one K–bridge. Definitions follow those given above for the case of a single bridge of
K.

Let us recall that a graph H is nodally 3-connected if the graph obtained from H by nodally 3-connected

replacing each branch by an edge between the corresponding main vertices is 3-connected.
An obstruction Ω ⊆ G−E(K) is well connected if Ω is a single K–bridge in K ∪Ω. The well connected

following property of split auxiliary graphs of obstructions will be useful.

Lemma 3.4 Let Ω ⊆ B be a well connected obstruction with at least three feet. Then Ω
either contains a total obstruction Ω′ which has b(Ω′) ≤ 11, or contains a well connected
subgraph Ω′ with the following properties:

(a) Ω′ has the same feet as Ω and b(Ω′) ≤ b(Ω),
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Figure 2: Ω,Π, and Aux(Ω,Π)

(b) Ω′ obstructs the same cyclic sequences as Ω, and

(c) Aux(Ω′,Π′) is nodally 3–connected for every cyclic sequence Π′ of feet of Ω′.

Moreover, given Ω, the obstruction Ω′ can be found in linear time.

Proof. By Lemma 3.3, we either find a total obstruction (in which case we stop), or a
non-obstructed cyclic sequence Π. By an algorithm of Hopcroft and Tarjan [10], we can
get in linear time the 3-connected components of Aux(Ω,Π). Let Q be the 3-connected
component containing the auxiliary vertex and the auxiliary cycle. We can view Q as
a subgraph of Aux(Ω,Π) by replacing virtual edges by appropriate paths in Ω. Since
Ω is well connected and has at least three feet, Q contains all feet of Ω. Let Ω′ be the
subgraph of Ω corresponding to Q. It is easy to see that Ω′ is well connected and that
it satisfies (a) and (b). It also satisfies (c) for Π′ = Π since Aux(Ω′,Π) = Q. It follows
easily that (c) holds also for other cyclic sequences of feet.

Remark. Lemma 3.4 can be performed also in case when Ω contains at most two
feet. In that case we cannot insist on Aux(Ω′,Π′) being nodally 3-connected since the
auxiliary cycle contains a loop or parallel edges. But then Ω′ is a total obstruction or just
a path. If the connectivity condition of Lemma 3.4 is not fulfilled, we can use the above
procedure “componentwise”. The final result is again nodally 3-connected with the only
difference that some “components” that gave rise to paths in Ω′, may yield parallel edges
in Aux(Ω′,Π′) for some of the cyclic sequences Π′.

Lemma 3.5 Let Ω ⊆ B be a well connected obstruction with f ≥ 3 feet. Then Ω either
contains a total obstruction Ω′ such that b(Ω′) ≤ 11, or it contains a well connected
subgraph Ω′ with the following properties:

(a) Ω′ has the same feet as Ω,
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(b) Ω′ obstructs the same cyclic sequences of feet as Ω,

(c) Aux(Ω′,Π′) is nodally 3–connected for every cyclic sequence Π′ of feet of Ω′, and

(d) b(Ω′) ≤ 5f − 9.

Moreover, given Ω, the obstruction Ω′ can be found in linear time.

Proof. By Lemma 3.4, we may assume that Aux(Ω,Π′) is nodally 3-connected for
every cyclic sequence Π′ of its feet (or we find a total obstruction Ω′ with b(Ω′) ≤ 11).
Moreover, we may assume that Aux(Ω,Π) is planar for some Π. Denote by F1, . . . , Ff the
faces of Aux(Ω,Π) containing consecutive edges on the auxiliary cycle but not containing
the auxiliary vertex. Denote by Ω′ the subgraph of Ω consisting of all vertices and edges
of Ω that are contained in boundaries of F1, . . . , Ff . It is clear that Ω′ is a well connected
subgraph of Ω and that it satisfies (a).

We claim that Aux(Ω′,Π) is nodally 3-connected. It is easy to see that it is 2-
connected since Aux(Ω,Π) is nodally 3-connected and thus any two faces Fi, Fj are either
disjoint or their intersection is a vertex or a branch of Aux(Ω,Π). Suppose that there
is a (non-trivial) 2-separation {x, y}. Let Q be the part separated by x, y that does not
contain the auxiliary vertex. Since Q is not just a branch, it contains a cycle C. Denote
by D the disk bounded by C under the plane embedding of Aux(Ω,Π). Since Ω is well
connected, Q contains none of the auxiliary edges. Therefore, D does not contain any of
the faces Fi (assuming that the auxiliary vertex is on the boundary of the infinite face).
It follows easily that Q = C and that the two segments from x to y on C are on the
boundaries of two faces Fi, Fj , say. Then ∂Fi ∩ ∂Fj is disconnected and this contradicts
the nodal 3-connectivity of Aux(Ω,Π).

Since Aux(Ω′,Π) is nodally 3-connected and Ω′ is well connected, we have (c). Also,
boundaries of faces of Aux(Ω′,Π) are characterized as induced non-separating cycles
[24]. If R is such a cycle that is disjoint from the auxiliary cycle, it is an induced non-
separating cycle (and hence facial) also in Aux(Ω′,Π′) for any Π′. Consequently, having a
plane embedding of Aux(Ω′,Π′), it can be extended to a plane embedding of Aux(Ω,Π′)
by using the embedding of Aux(Ω,Π). This proves (b).

The bound in (d) will be proved by induction on f . If f = 3, it is easy to see that
b(Ω′) ≤ 6 = 5f − 9. Similarly, if f > 3 and if any two non-consecutive faces Fi, Fj are
disjoint, then Aux(Ω′,Π) is just the f–prism (together with the auxiliary vertex), and
b(Ω′) = 2f < 5f − 9. Suppose now that non-consecutive faces Fi, Fj (i < j) intersect.
Because of (c), they share a vertex or a common branch. By splitting the vertex (removing
the branch, respectively) we get a face across the disk bounded by the auxiliary cycle.
Denote by x, y the two vertices obtained after splitting (the ends of the removed branch,
respectively). We can split the auxiliary cycle into two cycles, each containing one of the
split parts between Fi and Fj . By adding an edge from x to the auxiliary cycle in the first
part and adding an edge from y to the cycle in second part, we obtain graphs Ω1,Ω2 with
j− i+ 1 and f − j + i+ 1 feet, respectively. They have the same property as Aux(Ω′,Π):
every edge is on the boundary of one of the faces containing the auxiliary edges. By
induction, b(Ω′) ≤ b(Ω1) + b(Ω2)− 1 ≤ 5(j− i+ 1)− 9 + 5(f − j + i+ 1)− 9− 1 = 5f − 9.
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Corollary 3.6 Let Ω1,Ω2 be obstructions in B such that Ω1∪Ω2 contains at least 3 feet.
Then B either contains a total obstruction Ω′ such that b(Ω′) ≤ 11, or it contains a well
connected subgraph Ω′ with the following properties:

(a) Ω′ has the same feet as Ω1 ∪ Ω2,

(b) Ω′ obstructs all the cyclic sequences of feet that are obstructed by Ω1 or by Ω2,

(c) Aux(Ω′,Π′) is nodally 3–connected for every cyclic sequence Π′ of feet of Ω′, and

(d) b(Ω′) ≤ 5f − 9 where f is the number of feet of Ω1 ∪ Ω2.

Moreover, given B, Ω1 and Ω2, the obstruction Ω′ can be found in linear time.

Proof. By adding some paths of B −K to Ω1 ∪ Ω2, one can get (in linear time) a well
connected obstruction Ω ⊇ Ω1 ∪ Ω2 with the same feet as Ω1 ∪ Ω2. It remains to apply
Lemma 3.5.

