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Abstract. We present an algorithm for finding shortest surface non-separating cycles in
graphs embedded on surfaces in O (g*2V3/? log V + g%?V !/2) time, where V is the number
of vertices in the graph and g is the genus of the surface. If g = o(V''/3), this represents
an improvement over previous results by Thomassen, and Erickson and Har-Peled. We
also give algorithms to find a shortest non-contractible cycle in O (g®® V?3/2) time, which
improves previous results for fixed genus.

This result can be applied for computing the face-width and the non-separating face-
width of embedded graphs. Using similar ideas we provide the first near-linear running time
algorithm for computing the face-width of a graph embedded on the projective plane, and
an algorithm to find the face-width of embedded toroidal graphs in O (V>*1log V) time.

1. Introduction

Cutting a surface for reducing its topological complexity is a common technique used in
geometric computing and topological graph theory. Erickson and Har-Peled [10] discuss
the relevance of cutting a surface to get a topological disk in computer graphics. Colin
de Verdiere [3] describes applications that algorithmical problems involving curves on
topological surfaces have in other fields.

* A preliminary version was presented at the 13th Annual European Symposium on Algorithms (ESA
2005) [2]. Sergio Cabello was partially supported by the European Community Sixth Framework Programme
under a Marie Curie Intra-European Fellowship. Bojan Mohar was supported in part by the Ministry of Higher
Education, Science and Technology of Slovenia, Research Project L1-5014 and Research Program P1-0297.
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Many results in topological graph theory rely on the concept of face-width, sometimes
called representativity, which is a parameter that quantifies local planarity and density of
embeddings. The face-width is closely related to the edge-width, the minimum number of
vertices of any shortest non-contractible cycle of an embedded graph [20]. Among some
relevant applications, face-width plays a fundamental role in the graph minors theory of
Robertson and Seymour, and large face-width implies that there exists a collection of
cycles that are far apart from each other, and after cutting along them, a planar graph is
obtained. By doing so, many computational problems for locally planar graphs on general
surfaces can be reduced to corresponding problems on planar graphs. See Chapter 5 of
[20] for further details. The efficiency of algorithmical counterparts of several of these
results passes through the efficient computation of face-width. The same can be said
for the non-separating counterparts of the width parameters, where the surface non-
separating cycles are considered instead of non-contractible ones.

In this work we focus on what may be considered the most natural problem for
graphs embedded on surfaces: finding a shortest non-contractible and a shortest surface
non-separating cycle. Our results give polynomial-time improvements over previous
algorithms for low-genus embeddings of graphs (in the non-separating case) or for
embeddings of graphs in a fixed surface (in the non-contractible case). In particular,
we improve previous algorithms for computing the face-width and the edge-width of
embedded graphs. In our approach we reduce the problem to that of computing the
distance between a few pairs of vertices, what some authors have called the k-pairs
shortest path problem.

1.1.  Overview of the Results

Let G be a graph with V vertices that is 2-cell embedded on a (possibly non-orientable)
surface ¥ of genus g, and with non-negative weights on the edges, representing edge-
lengths. We further assume that the embedding does not have faces consisting of one or
two edges. Our main contributions are the following:

e We find a shortest surface non-separating cycle of G in O(g*?V3/2logV +
g°/?V1/2) time. This result relies on a characterization of the surface non-separating
cycles given in Section 4. The algorithmical implications of this characterization
are described in Section 5.

e We find a shortest non-contractible cyclein O (g2 V3/2) time. Then g = O(1), the
running time becomes O (V3/2), which represents an improvement over previous
results. This is achieved by considering a small portion of the universal cover. See
Section 6.

e We compute the non-separating face-width and edge-width of G in O (g*?V?3/% +
g>?V1/%) time. We can also compute the face-width and edge-width of G in
0(g%®V3/2) time. For the non-separating face-width, this is a particular case
of the result mentioned above where a log factor can be shaved off. See Section 7.

e For graphs embedded on the projective plane or the torus we can compute the
face-width in O (V2 1log? V) or O(V>/*log V) time, respectively. This is described
in Sections 7.2 and 7.3.
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Although the general approach is common in all our results, the details are quite
different for each case. The overview of the technique is as follows. We find a set
of generators either for the first homology group (in the non-separating case) or the
fundamental group (in the non-contractible case) that is made of a few shortest paths.
It is then possible to show that the shortest cycles we are interested in (non-separating
or non-contractible ones) intersect these generators according to certain patterns, and
this allows us to reduce the problem to computing distances between pairs of vertices in
associated graphs.

