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THE MINOR CROSSING NUMBER∗

DRAGO BOKAL† , GAŠPER FIJAVŽ‡ , AND BOJAN MOHAR§

Abstract. The minor crossing number of a graph G is defined as the minimum crossing number
of all graphs that contain G as a minor. Basic properties of this new invariant are presented. We
study topological structure of graphs with bounded minor crossing number and obtain a new strong
version of a lower bound based on the genus. We also give a generalization of an inequality of Moreno
and Salazar crossing numbers of a graph and its minors.
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1. Preliminaries. Crossing numbers of graphs have been thoroughly studied
[20], yet only a few exact results are known, and new ideas seem to be needed. Crossing
numbers in general give a measure of nonplanarity of graphs. Unfortunately, they are
not monotone with respect to graph minors. Seymour (see Archdeacon [1]) asked
“How to define a crossing number that would work well with minors?” In this paper
we propose two possible answers to this question and study one of them in greater
detail. Our approach is based on general principles of how a graph invariant can be
transformed into a minor-monotone graph invariant [4].

Crossing numbers of graphs are believed to have applications in VLSI design where
one wants a design of a (huge) electrical network such that the number of crossing
edges (wires) is minimized [3, 10, 11]. However, today’s chip manufacturers replace
vertices of high degree by binary trees. The minor crossing number treated in this
paper does precisely this—each vertex is expanded into a cubic tree in such a way
that the resulting graph can be realized with as few crossings as possible. It turns out
that this interpretation of crossing numbers has rich mathematical structure, whose
basics are uncovered in this work.

Let G = (VG, EG) be a graph and Σ a closed surface. If Σ has Euler characteristics
χ, then the number g = 2−χ is called the Euler genus of Σ. The nonorientable surface
of Euler genus g ≥ 1 is denoted by Ng, and the orientable surface of Euler genus 2g
(g ≥ 0) is denoted by Sg.

A drawing D = (ϕ, ε) of G in (PL) surface Σ consists of a one-to-one mapping
ϕ : VG → Σ and a mapping ε : EG → Ω(Σ) that maps edges of G to simple (polygonal)
curves in Σ such that endpoints of ε(uv) are ϕ(u) and ϕ(v), ϕ(VG) does not intersect
interiors of images of edges, and the intersection of interiors of ε-images of any two
distinct edges contains at most one point.
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Let e and f be distinct edges of G, let r and s be their images in Σ, and suppose
that x ∈ r ∩ s. Let U be a neighborhood of x so that for each disk neighborhood
B ⊆ U of x both B ∩ r ∩ s = {x} and |∂B ∩ (r ∪ s)| = 4. We say that e and f or
that r and s cross at x (and call x a crossing) if points of r and s interlace along ∂B
for every such B, and say that r and s touch otherwise. In the latter case we call x a
touching of r and s (or of e and f).

A drawing D is normal if it has no touchings and for each crossing x there are
precisely two edges of G whose crossing is x.

Crossing number of a graph G in Σ, cr(G,Σ), is defined as the minimum number
of crossings in any normal drawing of G in Σ, and with cr(G) we denote the crossing
number of G in the sphere. For a drawing D = (ϕ, ε) of G in Σ, connected regions of
Σ \ ε(EG) are called faces of D. By our standards, a drawing of G in the plane R

2

is a drawing of G in the sphere S0, equipped with an infinite point ∞ avoiding the
image of G. The infinite face of a drawing of G in the plane is the face containing ∞.
Further, an embedding is a drawing without crossings. Besides this terminology, the
reader is referred to [15] for other notions related to graph embeddings.

For a given graph G, the minor crossing number is defined as the minimum
crossing number of all graphs that contain G as a minor:

mcr(G,Σ) := min{cr(H,Σ) |G ≤m H}.(1.1)

By mcr(G) we denote mcr(G,S0).

Similarly, the major crossing number of G is the maximum crossing number taken
over all minors of G:

Mcr(G,Σ) := max{cr(H,Σ) |H ≤m G}.(1.2)

The following two lemmas follow directly from the definitions.

Lemma 1.1. For every graph G and every surface Σ,

mcr(G,Σ) ≤ cr(G,Σ) ≤ Mcr(G,Σ).

Lemma 1.2. If G is a minor of H, then for every surface Σ,

mcr(G,Σ) ≤ mcr(H,Σ) and Mcr(G,Σ) ≤ Mcr(H,Σ).

Lemma 1.2 immediately yields the following.