The obstruction Ω′ constructed by applying Corollary 3.6 is said to be obtained by
combining Ω1 and Ω2. Let us note that linearity is considered with respect to the size of combining

B. Corollary 3.6 can also be used for combining more than two obstructions.
We will use some special subgraphs of bridges in G. Let K ′ be a subgraph of G and

let B′ be a bridge of K ′. For each open branch e of K ′ that B′ is attached to, let e1 and
e2 be feet of B′ attached as close as possible to one and the other end of e, respectively.
If there is just one vertex of attachment on e, we select e1 = e2. In addition to the above,
select one foot of B′ at every main vertex of K ′ that B′ is attached to. Let H ⊆ B′ be
a minimal tree that contains all chosen and no other feet of B′. The obtained graph H
is said to be an H–graph of B′. Suppose, for example, that B′ is attached only to two H–graph

open branches of K ′. Then H contains at most 4 feet and its branch size is at most
5. If there are three or just two distinct feet in H, then H is essentially unique (up to
homeomorphisms). But in case of four distinct feet, there are four essentially different
cases for H (see Figure 3). H–graphs can be constructed in linear time by standard graph
search algorithms. The following simple fact justifies introduction of H–graphs: Let G
be a graph and K its subgraph that is 2-cell embedded in some surface. Let B and B′ be
non-local K-bridges in G that can be embedded in the same non-singular face F of K.
Then B and B′ overlap in F if and only if their H–graphs overlap in F . (We say that B
and B′ overlap in F if they cannot be simultaneously embedded in F .) overlap

(a) (b) (c) (d) (e) (f)

P P P P P PP P P P P P1 1 1 1 1 12 2 2 2 2 2

Figure 3: H–graphs
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Corollary 3.7 Let B be a non-local bridge of K in G, and let ∆1, . . . ,∆k where k ≥ 1
is bounded, be non-singular embedding types for B. Then B contains well connected
obstructions B and B̃ with the following properties:

(a) B and B̃ admit embeddings of exactly those types among ∆1, . . . ,∆k that B does.

(b) b(B) ≤ 20k − 8 and b(B̃) ≤ 20k + 4t− 9 where t is the number of basic pieces that
B is attached to.

(c) Suppose that B′ is another non-local bridge of K in G and B̃′ is the corresponding
obstruction with respect to non-singular embedding types ∆′

1, . . . ,∆
′
�. If F is a

non-singular face, then B and B′ have simultaneous embedding in F of types ∆i

(1 ≤ i ≤ k) and ∆′
j (1 ≤ j ≤ -), respectively, if and only if B̃ and B̃′ admit such

an embedding in F .

Moreover, obstructions B and B̃ can be obtained in linear time.

Proof. We may suppose that B has no embeddings of types ∆1, . . . ,∆s (0 ≤ s ≤ k), and
that it admits embeddings of other types. Let Ω1, . . . ,Ωs be obstructions for ∆1, . . . ,∆s,
respectively. They can be obtained by applying Lemma 3.2. (We also add some paths, if
necessary, so that Ω1, . . . ,Ωs are well connected.) If some Ωi is a tripod or a Kuratowski
subgraph in a 3-connected component of K ∪ B, then it can serve as B, obstructing all
types ∆1, . . . ,∆k. Moreover, b(B) ≤ 12 ≤ 20k−8. Otherwise, each Ωi is a pair of disjoint
crossing paths. Applying Corollary 3.6 on Ω1 ∪ · · · ∪ Ωs, we get a required obstruction
B = Ω′. By (d), b(B) ≤ 5(4s) − 9 ≤ 20k − 9.

To get B̃ from B, we add extreme feet of B on every basic piece that B is attached to
and corresponding paths to B so that B̃ is well connected. Property (c) is then obvious
by (a) since B̃ contains an H–graph of B.

The above upper bound 20k− 8 can be further decreased with more careful analysis.
We will show how to do it in a very specific example.

Lemma 3.8 Suppose that B is attached only to two (open) branches of K. Then B
contains an obstruction B̃ that has exactly the same non-singular admissible embeddings
as B and also satisfies property (c) of Corollary 3.7. If B has no non-singular embeddings
then b(B̃) ≤ 12. Otherwise, b(B̃) ≤ 5. The obstruction B̃ can be found in linear time.

Proof. There are two types of non-singular embeddings of B. If B admits at least
one of them, we take for B̃ an H–graph of B obtained from the “leftmost” and the
“rightmost” path with respect to this embedding. If these two paths meet, B also has
the other embedding. If they are disjoint, they obstruct the other embedding. If B has
no non-singular embeddings, we apply Lemma 3.2 for both types. Obtaining a tripod or
a Kuratowski subgraph in any of the cases, this is a required obstruction.

Suppose now that we have disjoint crossing paths in both cases. Let P1, P2 be the
paths for one of the embedding types. We may assume that all 3-connected components
of G contained in B are planar (or we get a Kuratowski subgraph). Then Lemma 3.1
enables us to change P1 and P2 so that the graph K ′ = K ∪P1 ∪P2 has no local bridges.
Consider an embedding extension of B for the other type ∆. The paths P1, P2 split the

11



corresponding face F into three faces and every K ′–bridge in G has at most one face
where it could be embedded (according to its attachments). Lemma 3.2 (used for all
three faces) gives rise to an obstruction Ω′ ⊆ G − E(K ′), where Ω′ is either a tripod
or disjoint crossing paths with respect to one of the faces. If necessary, we add path(s)
Q from K − (P1 ∪ P2) to Ω′ − (P1 ∪ P2). It is easy to see that the obtained subgraph
P1 ∪ P2 ∪ Ω′ ∪Q of B contains an obstruction Ω with b(Ω) ≤ 12.

4 Millipedes

There are cases when embeddability of B in F cannot be obstructed by a bounded
obstruction. We will show that in such a case, B contains an obstruction Ω which is nice
in the sense that it has bounded number of embeddings of any admissible type and which
can be changed into a bounded obstruction if we allow to change some of the branches
of K.

Consider a (hypothetical) face F corresponding to an admissible type ∆ of embeddings
of B. Let e be an open singular branch of K on ∂F . Denote by Q1 and Q2 the two
segments of ∂F\e in which the two appearances of e on ∂F split the boundary walk of
F . Suppose that ∂F = Q1eQ2e

−. We will refer to the part of ∂F consisting of Q1 as the
left side, and to Q2 as the right side of F . For example, we say that a vertex x on e is to left side

right sidethe left of the vertex y on e if x is closer to Q1 than y.
A 1-millipede in B based on e is a subgraph M of B which can be expressed as 1-millipede

based onM = P ∪B◦
1 ∪B◦

2 ∪ · · · ∪B◦
m (m ≥ 12) where:

(M1) P ⊆ B is a path embedded in F joining a vertex q1 of Q1 with a vertex q2 in Q2.

(M2) Denote by F1 and F2 the subfaces in which P splits the face F and let K ′ = K∪P .
B◦
1 ∪ B◦

2 ∪ B◦
3 is uniquely embeddable in F1 ∪ F2. Let Fα be the face containing

B◦
1 under this embedding. Similarly, B◦

m−2 ∪ B◦
m−1 ∪B◦

m is uniquely embeddable,
and let Fβ be the face containing B◦

m. If m is even, then α = β. If m is odd, then
α �= β.

(M3) B◦
1 , B

◦
2 , . . . , B

◦
m are H–graphs of distinct K ′–bridges B1, B2, . . . , Bm (respectively).

B◦
2 , . . . , B

◦
m−1 are attached to e and to P and are not attached to other pieces of

K ′.

(M4) For each i = 1, 2, . . . ,m− 1, B◦
i and B◦

i+1 overlap in F1 and in F2.

(M5) For i > 1 and i + 2 ≤ j < m, B◦
i and B◦

j overlap neither in F1 nor in F2. B◦
1 ∪B◦

j

can be embedded in Fα (j = 3, 4, . . . ,m− 1). Similarly, B◦
j ∪B◦

m can be embedded
in Fβ (j = 2, 3, . . . ,m− 2). Additionally, B◦

1 ∪B◦
2 ∪B◦

3 ∪B◦
m−2 ∪B◦

m−1 ∪B◦
m can

be embedded in F1 ∪ F2.