The paper is organized as follows. The remainder of this section describes the most
relevant related work, and in Section 2 we introduce the basic background. In Section 3
we describe basic tools that are used through the paper. The rest of the sections are as
described above; we conclude in Section 8.

1.2. Related Previous Work

Thomassen [23] was the first to give a polynomial-time algorithm for finding a shortest
non-separating and a shortest non-contractible cycle in a graph on a surface; see also
Chapter 4 of [20]. Although Thomassen does not claim any specific running time, his
algorithm tries a quadratic number of cycles, and for each one it has to decide if it is
non-separating or non-contractible. This yields a rough estimate O (V (V + g)?) for its
running time. More generally, his algorithm can be used for computing in polynomial
time a shortest cycle in any class C of cycles that satisfy the so-called 3-path-condition:
if u, v are vertices of G and P;, P», P3 are internally disjoint paths joining u and v, and
if two of the three cycles C; ; = P; U P; (i # j) are not in C, then the third one is also
not in C. The class of one-sided cycles for embedded graphs is another relevant family
of cycles that satisfy the 3-path-condition.

Erickson and Har-Peled [10] considered the problem of computing a cutset of mini-
mum length, that is, a subgraph C C G of minimum length such that £\ C is a topolog-
ical disk. They show that the problem is NP-hard when the genus is not fixed, provide
a polynomial-time algorithm for fixed surfaces, and provide efficient approximation
algorithms.

More relevant for our work, Erickson and Har-Peled [10] also give the currently best
algorithms for the problems we consider: they find a shortest non-contractible cycle in
O(V?log V + Vg) time, and a shortest non-separating cycle in O(V?log V + Vglog g)
time. Regarding the edge-width or the face-width, we are not aware of any specific
research to compute them, and therefore these general algorithms were also the asymp-
totically fastest for these problems. Their approach is based on showing that a shortest
non-contractible (resp. non-separating) loop through a fixed vertex can be computed
in O(VlogV + g) (resp. O(VlogV + glogg)) time, and then iterate this procedure
over all vertices of the graph. Erickson and Har-Peled also provide an algorithm that in
O (g(V + g) log V) time finds a non-separating (or non-contractible) cycle whose length
is at most twice the length of a shortest one.

Several other algorithmical problems for graphs embedded on surfaces have been
considered. Colin de Verdiere and Lazarus [5] considered the problem of finding a
shortest cycle with a fixed base point within a given homotopy class, as well as a system
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of loops in a given homotopy class. Under some realistic assumption on the edge-lengths,
they provide polynomial-time algorithms for both problems. The same authors have also
studied algorithms for finding optimal pants decompositions [4].

Eppstein [9] discusses how to use the tree—cotree partition for dynamically maintain-
ing properties from a graph under several operations. For example, he can maintain the
minimum and maximum spanning tree under edge insertions, edge deletions, and edge
reweightings.

Very recently, Erickson and Whittlesey [11] have shown that the greedy homotopy
generators through a fixed basepoint determine a shortest set of loops generating the
fundamental group. They can compute this optimal system of loops and represent it
implicitly in O ((V + g) log V) time; an explicit representation may need ®(gV') space.
Other known results for curves embedded on topological surfaces include [6], [7], [19],
and [24]; see also [21], [22], and the references therein.

2. Background

We describe most of the topological and graph-theoretical background that is used
through the paper.

Topology. We consider surfaces ¥ that are connected, compact, Hausdorff topological
spaces in which each point has a neighborhood that is homeomorphic to R2. In particular,
we only consider surfaces without boundary. A closed curve is a continuous function of
the circle S! in . A simple closed curve is an injective closed curve. Two closed curves
are homotopic if there is a continuous deformation of one onto the other, that is, if there
is a continuous function from the cylinder S' x [0, 1] to ¥ such that each boundary of
the cylinder is mapped to one of the curves.