Corollary 1.3. Let k ≥ 0 be an integer and Σ a surface. The families
of graphs ω(k,Σ) := {G | mcr(G,Σ) ≤ k} and Ω(k,Σ) := {G | Mcr(G,Σ) ≤ k} are
minor-closed.

For each graph G there exists a graph Ḡ such that G ≤m Ḡ and mcr(G,Σ) =
cr(Ḡ,Σ). We call such a graph Ḡ a realizing graph of G, and an optimal drawing of
Ḡ in Σ is called a realizing drawing of G (with respect to Σ). By no means are a
realizing graph or drawing uniquely determined, but we shall always assume that G
and Ḡ have the same number of connected components.

As G is a minor of its realizing graph Ḡ, G can be obtained as a contraction of
a subgraph of Ḡ. In other words, G = (Ḡ − R)/C for suitable edge sets R,C ⊆ EḠ.
The edges of R are called removed edges, and those in C are contracted edges. Note
that the edge-set C is acyclic and that EG = EḠ \ (R ∪ C) are the original edges of
G. It is clear that every graph G has a realizing graph Ḡ such that R = ∅.
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Fig. 1. mcr as an extension of cr.

For each vertex v ∈ VG there is a unique maximal tree Tv ⊆ Ḡ[C] which is
contracted to v. In the figures, the original edges will be drawn as thin lines and the
contracted edges as thick lines.

The minor crossing number can be considered a natural extension of the usual
crossing number. Clearly, if e, f ∈ EḠ cross in a realizing drawing of G, then e, f ∈
C ∪ EG. If both belong to C, then their crossing is a vertex-vertex crossing; if both
belong to EG, then they cross in an edge-edge crossing; and otherwise they cross in
an edge-vertex crossing. This point of view is illustrated in Figure 1. Note that by
subdividing the original edges appropriately, all the crossings in the realizing drawing
can be forced to be vertex-vertex crossings.

If G is a cubic graph, then clearly mcr(G,Σ) = cr(G,Σ). Hliněný proved in
[6] that computing the planar crossing number of cubic graphs is NP-hard and has
remarked that this implies that the same holds for computing mcr(G) for any graph
G. Crossing numbers of cubic graphs were also studied by McQuillan and Richter [13]
and Richter [17].

Proposition 1.4. For every graph G and every surface Σ there exists a cubic re-
alizing graph H. Moreover, if δ(G) ≥ 3, then G can be obtained from H by contracting
edges only.

Proof. Let H0 be a realizing graph of G without removed edges, and let D0 =
(ϕ, ε) be an optimal drawing of H0. We shall describe H in terms of its drawing D
obtained from D0. For each vertex v of H0 of degree d := dH0(v) �= 3 let Uv be a
closed disk containing ϕ(v) in its interior, so that a small neighborhood of Uv contains
no crossings, Uv is disjoint from Uu for u ∈ VH0 \ {v}, and Uv ∩ϕ(EH0) is connected.

For each of the cases d > 3, d = 2, and d = 1, we modify D0 in Uv as indicated
in Figure 2. Let D be this new drawing and H the graph defined by D.

Clearly G ≤m H, and so cr(H,Σ) ≥ mcr(G,Σ). As D contains no new crossings,
we have mcr(G,Σ) = cr(H0,Σ) = cr(D,Σ) ≥ cr(H,Σ). A combination of these two
inequalities proves that cr(H,Σ) = mcr(G,Σ).

If δ(G) ≥ 3, then we can assume δ(H0) ≥ 3, which implies |EH | − |VH | = |EH0
| −

|VH0 |. As H0 ≤m H, we can obtain G from H by contracting edges only.

2. Minor crossing number and maximum degree. In this section we pre-
sent a generalization of the following result (cf. also section 6).

Theorem 2.1 (see Moreno and Salazar [16]). Let G be a minor of a graph H
with Δ(G) ≤ 4. Then 1

4 cr(G,Σ) ≤ cr(H,Σ) for every surface Σ.
Suppose that G = H/e for e = v1v2 ∈ EH . For i = 1, 2, let di = degH(vi) − 1

be the number of edges incident with vi and distinct from e. We may assume that
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Fig. 2. Drawing a cubic realizing graph; cf. Proposition 1.4.
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Fig. 3. Contracting edges on a drawing.

d1 ≤ d2. As shown in Figure 3, any given drawing of H can be changed into a drawing
of G such that every crossing involving e is replaced by d1 new crossings.