(M6) For i = 3, 4, . . . ,m− 2, B◦
i+1 ∪B◦

i+2 has a vertex of attachment on e strictly to the
right of the rightmost attachment of B◦

i−2∪B◦
i−1 on e, and B◦

i−2∪B◦
i−1 has a vertex

of attachment on e strictly to the left of the leftmost attachment of B◦
i+1 ∪B◦

i+2 on
e.

12



(M7) Let p and q be the first and the last attachment of B◦
2 ∪ · · · ∪B◦

m−1 on P , and let
P ◦ be the segment of P between p and q. For i = 1, 2, . . . ,m, denote by li and ri

the leftmost and the rightmost vertex of attachment of B◦
i on e, respectively. If

W is the closed segment on e between l4 and rm−3, then every K ′–bridge that has
an attachment in the interior of P ◦ or in the interior of W has all its attachments
in P ◦ ∪ e. All K ′–bridges that are attached only to P ◦ ∪ e can be simultaneously
embedded in F1 ∪ F2.

It is clear by (M2) and (M4) that a 1-millipede M obstructs those embeddings of B
in F where P is embedded in F as chosen in (M1). (M5) implies that no bridge B◦

i in
M is redundant.

Our notion of 1-millipedes is slightly different from the concept of millipedes intro-
duced in [17]. The millipedes in [17] can be shorter (i.e., m < 12 is allowed) and their
subgraphs B◦

i are only required to be subgraphs of H–graphs in order that millipedes
become minimal obstructions. On the other hand, the notion of “extended millipedes”
introduced in [17] corresponds precisely to our 1-millipedes. In this paper we take advan-
tage of B◦

i being H–graphs and do not care of some superfluous branches in the millipede.
The following important result has been proved in [17].

Theorem 4.1 Suppose that the only singular basic piece on ∂F is an open branch e and
that ∂F = Q1eQ2e

−. Suppose that in B there is a path from Q1 to Q2. Then B cannot
be embedded in F if and only if either

(a) B contains a bounded obstruction Ω for embeddability of B in F , where b(Ω) ≤ 77,
or

(b) B contains a 1-millipede Ω = P ∪ B◦
1 ∪ · · · ∪ B◦

m based on e such that b(P ∪ B◦
1 ∪

B◦
2 ∪B◦

3 ∪B◦
m−2 ∪B◦

m−1 ∪B◦
m) ≤ 43.

Moreover, such an obstruction Ω can be found in linear time.

A 1-millipede is thin if B◦
5 ∪ B◦

6 ∪ · · · ∪ B◦
m−4 is attached to P at a single vertex. thin

Otherwise, M is thick. thick

One can define millipedes also in case when ∂F = Q1eQ2e, i.e., the open face together
with e is homeomorphic to the Möbius band. We distinguish one of the ends of e as the
“left” side of e, and the other side is on the “right”. Note that in this case, the left and
the right side of e cannot be defined using Q1 and Q2. In such a case we need only thin
millipedes (where (B◦

2 ∪ · · · ∪ B◦
m−1) ∩ P is just one vertex; cf. [14]), but another kind

of arbitrarily long obstructions arises. They are called skew millipedes and are defined skew millipedes

analogously as thin millipedes. The branch e is assumed to appear on ∂F twice in the
same direction. The path P contains vertices p and q such that no K ′–bridge in G is
attached to P strictly between p and q. The K ′–bridges B◦

2 , . . . , B
◦
m−1 satisfy (M1),

(M2), (M4), and (M6)–(M7) while (M3) and (M5) are replaced by:

(M3′) B◦
2 , . . . , B

◦
m−1 are H–graphs of distinct K ′-bridges. If i is even (1 < i < m), then

B◦
i is attached to e and to p (and not elsewhere). If i is odd (1 < i < m), then B◦

i

is attached to e and to q (and not elsewhere).
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(M5′) For i > 1 and i + 2 ≤ j < m, B◦
i and B◦

j do not overlap in Fα if either i �≡ α
(mod 2), or j ≡ α (mod 2) (or both). They do not overlap in F3−α if either i ≡ α
(mod 2), or j �≡ α (mod 2) (or both). For 3 ≤ j < m, B◦

1 ∪ B◦
j can be embedded

in Fα. For 1 < i ≤ m − 2, B◦
i ∪ B◦

m can be embedded in Fβ. Additionally,
B◦
1 ∪B◦

2 ∪B◦
3 ∪B◦

m−2 ∪B◦
m−1 ∪B◦

m can be embedded in F1 ∪ F2.

In referring to a millipede, we mean either a 1-millipede, a thin or a skew millipede. millipede

If M is a millipede, it is an obstruction for embedding extensions of K to G. Moreover,
it is a “minimal” obstruction in the sense that no bridge in M is redundant.

A result similar to Theorem 4.1 has been proved in [18]. It characterizes obstructions
in the Möbius band.

Theorem 4.2 ([18]) Suppose that the only singular basic piece on ∂F is a branch e
and that ∂F = Q1eQ2e. Then B cannot be embedded in F if and only if either B
contains a bounded obstruction Ω for embeddability of B in F , or B contains a thin
or a skew millipede. In the former case we have b(Ω) ≤ 2000, while in the latter case
b(B◦

1 ∪ B◦
2 ∪ B◦

3 ∪ B◦
m−2 ∪ B◦

m−1 ∪ B◦
m) ≤ 2000. Moreover, such an obstruction can be

found in linear time.

Let us derive some basic properties of millipedes. We will use the notation from
(M1)–(M7).

Lemma 4.3 Let M be a millipede. For each i, 1 ≤ i ≤ m − 2, and for every t, 2 ≤
t ≤ m − i, B◦

i+t is attached to P and to e to the right of B◦
i . If i + t < m, then at least

one of the attachments (either on P , or on e) is strictly to the right of the corresponding
rightmost attachment of B◦

i on P , or e.

Proof. Shown in [17] for 1-millipedes and in [14] for Möbius band thin and skew
millipedes. The strict property is clear since otherwise B◦

i+t+1 could not overlap with
B◦

i+t without overlapping with B◦
i as well.

Lemma 4.4 Let x be the rightmost attachment on e of B◦
1∪· · ·∪B◦

i , where 2 ≤ i ≤ m−5.
Then each of B◦

i+5, B
◦
i+6, . . . , B

◦
m has all its attachments on e strictly to the right of x.

Proof. By (M6), B◦
i+2∪B◦

i+3 has an attachment y strictly to the right of x. By Lemma
4.3, B◦

i+5, B
◦
i+6, . . . have all their attachments on e to the right of y, hence our claim.

Let M be a millipede. Its subgraph

∂M = P ∪ (B◦
1 ∪ · · · ∪B◦

6) ∪ (B◦
m−5 ∪ · · · ∪B◦

m)

is called the boundary part of M . Since m ≥ 12, H-graphs B◦
i participating in ∂M are boundary part

pairwise distinct.
We will consider embeddings of M and of ∂M in faces F where we will no longer

insist on P being attached to ∂F as assumed in the definition of millipede. A face F can
have other singular pieces than just the open branch e. Thus, it may happen that also
B◦
1 or B◦

m is embedded differently as allowed in the definition of millipede.
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Lemma 4.5 Under any embedding of ∂M in F , each of the H–graphs B◦
5, B◦

6 , B◦
m−5,

and B◦
m−4 is attached only to one appearance of e on ∂F .