A closed curve is contractible if it is homotopic to a constant (a curve whose image is a
single point); otherwise it is non-contractible. A closed curve is (surface) non-separating
if the removal of its image keeps the surface connected. Another definition of a non-
separating closed curve is that it is a non-trivial element of the (Z;-)homology group.
Although these two definitions can be seen to be equivalent for simple closed curves
(see Lemma 4), they are not equivalent in general, as can be seen by concatenating two
copies of the same non-separating cycle. Although the first definition is more intuitive,
it has the drawback problem of not being stable under small perturbations of the curves.
However, as we will see later, it turns out that both concepts agree when it comes to
finding a shortest non-separating closed curve.

If ¢ is a simple closed curve, a small band around c is either a cylinder or a Mobius
band. In the former case, we say that ¢ is two-sided, otherwise it is one-sided. In an
orientable surface all the closed curves are two-sided. We refer to Chapter 1 of [14] and
to Chapter 4 of [20] for additional details.

Every graph, viewed as a one-dimensional cell complex, determines a topological
space and we can speak of embeddings (continuous 1-1 maps) in surfaces. Itis customary
to consider only 2-cell embeddings, in which every face (i.e., a connected component of
the surface after we remove the image of the graph) is homeomorphic to an open disk.
In this paper we also make such a restriction and, henceforth, every embedding will be
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2-cell. As shown in Chapter 3 of [20], such embeddings admit a simple combinatorial
description whose development is usually attributed to Heffter, Edmonds, and Ringel.
See also a paragraph below.

If G is a graph with V vertices, E edges, and is embedded in a surface ¥ with F
faces, then Euler’s formula holds:

V-E+F=2—g,

where g is a non-negative integer, called the (Euler) genus of X.

If X is orientable, then g = % g is also an integer, known as the genus of . Since
we will meet the genus only in the O-notation, there is no need to distinguish between
gand g.

Walks in Graphs. In a graph G, a walk is an alternating sequence of vertices and
edges viejvpe; - - - Vrep Vg4, Starting and ending with a vertex, and such that each edge
e; connects the vertices v; and v;y; a path is a walk where all vertices are distinct; a
segment is a subwalk; a loop is a walk where the first and last vertex are the same; a cycle
is a loop without repeated vertices. In a loop the first and last vertex is a distinguished
base vertex. If G is on a surface X, the loops and cycles of G correspond to closed
curves and simple closed curves in X, respectively, and therefore we can refer to their
topological properties.

In general, we consider graphs with non-negative edge-lengths, that is, we have a
function w: E — RT describing the length of the edges. The length of a walk is the
sum of the weights of its edges, counted with multiplicity if they occur on the walk more
than once. We also assume that no cycle has length zero.

It is not difficult to see that any shortest non-contractible loop in G must be a cy-
cle. Indeed, it holds that the concatenation of two contractible loops is a contractible
loop. Therefore, if a loop is non-contractible and it is not a cycle, then it must be the
concatenation of two shorter loops, and it cannot be that both are contractible.

Similarly, any shortest non-separating loop in G must be a cycle. Indeed, if a loop
£ is non-separating and it is not a cycle, then £ must be the concatenation of two loops
¢, ¢". However, the image of ¢ or £” is a subset of the image of ¢, and therefore they
cannot disconnect the surface.

Cutset, System of Cycles, and Universal Cover. In G a cutset is a set of edges whose
complement is a topological disk. We reserve the term system of cycles for a set of cycles
in G through a common vertex x, and pairwise disjoint otherwise, whose edges form
a cutset. It is known that a system of cycles consists of exactly g cycles. Note that, in
general, a system of cycles does not need to exist in G, since it requires vertices with
high degrees. However, after a suitable transformation in the graph, we may assume its
existence.

Let D be the topological disk obtained from a cutset. Several (possibly an infinite
number of) copies of D can be glued together to obtain a so-called covering space X,
which locally looks like X. In this case the projection 7: X — X that sends each point
of X toits original point in D is locally a homeomorphism. When X has the property that
it does not contain any non-contractible cycle, then X is the so-called universal cover,
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which can be shown to be unique up to homeomorphism. It is known that the universal
cover of the projective plane or the sphere is the sphere, while the universal cover of any
other surface is the plane. Since the surface ¥ and its universal cover U look locally the
same, any curve ¢ in X can be routed locally in the same way in U, giving the so-called
lift ¢ of ¢ in U. It turns out that a closed curve in ¥ is contractible if and only if its
lift finishes at the same point where it starts. See Chapter 1 of [14] for a comprehensive
treatment of covering spaces.