More generally, let G be a minor of H. We assume that G = (H − R)/C. Then
EG = EH \ (R ∪ C). Let DH = (ϕH , εH) be a normal drawing of H. Then DH

determines a normal drawing of H −R in Σ in which no new crossings arise. On the
other hand, by contracting the edges in C, the number of crossings can increase. If we
perform edge-contractions one by one, and every time apply the redrawing procedure
as described above, then we can control the number of new crossings. To do the
counting properly, we need some additional notation.

Let us define w(G,H) : EH → N by setting w(G,H, e) = 0 if e ∈ R and
w(G,H, e) = 1 if e ∈ EG. If e ∈ C, let Tv be the maximal tree induced by C
containing e (which contracts to the vertex v in G). Let T1, T2 be the components of
Tv − e, and let di (i = 1, 2) denote the number of edges in EG that are incident with
Ti. Then we set w(G,H, e) = min{d1, d2}. For e ∈ EH we call w(G,H, e) the weight
of the edge e.

Let G ≤m H1 ≤m H, so that G = (H1 − R1)/C1, H1 = (H − R′)/C ′, and
G = (H −R)/C, where R = R1 ∪R′ and C = C1 ∪C ′. Let DH be a normal drawing
of H. Further, let D1 be a drawing of H1 obtained from DH by removing the edges
of R′ and applying the described contractions of the edges in C ′ one after another.
When doing these contractions, we proceed much as shown in Figure 3 except that
the criterion for whether to contract towards v1 or v2 is not the degree of v1 or v2

but the quantities d1 or d2 introduced in the previous paragraph. Similarly, let DG
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be obtained from D1 by using R1 and C1. If D is a drawing, let X(D) be the set of
crossings of D, and for x ∈ X(D) let ex and fx be the edges that cross at x.

Lemma 2.2. Let G, H, H1 and their drawings DG, DH , D1 be as defined in the
previous paragraph. Then∑

x∈X(D1)

w(G,H1, ex)w(G,H1, fx) ≤
∑

x∈X(DH)

w(G,H, ex)w(G,H, fx).(2.1)

Proof. It is enough to prove this for the case when H1 and H differ only in a
single minor operation with respect to G, i.e., R′ ∪ C ′ = {e}. If H1 = H − e, then
w(G,H, e) = 0 and the sums are equal.

Suppose now that H1 = H/e. As simplifying the image of e decreases the right-
hand sum, we may assume that εH(e) is a simple arc. We adopt the notation intro-
duced above. The edge e is contracted, and thus e ∈ C. After the contraction of e, all
weights remain the same; i.e., w(G,H1, f) = w(G,H, f) for every f ∈ EH − e. Hence,
the difference between the left- and the right-hand sides in (2.1) is that the crossings
of e in DH are replaced by newly introduced crossings in D1 (as shown in Figure 3).
Let x ∈ X(DH) with ex = e = v1v2, and let E1 be the set of edges incident with v1.
Since

∑
f∈E1−e w(G,H1, f) =

∑
f∈E1−e w(G,H, f) = w(G,H, e) and to each crossing

x of e with some e′ in D1 there correspond exactly the crossings of E1 − e with the
edge e′, the inequality (2.1) follows.

Theorem 2.3. Let G be a minor of a graph H, Σ be a surface, and τ :=⌊
1
2Δ(G)

⌋
. Then

cr(G,Σ) ≤ τ2 cr(H,Σ).

Proof. Let DH be an optimal drawing of H, and let DG be the drawing of G,
obtained from DH as described before Lemma 2.2. We apply Lemma 2.2 with H1 = G.
Obviously, cr(G,Σ) ≤ cr(DG,Σ). As all edges in G have weight w(G,G, e) = 1,
the left-hand side of inequality (2.1) equals the number of crossings in DG. Since
the weights w(G,H, e) of edges in H are bounded from above by τ , the theorem
follows.

By using Theorem 2.3 together with definition (1.1) and Lemma 1.2, we obtain
the following corollary.

Corollary 2.4. Let G be a graph, Σ a surface, and τ :=
⌊

1
2Δ(G)

⌋
. Then

mcr(G,Σ) ≤ cr(G,Σ) ≤ τ2mcr(G,Σ).

3. Minor crossing number and genus. In this section we derive some genus-
related lower bounds for minor crossing number of graphs. For additional terminology,
we refer the reader to [15].

Theorem 3.1. Let G be a graph with genus g(G) and nonorientable genus g̃(G).
If Σ is an orientable surface of genus g(Σ), then mcr(G,Σ) ≥ g(G) − g(Σ) and
mcr(G,Σ) ≥ g̃(G) − 2g(Σ).