Proof. Suppose that B◦
5 is attached to both appearances of e on ∂F . Then F is

separated by a path Q ⊆ B◦
5 − P into the left and the right part. Suppose first that on

∂F the branch e appears with distinct orientations. By (M6), B◦
2∪B◦

3 has an attachment
on e strictly to the left of the leftmost attachment of B◦

5 . Therefore, B◦
2 or B◦

3 , and thus
also P is in the left part. Similarly, B◦

m−2 or B◦
m−1 has an attachment to e strictly to

the right of Q. Thus we get a contradiction. Note that we used the fact that B◦
i are

attached to P −K.
Suppose now that e appears on ∂F twice in the same direction. Suppose that P is

embedded in the left part of F (with respect to Q). Then all bridges B◦
i (2 ≤ i < m, i �= 5)

are embedded in the left part as well and each of them is attached to only one appearance
of e on ∂F . By Lemma 4.3, B◦

m−4, . . . , B
◦
m−1 are all attached to the same occurrence of

e on ∂F . Therefore their attachment intervals on e do not overlap. It follows by (M4)
that any two consecutive bridges among Bm−4, . . . , B

◦
m−1 contain disjoint paths from e

to P but non-consecutive bridges do not contain such disjoint paths. This is easily seen
to be a contradiction.

The proof for B◦
6 , B

◦
m−5, and B◦

m−4 is similar.

Lemma 4.6 Let M be a thick 1-millipede. Then every embedding of ∂M in F has P
attached to q1 on the left subwalk Q1 of ∂F and attached to q2 on Q2. Moreover, having
such an embedding, e appears on ∂F twice in opposite directions.

Proof. First we will prove that a face F with ∂F = Q1eQ2e does not admit embeddings
of ∂M . (This also proves that e appears twice on ∂F .) Suppose that ∂M is embedded
in such a face F . By Lemma 4.5, each of B◦

5 and B◦
6 is attached only to one occurrence

of e. If B◦
5 and B◦

6 are attached to the same occurrence, then B◦
6 has an attachment on

P that is closer to q1 than an attachment of B◦
5 on P (because of (M4)). By Lemma 4.3,

B◦
m−4 is attached to the right of B◦

6 . It follows that B◦
m−4 is attached on ∂F to the other

occurrence of e than B◦
6 . Now it is easy to see that B◦

2 and B◦
3 (which are attached to P

closer to q1 than B◦
6) have troubles being embedded in F . Consequently, B◦

5 and B◦
6 are

attached to distinct occurrences of e on ∂F . The same holds for B◦
m−5 and B◦

m−4. Since
M is thick, B◦

5 , B
◦
6 , B

◦
m−5, B

◦
m−4 are attached to at least two vertices on P (by Lemma

4.3). Denote them by x and y, where x is to the left or y. It follows that P is attached
to Q1 and to Q2. If this were not the case, bridges B◦

m−2 and B◦
m−1 which are attached

to the right of y (Lemma 4.3) can not extend the embedding of P ∪B◦
5 ∪B◦

6 .
By symmetry we may suppose that P is attached to q1 on the left side (at Q1) and

attached to q2 on the right and that the orientation of e in the “lower” subface of F
(with respect to K ∪P ) is the same as assumed in (M1)–(M7). Thus, either B◦

2 or B◦
3 is

embedded in the “upper” subface and either B◦
m−2 or B◦

m−1 is in the “upper” subface.
This is possible only if those among these bridges that are in the “upper” subface are
attached to P at just one vertex (by Lemma 4.3). But this is not possible (by Lemma
4.3) since M is thick.

Let us now suppose that ∂F = Q1eQ2e
−. Suppose first that ∂M is embedded in F

in such a way that P is attached to an appearance of q1 on Q2, and to q2 on Q1. Let t
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be the attachment of B◦
5 ∪B◦

6 on P that is closest to q1. If B◦
5 and B◦

6 are embedded in
distinct faces F ′

1, F
′
2 of K∪P , then it is easy to see that B◦

2 , B
◦
3 (Lemma 4.3) are attached

to P only at t. (M4) implies that intervals of attachment of B◦
2 , B

◦
3 on e overlap. Hence,

they are embedded in distinct faces F ′
i . Consequently, B◦

2 , B
◦
3 , B

◦
5 , B

◦
6 are all attached to

P only at t. Then the same holds also for B◦
4 since it is to the right of B◦

2 and to the left
of B◦

6 (Lemma 4.3). Since M is thick, there is an attachment y of B◦
7 ∪ · · · ∪ B◦

m−4 on
P closer to q2 than t. Then also B◦

m−1 ∪ B◦
m−2 has such an attachment by Lemma 4.3.

Thus, B◦
m−1 ∪B◦

m−2 cannot extend the embedding of P ∪B◦
5 ∪B◦

6 .
Suppose next that B◦

5 and B◦
6 are embedded in the same face F ′

1 of K ∪P . Then B◦
5

and B◦
6 have attachments x and y, respectively, on P such that x �= y. Let x be closer

to q1 than y. By Lemma 4.3, B◦
2 , B

◦
3 are both embedded in F ′

2. It is easy to see that this
blocks the possibility of embedding B◦

m−1.
Next possibility is that P is attached to Q2 only. We first consider the case when B◦

5

and B◦
6 are attached to P at single vertex t. By Lemma 4.5, they are embedded so that

they are attached to e locally. Since they overlap in F1 and in F2 and they attach to P
at single common vertex, they are attached to distinct occurrences of e. By Lemma 4.3
it follows that for each of B◦

2 and B◦
3 , the only possibility is that it is embedded to the

left of B◦
5 and B◦

6 . Then their only attachment on P is the vertex t. Thus t = p (where
p is defined in (M7)). Since M is thick, some of the bridges B◦

i (5 ≤ i ≤ m− 4) have an
attachment on P strictly closer to q2 than t. By Lemma 4.3, the same holds for B◦

m−2

and B◦
m−1. By (M4), they obstruct embeddability of ∂M .

Suppose now that B◦
5 ∪ B◦

6 has at least two distinct attachments on P . Having B◦
5

and B◦
6 attached to the same occurrence of e, it is easy to see that one of them would

block B◦
2 , a contradiction. Thus these bridges are attached to distinct occurrences of e.

Then it is easy to see that embeddability of B◦
m−2 ∪B◦

m−1 is obstructed.
The case when P is attached to Q1 only is symmetric and thus follows from above.

Note that the attachments of P on ∂F are not necessarily the same appearances of
q1, q2 as used in the definition of the millipede M . Note also that the same property
does not hold for thin or skew millipedes. Then the path P can be “turned” around
or attached to just one of the segments Q1, Q2. Moreover, a Möbius band thin or skew
millipede (defined for a face F with ∂F = Q1eQ2e) can also admit embeddings in faces
with e appearing on the boundary with opposite orientation (or vice versa).

Lemma 4.7 Let M be a millipede. Under any embedding of M in F and for i =
5, 6, . . . ,m − 5, the bridges B◦

i and B◦
i+1 are attached to distinct occurrences of e on

∂F . If M is thick, the same holds for i = 2, 3, 4 and for i = m− 4,m − 3,m− 2.

Proof. Clear by Lemma 4.6 if M is thick. On the other hand, if M is thin or skew,
then the property (M4) for B◦

i and B◦
i+1 is satisfied because of their overlapping on e.

Thus Lemma 4.5 applies.

Corollary 4.8 Every millipede has only a bounded number of essentially different ad-
missible embeddings.
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Let M be a millipede. Let f be the rightmost foot of B◦
5 on e. Subdivide f by inserting

a new vertex v5 of degree 2. Introduce similarly vertices v6 in B◦
6 , and vm−5, vm−4 in

B◦
m−5, B

◦
m−4, respectively (here with respect to leftmost feet). If m is even, then add to

∂M the edges f1 = v5vm−5 and f2 = v6vm−4. If m is odd, then add edges f1 = v5vm−4

and f2 = v6vm−5. Denote the obtained graph by M̃ and call it the squashed millipede. squashed millipede

This way we reduce the size of M , while essentially preserving its embedding extension
properties. (This will be proved below.)