Representation of Embedded Graphs. For computational purposes, an embedded graph
can be represented as described by Eppstein [9]. However, for our purposes, the Heffter—
Edmonds—Ringel representation is used. It is enough to specify for each vertex v the
circular ordering of the edges emanating from v, where the ordering coincides with that
on the surface in a small disk neighborhood of v. Additionally we need the signature
A(e) € {+1, —1} for each edge ¢ € E(G). The negative signature of e tells us that
the selected circular ordering around vertices changes from clockwise to anti-clockwise
when passing from one end of the edge to the other. If the embedding is in an orientable
surface, all the signatures can be made positive, and there is no need to specify them.
A cycle in the embedding is two-sided if the product of the signatures of its edges is
positive; otherwise, it is a one-sided cycle. It is known that this representation uniquely
determines the embedding of G, up to homeomorphism. Knowing the circular ordering
at each vertex and the signatures, one can compute the set of facial walks in linear time.
See Chapter 3 of [20] if more detail is needed.

In an embedded graph, a 1-gon is a face defined by a single edge of the graph, and a
2-gon is a face defined by two (parallel) edges. For the problems that we consider, any
edge defining a 1-gon is not relevant, since it cannot appear in a shortest non-contractible
or non-separating cycle. The same applies to the longest edge of a 2-gon. Since a simple
preprocessing taking O (E) time allows us to obtain an embedding without 1- or 2-gons,
we assume, henceforth, that the graph is embedded without 1- or 2-gons.

We use V to denote the number of vertices in G, and g for the (Euler) genus of
the surface ¥. That the graph G has ®(V + g) edges follows from Euler’s formula
and the fact that the number of faces is at most %E Asymptotically, we may consider
V + g as the measure of the size of the input. Observe that this is different from the
approach followed by some authors, where n = V + E is used for the size of the
graph.

We use the notation GAC for the graph obtained by cutting the embedded graph G
along a cycle C. Each vertex v € C gives rise to two vertices v', v” in GAC. If C is a
two-sided cycle, then it gives rise to two cycles C’ and C” in GAC whose vertices are
{vV.]v e V(O)} and {v" | v € V(C)}, respectively. If C is one-sided, then it gives
rise to a cycle C’ in GAC whose length is twice the length of C, in which each vertex
v of C corresponds to two diagonally opposite vertices v’, v” on C’. Observe that if G
is embedded in a surface ¥ of Euler genus g, then GAC is naturally embedded in the
surface obtained after cutting ¥ along C and then pasting disks to each of the boundaries
that were created. Therefore, GAC is embedded in a surface of Euler genus g — 1 (if
C is a one-sided curve in X) or g — 2 (if C is two-sided). When C = {C}, ..., C;) is
a system of cycles, we use GAC to denote the graph obtained by cutting G along the
cycles Cy, . .., C;, in this order, and without pasting disks. Note that for i > 2, the cycle
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C; may be a path connecting two vertices of the boundary of G4{Cy,...,Ci_1}.IfCis
a system of cycles, then G4C is a planar graph.

Distances in Embedded Graphs. For two vertices u, v € V(G), the distance in G,
denoted dg (u, v), is the minimum length of a path in G from u to v. A shortest-path
tree from a vertex v is a tree T such that for any vertex u we have dg (v, u) = dr (v, u).
Since E = O(V + g), a shortest-path tree from any given vertex can be computed
in O(VlegV + E) = O(VlogV + g) time using Fibonacci heaps [13]. When g =
O(V'=#) for any positive, fixed &, then a shortest path tree can be constructed in O (V)
time.!

In the special case that all the edge-lengths are equal to one, any breadth-first-search
tree is a shortest-path tree from the starting vertex, and can be computed in O(V + g)
time.