If Σ is a nonorientable surface with nonorientable genus g(Σ), then mcr(G,Σ) ≥
g̃(G) − g(Σ).

Proof. Let D be an optimal drawing of a realizing graph Ḡ in an orientable
surface Σ. For each crossing in D we add a handle to Σ and obtain an embedding of
Ḡ in a surface Σ′ of genus g(Σ′) = g(Σ) + mcr(G,Σ). Using minor operations on D,
we can obtain an embedding of G in Σ′, which yields g(Σ′) ≥ g(G). Thus, we have
mcr(G,Σ) ≥ g(G) − g(Σ).
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The other two claims can be proved in a similar way by adding crosscaps at
crossings of D. Note also that adding a crosscap to an orientable surface of genus g
results in a surface of nonorientable genus 2g + 1.

When the genus of a graph is not known, one can derive the following lower bound
using the Euler formula and the same technique as in the preceding proof.

Proposition 3.2. Let G be a graph with n = |VG|, m = |EG|, and girth r, and
let Σ be a surface of Euler genus g. Then mcr(G,Σ) ≥ r−2

r m− n− g + 2.
Proof. As in the proof of Theorem 3.1, we obtain an embedding D of G in Ng+k,

where k = mcr(G,Σ). Let f be the number of faces in D. All faces have length at least
r, and thus f ≤ 2m

r . The Euler formula results in 2−(g+k) = n−m+f ≤ n− r−2
r m,

which yields the claimed bound.
In section 5 we derive an improvement over Proposition 3.2; see Theorem 5.6.
The following proposition relates minor crossing numbers in different surfaces

with the one in the plane.
Proposition 3.3. The inequality mcr(G,Σ) ≤ max(0,mcr(G) − g(Σ)) holds for

every surface Σ and every graph G, where g(Σ) denotes the (non)orientable genus of
Σ.

Proof. Let us start with a realizing drawing of G in the sphere. We can remove at
least one existing crossing by adding either a crosscap (if the surface is nonorientable)
or a handle. This increases the genus of the surface by 1, and the result follows.

4. Minor crossing number and connectivity. Let G1, . . . , Gk be the com-
ponents of a graph G. It is easy to see that mcr(G) =

∑k
i=1 mcr(Gi). We shall extend

this fact to the blocks (2-connected components) of G, even in the setting of the minor
crossing number in a surface.

Let Σ be a surface and k a positive integer. We say that a collection Σ1, . . . ,Σk

of surfaces is a decomposition of Σ and write Σ = Σ1# · · ·#Σk if Σ is homeomorphic
to the connected sum of Σ1, . . . ,Σk.

Theorem 4.1. Let Σ be a surface and let G be a graph with blocks G1, . . . , Gk.
Then

k∑
i=1

mcr(Gi,Σ) ≤ mcr(G,Σ) ≤ min

{
k∑

i=1

mcr(Gi,Σi)

∣∣∣∣ Σ = Σ1# · · ·#Σk

}
.

Proof. Let D be an optimal drawing of a realizing graph Ḡ in Σ. For each Gi it
contains an induced subdrawing Di of some graph G̃i with Gi as a minor. Gi and Gj

are either disjoint (implying that G̃i and G̃j are disjoint), or they have a cutvertex

v in common (implying that G̃i and G̃j intersect in a part of the tree Tv). As there
are at least mcr(Gi,Σ) crossings in Di and there are no crossings in the subdrawing
induced by Tv for any v ∈ VG, the lower bound follows.

Let us reorder the blocks of G in such a way that for i = 2, . . . , k the block Gi

shares at most one vertex with the graph Hi :=
⋃i−1

j=1 Gj . This can be done using the
block-cutvertex forest of G.

Let Σ1, . . . ,Σk be a decomposition of Σ where the minimum is attained. For
i = 1, . . . , k let the Di be some optimal drawing of Ḡi in Σi. Set D̃1 = D1, H̃1 = Ḡ1,
and Π1 = Σ1. For i = 2, . . . , k we choose a face fi of D̃i−1 in Πi−1 and f ′

i of Di in Σi.
If Hi−1 and Gi share a vertex v, then we choose fi incident with some vertex xi of
Tv ⊆ H̃i−1 and f ′

i incident with some vertex yi of Tv ⊆ Ḡi; otherwise the choice can be
arbitrary. By constructing a connected sum of faces fi, f

′
i and, if necessary, connecting

xi with yi in the new face fi # f ′
i , we obtain a drawing D̃i of H̃i in Πi := Πi−1 # Σi.
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It is clear that G ≤m H̃k and that D̃k is a drawing of H̃k in Σ with at most∑k
i=1 mcrΣi(Gi) crossings. This proves the upper bound inequality.
Corollary 4.2. Let G be a graph with blocks G1, . . . , Gk. Then

mcr(G) =

k∑
i=1

mcr(Gi).