Let M be a millipede in B. Using notation from (M1)–(M7), if M is thick, let D
be the union of all (K ∪ P )–bridges that have an attachment on e (strictly) between l5
and rm−4. If M is thin or skew we define D as follows. Properties (M4) (for i = 4, 5, 6)
and (M5) or (M5′) (for i = 4, 5, j = i + 2) imply that there is an edge f ⊂ e such that
B◦
5 and B◦

6 each have an attachment to the left of f and an attachment to the right of
f (possibly an end of f). Define similarly f ′ for B◦

m−5, B
◦
m−4. Then let D be the union

of all (K ∪ P )–bridges that have an attachment on e between f and f ′. It follows by
Lemma 4.7 that every (K∪P )–bridge in D is “blocked” by M . More precisely, under any
embedding of M , H–graphs B◦

2 , B
◦
3 , B

◦
m−2, B

◦
m−1 (if M is thick), or B◦

5 , B
◦
6 , B

◦
m−4, B

◦
m−5

(if M is thin or skew), are embedded in such a way that D must be embedded in the
strip in between of them. On the other hand, by (M7) and Lemma 4.7 we know that any
embedding of M can be extended to an embedding of M ∪D.

Let us define graphs B′ and B̃ as follows. Let B′ = (B\D)∪(D∩M). In other words,
B′ is a subgraph of B obtained by replacing the (K ∪ P )–bridges B5, B6, . . . , Bm−4 by
their H–graphs B◦

5 , B
◦
6 , . . . , B

◦
m−4, respectively, and deleting the “superfluous” (K ∪ P )–

bridges that are in D. To get B̃, add to B′ the edges f1, f2 as introduced above, and
remove H–graphs B◦

7 , . . . , B
◦
m−6. Note that M̃ is contained in B̃. Note that B′ (and also

B̃) is a single K–bridge in K ∪ B′ (in K ∪ B̃, respectively). The operation of replacing
B by B̃ and M by M̃ is called squashing of the millipede M . squashing

Theorem 4.9 Let M ⊆ B be a millipede based on e. Graphs B̃ and B′ introduced above
admit essentially the same types of embeddings as B. More precisely, every embedding of
B gives rise to embeddings of B̃ and B′ of the same type that coincide on the intersection
of B with B̃ or B′. Conversely, having an embedding of B̃ (or B′), the embedding of
B ∩ B̃ (B ∩B′, respectively) can be extended to an embedding of B of the same type.

Proof. By Lemma 4.7 it follows that for any embedding of M , and for 5 ≤ i ≤ m− 5,
B◦

i and B◦
i+1 are attached to distinct occurrences of e. Hence, B◦

5 and B◦
m−5 are attached

to the same copy of e if m is even. If m is odd, then B◦
5 and B◦

m−4 are attached to the
same copy of e. This implies that every embedding of B in F yields an embedding of B̃
in F which coincides on B ∩ B̃ with the embedding of B. It is obvious that the same
holds for B′ ⊆ B.

To show the converse, we need (M7). This property guarantees that D contains only
(K ∪P )–bridges that are attached to e and P ◦ only. Moreover, the graph D∪ (M\(B◦

1 ∪
B◦

m)) has an embedding in F . Fix this embedding and denote it by φ. By (M7) and
Lemmas 4.6 and 4.7, no interference with the remaining part of B is lost if we remove D
from B. By Lemma 4.7 and millipede properties, having an embedding of M in F (and
this is equivalent to having an embedding of M̃ in F ), this embedding combinatorially
coincides with the restriction of φ to M (up to “up/down” reflection). Thus there is a
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unique extension of this embedding to an embedding of M ∪ D which combinatorially
coincides with φ. Finally, having an embedding of M ∪ D, we can extend it to an
embedding of the graph in which all the H–graphs B◦

i are replaced by Bi (i = 5, . . . ,m−4)
since B◦

i interferes with the rest the same as Bi does and since (M7) guarantees that there
are no obstructions hidden in Bi.

Let Ω be an obstruction. A subgraph M = P ∪ B◦
1 ∪ · · · ∪ B◦

m (m ≥ 12) of Ω is a
millipede in Ω if M is a millipede, defined with respect to some 1-singular face F . If Ω is millipede

bounded and does not contain millipedes, we say that it is 0-nice. For k > 0, Ω is k-nice 0-nice

k-niceif Ω contains a millipede M such that Ω̃ obtained after squashing M is (k − 1)–nice.
In particular, every millipede is a 1-nice obstruction. Finally, Ω is nice if it is k-nice nice

for some bounded k ≥ 0. By Corollary 4.8, nice obstructions have bounded number of
embeddings.

Suppose that we have a k-nice obstruction Ω0. Let G̃ be the graph obtained by succes-
sive squashing of k millipedes in Ω0. Denote by Ω̃0 corresponding squashed obstruction
Ω0. Suppose that Ω1 is an --nice obstruction in G̃. Then Ω̃ = Ω̃0 ∪ Ω1 determines an
obstruction Ω (after replacing squashed parts by millipedes) which is at most (k+-)–nice.
We will use such a recursive construction of obstructions in our algorithms and simply
refer to it as taking a union of Ω0 and Ω1 (or Ω̃0 and Ω1). This operation will also be union

called combining of obstructions. combining

5 Universal obstruction

Let G be a connected graph, and K ⊂ G an induced non-separating subgraph of G, i.e.,
K has exactly one bridge in G. Denote this bridge by B. We will assume that every
non-main vertex of K is a vertex of attachment of B and that the number of branches
that intersect B is bounded. The main result of this section is:

Theorem 5.1 Let G,K,B be as above. Then B contains a nice subgraph B̃ ⊆ B which
has embeddings of exactly the same admissible types as B. Moreover, there is a linear
time algorithm that finds such a universal obstruction B̃ and for every admissible type of
embeddings not obstructed by B̃ constructs an embedding of B of the same type.

Proof. If B has at most two feet or only one vertex of attachment, the claim of the
theorem is easy to verify. Otherwise, we can apply Lemma 3.5 with Ω = B. We assume
henceforth that this has been done and that Aux(B,Π) is nodally 3-connected for every
cyclic sequence Π of feet of B. We will also assume (Lemma 3.3) that Aux(B,Π0) is
planar for some Π0 and that Π0 is known to us.

Construction of B̃ will be performed consecutively through all admissible types of
embeddings of B. For s = 0, 1, 2, . . . , we will assume that we have a well connected nice
obstruction Ω that obstructs all admissible types ∆ with sing(∆) < s for which B has no
embedding of type ∆. By considering all possible s–singular embeddings of Ω, we will
be able to extend Ω to a nice obstruction satisfying the same condition for s + 1. This
obstruction will be used in the next iteration. At the same time, we will find embeddings
of all non-obstructed s–singular types. By Lemma 2.1 and by assumption that only a
bounded number of branches intersect B, the number of admissible types is bounded.
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When s = 0, we take as Ω an H–graph of B. If necessary, we add to Ω another branch
so that Ω contains at least 3 feet. Then we repeat for s = 0, 1, 2, . . . ,D (D is the maximal
admissible degree of singularity) the following steps. Each of the steps is discussed in
more details in the sequel.

(i) Let R1, . . . , Rr be H-graphs of (K ∪ Ω)–bridges in B ∪K that are attached to two
or more basic pieces of K. Add them to Ω, i.e., Ω := Ω ∪R1 ∪ · · · ∪Rr.

(ii) Determine representatives of types, Q1, . . . , Qq.

(iii) Determine 1-Möbius band obstructions, Ω′
1, . . . ,Ω

′
z.