Width of Embeddings. The edge-width ew(G) (resp. non-separating edge-width
ewp(G)) of a graph G embedded in a surface is defined as the minimum number of ver-
tices in a non-contractible (resp. surface non-separating) cycle. The face-width fw(G)
(resp. non-separating face-width fvy(G)) is the minimum number of faces (without mul-
tiplicity) that any non-contractible (surface non-separating) closed curve in the surface
is going to intersect.

Algorithmically, the following characterization of face-width is more suitable. For
an embedded graph G, consider its vertex—face incidence graph I': a bipartite graph,
naturally embedded on the surface, whose vertices are faces and vertices of G, and there
is an edge between face f and vertex v if and only if v is on the face f. (If v and
f have multiple incidence, then I" also has multiple edges joining v and f.) It is not
difficult to see that £w(G) = Jew(I") and £ (G) = Sewo(T") [20, page 148]. Since the
construction of I' takes linear time from an embedding of G, this reduces the problem
of computing the face-width of G to that of computing the edge-width of I".

Model of Computation. 'We assume non-negative real edge-lengths, and our algorithms
run in the comparison-based model of computation, that is, we only add and compare
(sums of) edge weights. For integer weights and the word-RAM model of computation,
some logarithmic improvements may be possible. See the survey by Zwick [25] for a
discussion.

3. Basic Tools

We first describe some of the topological tools that are used in the paper, and then present
algorithms for computing distances in embedded graphs.

! Eppstein [9] shows how to compute in linear time a separator S of size O(y/gV) = O(V'~¢/?) for G
such that G — S is planar. The recursive subdivision that Henzinger et al. [15] require can then be obtained
using the division by Eppstein in the first level and then continue in each planar subpiece using their approach.
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3.1. Topological Tools

3-Path-Condition. Let C be a family of cycles. We say that C satisfies the 3-path-
condition if it has the following property: if u, v are vertices of G and P, P,, P3 are
internally disjoint paths joining u and v, and if the cycle P, U P; is in C, then (at least) one
of the cycles P; U P3 or P, U P;is in C. This concept was introduced by Thomassen [23]
(see also Section 4.3 of [20]), who showed that the family of non-contractible cycles
and the family of non-separating cycles satisfy the 3-path-condition. For these families,
there are shortest cycles with the following property.

Lemma 1. Let C be a family of cycles satisfying the 3-path property, and let P be a
family of pairwise disjoint shortest paths, except, possibly, at common endpoints. Then
there is a shortest cycle in C that contains at most one segment of each P € P.

Proof. Let C € C. For any two vertices u, v € V(C), let Ci[u, v], C2[u, v] be the
two segments of C connecting u, v. For any vertices u, v in a path P, let P[u, v] be
the segment of P between u and v. For a cycle C and a (simple) path P, let s(C, P)
be the number of maximal common segments that C and P have. Define s(C, P) =
maxpep §(C, P)and 0 (C,P) = pcps(C, P).

Let C € C be a shortest cycle in C that lexicographically minimizes the pair (s(C, P),
a(C,P)). If s(C,P) < 1, then the statement holds. If s(C,P) > 2, then there is
some path P € P such that s(C, P) = s(C,P) > 2. In this case there are vertices
u,v € V(C)NV(P)suchthat Plu, v], Ci[u, v], C2[u, v] are internally disjoint. Observe
that the cycles C; = P’ U Ci[u’,v'] and C, = P’ U Cy[u’, V'] are no longer than
C, have strictly fewer maximal common segments with P, have no more maximal
common segments with any other P’ € P because P are pairwise disjoint (except at
possible common endpoints), and by the 3-path-condition, one of them, say C;, must
be in the family C. However, then we have o (C;, P) < o(C,P) while s(C;, P) <
s(C, P), arriving at a contradiction with how C was chosen. Therefore, it holds that
s(C,P) <1. O

Tree—Cotree Decomposition. We use the tree—cotree decomposition for embedded
graphs introduced by Eppstein [9]. Let T be a spanning tree of G rooted at x € V(G).
For any edge ¢ = uv € E(G)\T, we denote by loop(T, e) the closed walk in G obtained
by following the path in 7" from x to u, the edge uv, and the path in 7 from v to x;
we use cycle(T, e) for the cycle obtained by removing the repeated edges in loop(T, e).
A subset of edges U € E(G) is a cotree of G if U* = {e* € E(G") | e € C}is a
spanning tree of the dual graph G*. A tree—cotree partition of G is a triple (T, U, X) of
disjoint subsets of E(G) such that T forms a spanning tree of G, U is cotree of G, and
E(G) =T UU U X. As shown by Eppstein, if (T, U, X) is a tree—cotree partition, then
Lr.u,x) = {loop(T, e) | e € X} consists of g loops, and it is a cutset.