Proof. To prove this, one just has to observe that, for Σ = S0, the left-hand side
and the right-hand side in the inequalities in Theorem 4.1 are equal.

5. Structure of graphs with bounded mcr(G, Σ). As mentioned in section
1, the family ω(k,Σ) of all graphs, whose mcr(G,Σ) is at most k, is minor-closed. Let
us denote by F (k,Σ) the set of minimal forbidden minors for ω(k,Σ). F (k) and ω(k)
stand for F (k,S0) and ω(k,S0), respectively.

Graphs in ω(0,Σ) have a simple topological characterization—they are precisely
the graphs that can be embedded in Σ. A similar topological characterization holds for
graphs in ω(1). They are precisely the graphs that can be embedded in the projective
plane with face-width at most 2. This was observed by Robertson and Seymour [18],
who determined the set F (1) of minimal forbidden minors for ω(1) as follows.

Theorem 5.1 (see Robertson and Seymour [18]). The set F (1) contains precisely
the 41 graphs G1, . . . , G35 and Q1, . . . , Q6, where G1, . . . , G35 are the minimal for-
bidden minors for embeddability in the projective plane and Q1, . . . , Q6 are projective
planar graphs that can be obtained from the Petersen graph by successively applying
the Y Δ and ΔY operations.

This theorem establishes the following linear time algorithm for testing whether
mcr(G) is at most 1: first embed G in the projective plane [14] and then check whether
the face-width of the embedding is less than or equal to 2 (see [8]).

Let us remark that the forbidden minors for the projective plane have been deter-
mined by Glover, Huneke, and Wang [7] and Archdeacon [2]. There are seven graphs
that can be obtained from the Petersen graph by Y Δ and ΔY operations (known as
the Petersen family), but one of them cannot be embedded in the projective plane
and is one of the forbidden minors for the projective plane.

We will prove that every family ω(k,Σ) has a similar topological representation,
for which we need some further definitions.

Let γ be a one-sided simple closed curve in a nonorientable surface Π of Euler
genus g. Cutting Π along γ and pasting a disk to the resulting boundary yields a
surface denoted by Π/γ of Euler genus g− 1. We say that Π/γ is obtained from Π by
annihilating a crosscap at γ.

Let us call a set of pairwise noncrossing, onesided, simple closed curves Γ =
{γ1, . . . , γk} in a nonorientable surface Π a k-system in Π. It is easy to see that for
distinct γi, γj ∈ Γ the surface (Π/γi)/γj is homeomorphic to (Π/γj)/γi. Therefore
the order in which we annihilate the crosscaps at prescribed curves is irrelevant, and
we define Π/Γ := Π/γ1/ . . . /γk. We say that the k-system Γ in Π is an orienting
k-system if the surface Π/Γ is orientable.

Suppose that D is a drawing of G in a nonorientable surface Π with at most c
crossings. If there exists an (orienting) k-system Γ in Π with each γ ∈ Γ intersecting
D in at most two points, then we say that D is (orientably) (c, k)-degenerate, and we
call Γ an (orienting) k-system of D. If c = 0, then D is an embedding and we also say
that it is k-degenerate. Let us observe that an embedding of a graph in the projective
plane is 1-degenerate precisely when the face-width of the embedding is at most 2.
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Fig. 4. Replacing a crossing by a crosscap and a respective annihilating curve.

Lemma 5.2. Let Σ be an (orientable) surface of Euler genus g, and let k ≥ 1 be
an integer. Then, for any l ∈ {1, . . . , k}, the family ω(k,Σ) consists precisely of all
those graphs G ∈ ω(k − l,Ng+l), for which there exists a graph G̃ that contains G as
a minor and that can be drawn in the nonorientable surface Ng+l of Euler genus g+ l
with (orienting) degeneracy (k − l, l).

Proof. Let G ∈ ω(k,Σ) and let Ḡ be its realizing graph, drawn in Σ with at most
k crossings. Choose a subset of l crossings of Ḡ. By replacing a small disk around
each of the chosen crossings with a Möbius band, we obtain a drawing of Ḡ in Ng+l

with (orienting) degeneracy (k − l, l). The replacement at one such crossing and the
corresponding curve annihilating the crosscap are illustrated in Figure 4.

For the converse we first prove the induction basis l = 1.