(iv) Let Ω′ = Ω ∪Q1 ∪ · · · ∪Qq ∪ Ω′
1 ∪ · · · ∪ Ω′

z. Remove local bridges.

(v) For every s–singular admissible type ∆ of embeddings of B and for every embedding
of Ω′ of type ∆ repeat the following:

(1) Find an embedding extension of K ∪ Ω′ to B or an obstruction for such ex-
tensions. (If ∆ has been marked in some of the previous steps, an embedding
of B of type ∆ is already known.)

(2) If an embedding φ of B of type ∆ has been found in (1), mark all types ∆′

for which ∆ � ∆′ so that φ will serve as an embedding of type ∆′.

(3) If an obstruction containing a millipede has been obtained, perform the cor-
responding squashing and proceed in the next steps with the squashed bridge
B.

(vi) Combine Ω′ with all the obstructions that have been found in step (1) into a single
nice obstruction that obstructs all the types of embeddings that Ω does, and also
obstructs all s–singular B–obstructed types. Denote the obtained obstruction by
Ω, again.

Since the number of admissible types is bounded and since every nice obstruction has
only bounded number of s–singular embeddings, we only need to convince ourselves that
Ω′ is nice and that one can perform each of the steps (i)–(vi) and (1)–(3) in linear time.

Step (i). Consider the bridges of Ω ∪ K in B ∪ K. Note that each of them is
attached to a vertex of Ω − K. Let R1, . . . , Rr be H–graphs of those (K ∪ Ω)–bridges
which are attached to two or more basic pieces of K. Let µi ≥ 2 (1 ≤ i ≤ r) be the
number of basic pieces of K that Ri is attached to. If K has k basic pieces that B is
attached to, then a short calculation shows that if

∑p
j=1(µj − 1) > k + s for some p ≤ r,

then Ω ∪ R1 ∪ · · · ∪ Rp obstructs any embedding types with degree of singularity equal
to s. Thus, we may assume that

∑r
j=1(µj − 1) ≤ k + s. In particular, r is bounded.

After adding R1 ∪ · · · ∪Rr to Ω, (the new) Ω has the property that under any s-singular
embedding of Ω of type ∆ considered in step (1), every (Ω ∪K)–bridge that is attached
to two or more basic pieces of K can be embedded in at most one of the faces of Ω. This
property easily follows from the fact that Ω (even without R1, . . . , Rr) obstructs all types
that are simpler than Ω.

We change Ω, if necessary, so that split auxiliary graphs Aux(Ω,Π) have properties
assured by Corollary 3.6. We also take care so that no (Ω∪K)–bridge in G is local. This
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can be achieved by applying Lemma 3.1 for every branch e of Ω∪K that is contained in
Ω. Lemma 3.1 successfully removes local bridges on e since Aux(B,Π0) is 3-connected
and planar.

Step (ii). In this step we determine representatives of types. Suppose that in step
(v), Ω ⊆ Ω′ is embedded in an s–singular face F . Let B′ be a (K ∪ Ω)–bridge that can
be embedded in two faces. By step (i), we may assume that B′ is attached to exactly
one basic piece of K on ∂F . Since Aux(Ω,Π) is nodally 3-connected, the intersection of
the two faces is either a main vertex of Ω − ∂F , or a branch of Ω. More precisely, we
have the following four mutually exclusive possibilities for the attachment sets of B′:

(a) x, v
(b) e, v
(c) e, f
(d) x, f

where x, e are a main vertex of K ∪Ω and an open branch of K ∪Ω on ∂F , respectively,
and v, f are a main vertex and a (closed) branch of Ω, respectively, that are not contained
in ∂F . In case of types (c) or (d) we assume that such a bridge is not attached to f
just at one of its ends since in that case the bridge is covered by (b) or (a), respectively.
Define the type of B′ to be the corresponding pair (x, v), (e, v), (e, f), or (x, f). Observe type

that the number of different types is bounded.
Since Aux(B,Π0) is planar, we may assume that for each type (x, v) there is at most

one bridge B(x, v) of that type (and that this bridge is just an edge). We take B(x, v)
as the representative of type (x, v). Note that there can be more than two ways of representative

embedding B(x, v). However, any bridges of types corresponding to (b)–(d) admit at
most two distinct embeddings. Consider such a type (e, v). If all bridges of this type
admit simultaneous embedding in a non-singular face of K ∪ Ω (for some embedding of
Ω), let B1(e, v) and B2(e, v) be the “leftmost” and the “rightmost” bridge, respectively.
Otherwise, let B1(e, v) and B2(e, v) be an overlapping pair of such bridges. The obtained
bridges are said to be representatives of the type (e, v). Similarly we define representatives
of a type (x, f). Note that simultaneous embeddability or existence of overlapping bridges
is independent of the choice of embedding of Ω. In case of a type (e, f), there are two
possibilities for appearance of e and f on the boundary of a non-singular face of K ∪ Ω.
For each of them we get a pair of bridges, say B1(e, f), B2(e, f) and B3(e, f), B4(e, f),
respectively, in the same way as for types of the form (c) or (d). The obtained bridges
Bi(e, f), i = 1, 2, 3, 4, are representatives of the type (e, f).

Let Q1, . . . , Qq be the representatives of all types of bridges. They have the following
property which will be used in the sequel. Suppose that we have an embedding of
Ω∪Q1 ∪ · · · ∪Qq. If all representatives of some type are in the same face of K ∪Ω, then
all other bridges of this type can be embedded in the same face without obstructing any
other bridges more than their representatives do.

Step (iii). Suppose that ∆ is an s-singular type of embeddings from step (v).
Denote by F the corresponding (hypothetical) face. Suppose that a branch e of K is
singular in ∆ and that its appearances in ∆ are consecutive and with the same orientation.
Suppose that we have an embedding of Ω of type ∆ so that there is a face F ′ of Ω ∪ ∂F
with a segment of e singular in F ′ (cf. Figure 4(b)).

Consider the (Ω ∪ ∂F )–bridges in B ∪ ∂F that can be embedded in F ′. They are
either attached only to Ω, or they have an attachment in the singular part of e which
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Figure 4: A singular branch on ∂F

is not a vertex of Ω. If a bridge is attached to Ω only, then it has essentially different
embeddings in F ′ only if it is attached to a singular vertex of F ′ (see Figure 5).

(a) (b)

α α

α α

β β

β β

S F’
B’

Figure 5: A bridge in F ′

Denote by α and β the two extremities of e in F ′. Let S be the segment on ∂F ′ from
α to β that is internally disjoint from ∂F (see Figure 4(b)). Since there are no local
(Ω∪∂F )–bridges in B∪∂F , any bridge that is a candidate to be embedded in F ′ cannot
be embedded in any other face of Ω in F . It is now easy to see that all bridges that are
candidates to be embedded in F ′ can be checked for all being simultaneously embeddable
in F ′ by applying the 1-Möbius band embedding extension algorithm (Theorem 4.2). In
case of positive outcome, the embedded bridges in F ′ will not comply with the remaining
ones. Otherwise, an obstruction Ω′

1 for the 1-Möbius band embedding extension is dis-
covered. Note that Ω′

1 may contain a (thin or skew) millipede in which case we perform
the squashing operation on B and on Ω′

1. In step (v), Ω′
1 will be present in Ω′. Thus,

for an embedding considered in (1) with a branch e singular as assumed above, bridges
embeddable in F ′ can be simultaneously embedded in F ′.
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We repeat the same procedure for all s–singular embeddings of Ω and all correspond-
ing faces F ′. Let Ω′

1, . . . ,Ω
′
z (z ≥ 0) be the 1-Möbius band obstructions obtained during

this process.
Step (iv). We combine Ω with representatives of types Q1, . . . , Qq and the 1-Möbius

band obstructions Ω′
1, . . . ,Ω

′
z. Next we make sure that there are no local (Ω′∪K)–bridges

in B ∪ K. This is achieved by repeated use of Lemma 3.1. Note that the branches of
Ω need not to be considered again. Therefore, properties of Qi and Ω′

j described above
still hold after this step.