Let G̃ be the graph that contains G as a minor and is drawn in Ng+1 with at most
k − 1 crossings, and let us assume that a one-sided curve γ intersects the drawing of
G̃ in at most two points, x and y. After cutting the surface along γ and pasting a disc
Δ on the resulting boundary, we get a surface of Euler genus g. On the boundary of
Δ, two copies of x and y interlace. By adding paths Px and Py joining the copies of

x and y (respectively), we obtain a drawing D′ of a graph G′, which contains G̃ (and
hence also G) as a minor. Clearly, D′ has one crossing more (the one between Px and
Py) than the drawing of G̃. So, D′ is (k − 1, 1)-degenerate.

If l ≥ 2, we may annihilate the crosscaps consecutively, as the curves in the
corresponding l-system are noncrossing. Note that if the l-system is orienting, we
obtain an orientable surface Σ.

Lemma 5.3. Let G̃ be a graph with an (orientably) k-degenerate embedding in a
surface Σ. If G is a surface minor of G̃, then G is also (orientably) k-degenerate.

Proof. It suffices to verify the claim for edge-deletions and edge-contractions. For
edge-deletions, there is nothing to be proved, and for edge contractions, one has to
show only that a k-system for G̃ can be transformed into a k-system for G̃/e. We
leave the details to the reader.

Lemma 5.3 can be extended to drawings with crossings if we restrict edge-contrac-
tion to edges that are not involved in crossings.

As a direct consequence of Lemmas 5.2 and 5.3 we have the following result.

Theorem 5.4. Let Σ be an (orientable) surface of Euler genus g, and let k ≥ 1
be an integer. Then ω(k,Σ) consists of precisely all the graphs that can be embedded
in the nonorientable surface Ng+k of Euler genus g + k with (orienting) degeneracy
k.

Figure 5(a) exhibits the geometric structure of a realizing drawing in the Klein
bottle, (b) shows the general structure of its minors G with mcr(G) ≤ 2, and (c)
is a degenerate example of this structure in which the curves of the corresponding
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Fig. 5. Embeddings in the Klein bottle with orienting degeneracy 2.

2-system {γ1, γ2} touch twice.
Theorem 5.4 can be used to express a more intimate relationship between the

graphs in ω(k,Σ) and ω(0,Σ), as follows.
Corollary 5.5. Let Σ be a surface of Euler genus g, k ≥ 0 be an integer, and

G ∈ ω(k,Σ). Then there exists a graph H, which embeds in Σ, such that G can be
obtained from H by identifying at most k pairs of vertices.

Theorem 5.4 can be used to improve the lower bound of Proposition 3.2.
Theorem 5.6. Let G be a simple graph with n = |VG|, m = |EG| and let Σ be a

surface of Euler genus g. Then

mcr(G,Σ) ≥ 1
2 (m− 3(n + g) + 6).

Two technical lemmas are needed for the proof of this result. Let Σ be a closed
surface and x, y ∈ Σ. Let Γ = {γ1, . . . , γk} be a k-system of one-sided noncrossing
simple closed curves in Σ such that γi ∩ γj = {x, y} for all 1 ≤ i < j ≤ k. Let
γi = γ1

i ∪ γ2
i , where γl

i is an arc from x to y. If a curve γl
i ∪ γm

j (i �= j) bounds a disk

in Σ whose interior contains no segment of curves in Γ, then we say that γl
i ∪ γm

j is a
Γ-digon.

Lemma 5.7. Every k-system Γ has at most k − 1 Γ-digons.
Proof. We assume the notation introduced above. Let us contract one of the

segments, say γ1
1 . Then each other γl

i becomes a loop in Σ. Since Γ is a k-system
of one-sided noncrossing loops, the loops in Γ generate a k-dimensional subspace
of the first homology group H1(Σ; Z2). This implies that the 2k − 1 loops L ={
γl
i | 1 ≤ i ≤ k, l = 1, 2

}
\ {γ1

1} also generate at least k-dimensional subspace. If there
are k Γ-digons, then k of the loops could be removed from L, and the remaining
k− 1 loops would still generate the same k-dimensional subspace. This contradiction
completes the proof.

Let G be a graph and D its k-degenerate embedding in a surface Σ. Let Γ =
{γ1, . . . , γk} be the corresponding k-system of D. The curves γi are pairwise non-
crossing, so we may assume that γi and γj (i �= j) intersect (touch) only in points
where they intersect the graph. We subdivide edges of D in such a way that every
γi intersects D only at vertices. If γi intersects D at vertices ui and vi, we add to
D two new edges ei, fi with ends ui, vi whose embedding in Σ coincides with γi. (If
ui = vi, we add one loop ei at vi.) We call the resulting embedding D′ a k-augmented
embedding of D and the corresponding graph G′ a k-augmented graph of G (with
respect to Γ). Let us observe that we may assume that curves in Γ intersect D only at
vertices. In that case, subdivision of edges is not necessary, and then G is a subgraph
of G′.
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Fig. 6. Realizing drawings of K6, K7, and K8, respectively.

Lemma 5.8. Let D be a k-degenerate embedding of a simple graph G in a nonori-
entable surface Σ, and let D′ be a k-augmented embedding of D. Then D′ has at most
k faces of length two and has no faces of length one.

Proof. We shall use the notation introduced before the lemma. Since G is a simple
graph, any face of length 1 or 2 involves some edge ei, fi (i ∈ {1, . . . , k}). If ei is
a loop, it cannot bound a face since γi is a onesided curve in Σ. Two loops cannot
form a facial boundary since then they would be homotopic, and homotopic onesided
curves always cross each other. So, an edge ei or fi can be part of a face of length
two only when ui �= vi.

For simplicity of notation, suppose that γ1, . . . , γt all contain the same pair of
vertices u1 and v1. It suffices to see that the edges ei, fi (i = 1, . . . , t) and possible
edge e0 = u1v1 of G together form at most t faces of length 2. By Lemma 5.7,
{ei, fi | 1 ≤ i ≤ t} form at most t − 1 faces of length 2, and e0 can give rise to one
additional such face. This proves the claim, and the application of this claim to all
pairs ui, vi completes the proof of the lemma.

Proof of Theorem 5.6. Let mcr(G,Σ) = k. By Theorem 5.4, there exists an
embedding D of G in Ng+k with crossing degeneracy k. Let D′ be a k-augmented
embedding of D, and let G′ be its graph. By Lemma 5.8, removing at most k edges
from G′ yields an embedding D′′ without faces of length two, implying |FD′′ | ≤
2
3 |ED′′ |. Euler formula implies n−|ED′′ |+ |FD′′ | = 2− (g+k). The stated inequality
follows.

If one would like to extend the bound of Proposition 3.2 for graphs of girth r ≥ 4,
additional arguments would be needed.

6. Examples. We have so far developed some tools to find lower bounds of the
minor crossing number. In this section, they are applied to several families of graphs.
In general, Theorem 2.3 yields better bounds for graphs of small maximum degree
(cubes, Cn�Cm), while Theorem 3.1 suits graphs with large maximum degree better,
e.g., complete bipartite graphs. Theorem 5.6 performs best on dense graphs of girth
three, for instance complete graphs.

6.1. Complete graphs. Theorem 5.6 implies the following inequality, which is
sharp for n ∈ {3, . . . , 8}, as demonstrated in Figure 6.

Proposition 6.1. Let n ≥ 3. Then mcr(Kn) ≥
⌈

1
4 (n− 3)(n− 4)

⌉
.

The following proposition establishes an upper bound.

Proposition 6.2. For n ≥ 9, mcr(Kn) ≤
⌊

1
2 (n− 5)2

⌋
+ 4.
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T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

Fig. 7. Drawings of graphs K̃10 and K̃11.

Proof (sketch). We shall exhibit graphs K̃n (n ≥ 9) together with their drawings
Dn so that K̃n contains Kn as a minor and that cr(Dn) =

⌊
1
2 (n− 5)2

⌋
+ 4. Figure 7

presents drawings of K̃10 and K̃11. Different vertex symbols (diamond, circle, triangle,
etc.) represent vertices in the same tree Tv, v ∈ VKn , which contracts to the vertex v
in the Kn minor. By contracting the thick edges of the graphs in Figure 7, we obtain
K10 and K11, respectively.

The reader should have no difficulty placing the tree Tn+1 into Dn in order to
obtain Dn+1. The tree Tn+1 crosses precisely each Tv with 7 ≤ v ≤ n. To connect
Tn+1 with the trees T1, . . . , T6, we need three new crossings if n is even (T1 with T2,
T3 with T4, and T5 with T6) and no new crossing if n is odd.

Let cn denote the number of crossings in the drawing of K̃n described above, and
let ak = c2k. We have a4 = 6, a5 = 14, a6 = 26, and a recurrence equation

ak+1 = c2k+2 = c2k+1 + (2k − 1 − 6)

= c2k + (2k − 6) + 3 + (2k − 1 − 6)

= c2k + 4k − 8

= ak + 4k − 8,

whose solution is ak = 2k2 − 10k + 14. For even n this yields

cn = 1
2 ((n− 5)2 + 3),

and for odd n

cn = 1
2 (n− 5)2 + 4.