Step (v). Note that because of step (2) we easily check which admissible types ∆
have a strictly simpler type that admits an embedding of B. Therefore we may assume
that the obstruction Ω obstructs all simpler types. Since it is bounded, it has only a
bounded number of s–singular embeddings. Note that every such embedding is uniquely
determined by the corresponding cyclic sequence Π of feet of Ω since Aux(Ω,Π) is nodally
3-connected.

Steps (1)–(3). Step (1) is described in more details in the sequel while step (2) is
obvious. Whenever a millipede is found as a part of an obstruction Ω′′, we change B and
Ω′′ by squashing the millipede. By Theorem 4.9, the new B has exactly the same types
of admissible embeddings as the original bridge. The same holds for Ω′′. Of course, at
the very end we have to replace the squashed obstruction by a subgraph of the original
bridge.

Step (vi). Apply Corollary 3.6.

The rest of the proof is devoted to a presentation of step (1). Fix an embedding of
Ω′ of type ∆. Let Π be the corresponding cyclic sequence of feet of Ω′ and F be the
corresponding (hypothetical) face. Since Ω′ ⊇ Ω obstructs all simpler types and because
of our initial choice of Ω as an H–graph in B, every basic piece of K on ∂F has a foot
of Ω attached to it. Our goal is to find an embedding extension or to extend Ω′ to an
obstruction that obstructs Π as well.

Consider the induced embedding of Ω. We claim that Ω dissects F into “almost non-
singular” 2-cells. Well, suppose that one of the cells, say F ′ is singular. The singularity
in F ′ appears on ∂F . Let x be a singular basic piece of K in F ′. Since every basic piece
on ∂F has a foot of Ω attached to it and since Ω is well connected, no other basic piece
appears between the two occurrences of x on ∂F . If x is a vertex, then it is clear that
the embedding of Ω in F can be changed in such a way that one of the occurrences of
x will not have any foot of Ω. This contradicts our choice of Ω. The other possibility is
that x is a singular branch. If the two appearances of x on ∂F are in opposite directions,
then one of the extreme attachments of B on x must have a foot of Ω (see Figure 4(a))
attached to it, and the only singular point is this vertex (call it β). There are no other
basic pieces between the two occurrences of x. Thus the singularity in β is not real:
We may assume that all feet of B at β are attached to just one of its occurrences. The
remaining case is when the singular branch x appears on ∂F twice in the same direction
(Figure 4(b)). In this case we can have an entire segment of x singular. Note that in this
case no foot of Ω is attached between the two occurrences of x.

F is dissected by Ω into a number of non-singular faces F1, . . . , Ft and some singular
faces F ′

1, . . . , F
′
l . First of all, we determine for each (Ω ∪ ∂F )–bridge in B ∪ ∂F in

which of these faces it is embeddable (according to its attachments). Since Ω′ contains
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Ω′
1,Ω

′
2, . . . ,Ω

′
z and the embedding of Ω is induced by an embedding of Ω′, all (K ∪ Ω)–

bridges that are candidates to be embedded in F ′
1, . . . , F

′
l are embeddable only in these

faces. Moreover, they can be embedded so that no two of them obstruct each other.
Therefore, we can consider only those embeddings of Ω′ for which all these bridges are
simultaneously embedded in F ′

1, . . . , F
′
l . From now on, we do not care about the singular

faces F ′
1, . . . , F

′
l any more. (Note that we may get embedding extensions of type ∆ that

differ from our embedding of Ω′. The same will happen also in the sequel.)
It remains to show how to distribute the (Ω′ ∪ ∂F )–bridges in F1, . . . , Ft, and how

to find their embeddings. As the first step we determine in which of the faces F1, . . . , Ft

each bridge is embeddable. This can be done for all bridges in linear time as explained in
Section 6. If a bridge B′ is not embeddable in any face, then we get an obstruction and
stop. In step (i) we have added to Ω all bridges that were attached to two or more basic
pieces of K. Among the representatives of types Q1, . . . , Qq we have, in particular, all
(K∪Ω)–bridges that are attached just to a main vertex of K on ∂F and to a main vertex
of Ω−∂F . It follows that no (Ω∪∂F )–bridge B′ is embeddable in 3 or more faces among
F1, . . . , Ft. Thus, every bridge B′ has at most two essentially different embeddings in
F1, . . . , Ft. Moreover, if B′ can be embedded in two faces, we may assume that B′ is
attached to exactly one basic piece of K on ∂F and either to a main vertex of Ω − ∂F
or to a branch of Ω. Recall that Ω′ contains representatives of types, Q1, . . . , Qq.

For a fixed type (e, v) or (e, f), the two faces Fi, Fj of Ω that can accommodate bridges
of this type are uniquely determined by e. Similarly, f determines the faces Fi, Fj for
bridges of types (x, f) or (e, f).

For every type (α, β) of bridges that can be embedded in two faces of Ω, say in F1

and in F2, Ω′ contains representatives B1(α, β), B2(α, β) (and B3(α, β), B4(α, β) when
applicable) of this type. There are three possibilities:

(a) All representatives are in F1.

(b) All representatives are in F2.

(c) At least one representative of type (α, β) is in F1 and at least one is in F2.

If we have case (a), representatives do not overlap in F1. By the choice of representatives,
all other bridges of type (α, β) can be embedded without loss of generality in F1 “between”
the representatives. Therefore, they can be without loss of generality eliminated from B
(for this embedding of Ω′ only). Similarly in case (b). Consequently, whenever we have
not fixed embeddings of all bridges of some type, we have (c).

Consider distinct types (α, β) and (γ, δ) of bridges. Suppose that we have case (c) for
both of these types. Let Fi, Fj be the faces where bridges of type (α, β) can be embedded,
and let Fk, Fl be the faces for (γ, δ). If {i, j}∩ {k, l} = ∅, then bridges of these two types
do not interfere with each other at all. If i �= k and j = l, then it is easy to see that
either bridges B′, B′′ of types (α, β) and (γ, δ), respectively, do not interfere in Fj at all,
or B′, B′′ overlap in Fj independently of their choice. Thus, in such cases the choice of
particular representatives of types is not important since for distinct types, any bridges
of those types in the chosen faces will overlap with each other, or they do not interfere
at all. For example, any bridge of type (x, f ′) (see Figure 6) will overlap in F1 with any
bridge of type (e, f) or (y, f). On the other hand, some other types do not overlap at
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Figure 6: Overlapping of 2-embeddable bridges

all (for example, (x, f) and (e, f ′)). In every face, either one or the other of these two
possibilities occurs for any two types that do not have the same pair of faces in which
the corresponding bridges embed.

Every embedding of Ω′ extends some embedding of Ω. For faces of Ω we use notation
and assumptions given above. Now, it suffices to test for simultaneous embeddability
for all pairs Fi, Fj of faces that have a type of bridges that is by the chosen embedding
of representatives of types embeddable in both of them, and to test for all other faces
whether all bridges chosen to be in such a face can be simultaneously embedded in that
face. By the above, embeddability problems for two distinct pairs of such faces, say Fi, Fj

and Fk, Fl, {i, j} �= {k, l}, are independent, i.e., no bridge embeddable in Fi and in Fj

overlaps with any bridge that is embeddable in Fk and Fl.
The problem of simultaneous embedding of several bridges in one of the faces Fi is

easy. Using Lemma 3.2 we either get simultaneous embeddings for all bridges assigned to
be in such a face, or we find a bounded obstruction that will be added to Ω in step (vi).
The possibility when some types of bridges go into two faces is analyzed in the sequel.