Corollary 6.3. Let Σ be a fixed surface. For n ∈ N, let cn = mcr(Kn,Σ)
n(n−1) . The

sequence {cn}∞n=1 is nondecreasing and

c∞ := lim
n→∞

cn ∈
[
1
4 ,

1
2

]
.

Proof. First we prove the following claim: Let mcr(Kn,Σ) ≥ c n(n − 1). Then
mcr(Km,Σ) ≥ cm(m− 1) for every m ≥ n.
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Fig. 8. A drawing of the graph K̃8,7 with 22 crossings.

Clearly it suffices to prove this for m = n + 1. Let D̄ be a realizing drawing
of Kn+1 in Σ. Let Ti be the tree in D̄ which contracts to the vertex i of Kn+1. If
we remove Ti and all incident edges from D̄, we obtain a drawing of a graph with
Kn minor. This can be done in n + 1 different ways. These n + 1 drawings contain
at least (n + 1) mcr(Kn,Σ) crossings altogether. We may assume that there are no
removed edges in D̄, as their number can only increase the number of crossings.
Then each crossing from D̄ appears in at most n − 1 of these drawings. Therefore,
(n− 1) mcr(Kn+1,Σ) ≥ (n + 1) mcr(Kn,Σ) ≥ c (n + 1)n(n− 1).

The stated bounds on c∞ follow easily from Propositions 6.1 and 6.2.
We believe that the minor crossing number of complete graphs lies close to the

upper bound from Proposition 6.2, so that the following asymptotic holds: mcr(Kn) =
1
2n

2 + O(n).

6.2. Complete bipartite graphs. The genus of complete bipartite graphs [15,
Theorem 4.4.7] in combination with Theorem 3.1 establishes the following proposition.

Proposition 6.4. Let 3 ≤ m ≤ n. Then

mcr(Km,n) ≥
⌈

1
2 (m− 2)(n− 2)

⌉
.

For the upper bound, consider a set of graphs K̃m,n. They are constructed in a

way similar to that of their complete analogues K̃n, and an example is presented in
Figure 8.

Proposition 6.5. Let 4 ≤ m ≤ n. Then

mcr(Km,n) ≤ (m− 3)(n− 3) + 5.

Also in the case of complete bipartite graphs we think that the upper bound
from Proposition 6.5 lies close to the actual minor crossing number: mcr(Km,n) =
m · n + O(m + n).

6.3. Hypercubes. Applying Proposition 3.2 to hypercubes yields the following
result.

Proposition 6.6. Let n ≥ 4. Then mcr(Qn) ≥ (n− 4)2n−2 + 2.
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Using the best known lower bound for crossing number of hypercubes, cr(Qn) >
4n/20 − (n2 + 1)2n−1 by Sýkora and Vrťo [19] in combination with Theorem 2.3, we
can deduce the following alternative lower bound, which is stronger for large values
of n.

Proposition 6.7. Let n ≥ 4. Then mcr(Qn) > 1
n2

(
1
5 4n − 2n+1

)
− 2n+1.

Following the same idea as in [12, Figures 2 and 3], one can obtain a family of
graphs Q̃n and their drawings Dn with Δ(Q̃n) = 4 and Q̃n having Qn as a minor.
They establish the following upper bound.

Proposition 6.8. Let n ≥ 2. Then mcr(Qn) ≤ 2 · 4n−2 − (n− 1)2n−1.

6.4. Cartesian products of cycles Cm�Cn. Combining the results presented
in [5] and Theorem 2.3 implies the following fact.

Proposition 6.9. Suppose that n ≥ m and either m ≤ 7 or m ≥ 3 and n ≥
m(m + 1). Then 1

4 (m− 2)n ≤ mcr(Cm�Cn) ≤ (m− 2)n.

REFERENCES

[1] D. Archdeacon, Problems in Topological Graph Theory, Department of Mathematics and
Statistics, University of Vermont, Burlington, VT; online at http://www.emba.uvm.edu/
∼archdeac/problems/minorcr.htm, 1995.

[2] D. Archdeacon, A Kuratowski theorem for the projective plane, J. Graph Theory, 5 (1981),
pp. 243–246.

[3] S. N. Bhatt and F. T. Leighton, A framework for solving VLSI graph layout problems,
J. Comput. System Sci., 28 (1984), pp. 300–343.
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