Consider faces F1, F2 of Ω in F such that there is a type of bridges that is decided
by (c) to be embeddable in both of them. There may be many bridges that are required
to be embedded in F1 (either by the choice (a) or (b), or since they can be embedded in
F1 only). Since F1 is non-singular, these bridges have essentially unique embeddings in
F1 (or we get an obstruction and stop with this case). The same holds for F2.

Since Aux(Ω,Π) is nodally 3-connected, the faces F1 and F2 intersect in a main vertex
of Ω, or they share a branch. The first case is merely a special case of what we have
when F1 and F2 intersect in a branch. Thus we will provide details only for the latter
possibility.

Suppose now that F1 and F2 intersect in a branch f of Ω and that F1, F2 share a
basic piece of K on their boundary. It is easy to see that neither ∂F1 nor ∂F2 contains
(parts of) three or more basic pieces of K since Ω is well connected and is attached to
all appearances of basic pieces on ∂F . Thus F1, F2 can share parts of a pair of basic
pieces on ∂F . If they have just one basic piece of K in common we can use Theorem 4.1
or 4.2 to either obtaining an obstruction or a simultaneous embedding in F1 ∪ F2 of all
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Figure 7: Pairs of singular branches of F

applicable bridges. Thus, we may assume that F1 and F2 really have two basic pieces
e1, e2 of K in common and that e1, e2 are open branches of K since other possibilities
behave like special cases of this one. Since Ω contains an H–graph of B, the branches
e1 and e2 are oriented as shown in Figure 7(a) or (b). There are no other basic pieces
between e1 and e2 on ∂F .

Suppose first that e1, e2 are as in Figure 7(a). Consider (Ω ∪ ∂F )–bridges that are
embeddable in F1 and in F2. By step (i), no such bridge is attached to e1 and e2.
Therefore two such bridges overlap in F1 if and only if they overlap in F2. If no such
bridge attached to e1 overlaps with such a bridge attached to e2, we need to solve two
independent 1-Möbius band embedding extension problems (Theorem 4.2); first with the
bridges attached to e1 (together with all bridges embeddable in just one of the faces), and
then with the bridges attached to e2 (and bridges embeddable in just one of the faces).
Obtaining embedding extensions in both cases, they can be combined to an embedding
extension for all of the bridges. On the other hand, an obstruction for any of the two
1-Möbius band embedding extension problems can be taken as the required obstruction
for embeddings of B that are extending the given embedding of Ω′.

The other case is when a bridge B1 attached to e1 overlaps (in F1) with a bridge
B2 attached to e2 (B1 and B2 embeddable in F1 and in F2). This is easily checked in
linear time by comparing attachments of such bridges on f . If this is the case, then B1

can be embedded in F1 and B2 in F2, and vice versa. In each of the cases, F1 and F2

split into two pairs of faces. One pair shares a part of e1 on their boundaries, the other
pair shares a part of e2. We can then solve two independent 1-Möbius band embedding
extension problems and we either get an embedding, or an obstruction (Theorem 4.2). If
obstructions are found in both cases, their combination gives an obstruction for extending
the embedding of Ω′.

Finally, suppose that we have the situation of Figure 7(b). Let B1 be an (Ω ∪ ∂F )–
bridge. For i = 1, 2, if B1 is embeddable only in Fi, we call it (Fi)–bridge. We will
assume that e1 and e2 are parts of basic pieces of K that are shared by F1 and F2. If a
part of a corresponding branch of K is only in one of the faces, we assume that it is a
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part of α, β, γ, or δ (cf. Figure 7; α, β, γ, δ denote open segments and they have to be
understood as open segments from f to the part of e1 or e2 that is shared by F1 and
F2). Note that every (F1)–bridge is attached to α or to β. If not, its embedding in F1

gives rise to an embedding in F2 as well. Similarly, (F2)–bridges are attached to γ or to
δ. Since there are no local bridges, every bridge can be replaced by its H–graph. (Then
any embedding extension to the simplified graph gives rise to an embedding extension of
the original graph.)

Try to embed all (Fi)–bridges in Fi at the same time (i = 1, 2). If this is not possible,
we get a bounded obstruction (Lemma 3.2). Thus we may assume that we have succeeded
in embedding all (F1)–bridges and all (F2)–bridges. If these bridges remove the “double
singularity” (i.e., no pair of new faces shares two basic pieces of K on their boundaries),
then we are left with a 1-prism embedding extension problem which can be solved by using
Theorem 4.1. Obtaining an obstruction, we add to it also the “outermost” (F1)–bridges
and (F2)–bridges and stop.

We are left with (Ω∪∂F )–bridges that are embeddable in F1 and in F2. Such a bridge
is called an (e1)–bridge if it is attached to e1, and it is an (e2)–bridge if attached to e2.
Every (ei)–bridge (i ∈ {1, 2}) is attached only to ei and the (closed) branch f .

Suppose that an (e1)–bridge B1 overlaps with another (e1)–bridge B2. Such a pair
of bridges is then among representatives of the type (e1, f). Since B1 and B2 are in Ω′,
“doubly singular” pair of faces F1, F2 does not occur in embeddings of Ω′. Given an
embedding of Ω ∪ B1 ∪ B2 we define subtypes of bridge types (e1, f) and (e2, f) in the
obvious way. For every embedding of their representatives we get cases (a)–(c) and, as
explained above, we either get an embedding in some of the cases, or we get a combined
obstruction.

We have the same outcome when an (e1)–bridge overlaps with an (F1)–bridge or with
an (F2)–bridge that is attached to e1. Similarly with e2.

Suppose now that none of the above cases occurs. Then we may contract e1 to a vertex
x1 and contract e2 into a vertex x2. Any obstruction found in the new graph will give rise
to an obstruction of the same branch size in the original and any embedding extension
gives rise to an embedding extension for the original graph. After the contractions have
been made, the problem transforms into a 1-Möbius band embedding extension problem
with the fixed path P1 containing only the two vertices x1 and x2. We are done by
Theorem 4.2.

Let us summarize. In case of discovering an embedding extension we are done. If we
get a bounded obstruction, we just add it to Ω′. Obtaining a millipede M , we squash
B and M , and we proceed as in case of a bounded obstruction. If some previously
constructed obstructions for extending particular embeddings of Ω′ intersect the part of
M that has been changed by the squashing, we simply replace such a part by the squashed
millipede. By Theorem 4.9, the squashed bridge B admits exactly the same embedding
extensions, and the squashed obstruction obstructs exactly the same embedding types.

It is easy to see that the algorithm described in our proof is linear.

Let Ξ be a bounded set of admissible types that is �–closed, i.e., ∆ ∈ Ξ and ∆′ � ∆
imply that ∆′ ∈ Ξ. The same proof as above can be used to show that one can find in
linear time a nice obstruction B̃ ⊆ B such that for every type ∆ ∈ Ξ any embedding of
B̃ of type ∆ can be extended to an embedding of B of the same type. Note that this
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result can be used also in case when K is not bounded.

6 All the bridges at the same time

Let K be a subgraph of G having bounded branch size. Suppose now that K has more
than just one K bridge. By using a modified Depth First Search we can find all K–bridges
in linear time. At the same time we mark for each foot, to which bridge it belongs. The
next step consists of traversing every main vertex and every open branch of K, and for
each K–bridge B, linking the vertices of attachment of B to basic pieces of K into a
circular list in the order as they appear on branches of K. It is easy to see that this can
be achieved in linear time if we construct circular lists for all bridges simultaneously as
their feet are met along branches of K.

For every bridge B of K, the constructed circular list enables us to use the results
of previous sections to find universal obstruction B̃ of B in time proportional to |E(B)|
(with a bounded constant). Since K is bounded and the edge sets of distinct bridges
are disjoint, we have a linear time procedure that for every K–bridge B returns its
universal obstruction B̃ and displays embeddings of B of all admissible types that are
not obstructed by B̃.
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