Orientable Double Cover. In Sections 7.1 and 7.2, for a graph G embedded on a non-
orientable surface, we use its orientable double cover Dg, constructed as follows: for
eachvertex v € V(G) we place two vertices v, v'in V (Dg), foreachedge uv € E(G) we
place edges uv, u’v’ in E(Dg) if the signature of uv is A(uv) = +1, and edges uv’, u'v
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in E(Dg) if L(uv) = —1; and the circular order of edges around vertices u, u’ € V(Dg)
is the same as around u € V(G). Let m: D — G be the natural projection. If G has
genus g, then D¢ has genus at most 2g.

There are two properties of the orientable double cover D¢ that will be used; both
follow from the homotopy lifting property [14, pages 60ff.]. Firstly, if P is a pathin Dg
between a vertex v and its copy v’, then its projection 7 (P) is a non-contractible loopin G.
Secondly, if € is a non-contractible cycle in Dg, its projection 77 (C) is a non-contractible
loop in G. Moreover, any non-contractible loop in G comes from the projection of one
of these two types of walks in Dg. As a consequence, if G is on the projective plane,
then D¢ is a planar graph, and only the first type of non-contractible cycles can occur
in G, that is, any non-contractible cycle in G through vertex v corresponds to a path in
D¢ between v and v'.

3.2. k-PFairs Distance Problem

Consider the k-pairs distance problem:

Given a graph G with positive edge-weights and k pairs (sy, 1), ..., (S, &) of
vertices of G, compute the distances dg(s;, t;) fori =1, ..., k.

Djidjev [8] and Fakcharoenphol and Rao [12] (slightly improved by Klein [18] for
non-negative edge-lengths) describe data structures for shortest path queries in planar
graphs. We will need the following special case.

Lemma 2. For a planar graph of order V , the k-pairs distance problem can be solved
in

(1) O(V3? +k/V) time, and in
(i) O(V1og®V + k/V1og> V) time.

Furthermore, the shortest path between the closest pair can be found in the same amount
of time.

Proof. For (i), use the data structure by Djidjev [8]: after O (V*/2) time for preprocess-
ing, a distance query can be answered in O (\/V ) time.

For (ii), use the data structure by Fakcharoenphol and Rao [12] with the quicker
construction by Klein [18]: after O(V log? V') preprocessing time, a distance query can
be answered in O(v/V log? V) time. Once we know the closest pair, the shortest path
between that pair can be found in O (V') time [15]. O

For surfaces, we have the following result.

Lemma 3. Let G be a graph embedded on a surface of genus g. The k-pairs distance
problem can be solved in O (\/gV (V logV + g +k)) time, and in O(/gV (V +k)) time
ifg = O(V'7®) for some ¢ > 0. Furthermore, the shortest path between the closest pair
can be found in the same amount of time.
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Proof. Let (s1,t), ..., (S, tx) be k pairs of vertices. The general idea is as follows.
We compute first a small vertex set S such that G — S is a planar graph. To compute
the distance between s; and 7, it then suffices to take the minimum of the following two
values:

(i) The length of a shortest path between s; and ¢; that passes through at least one
vertex in S, that is,

di(si t;) = migl{dG(Siv §) +dg(s, 1)}
NS

(i) The length of a shortest path between s; and #; that avoids all the vertices in S.
In other words, if 5; and ¢#; belong to the same (planar) component G; of G — S,
we compute dg, (si, 1;).-

We now move onto the details. For a graph G embedded on a surface of genus g, there
exista set S C V(G) of size O(4/gV) such that G — S is planar. It can be computed in
time linear in the size of the graph, thatis, O(V + g) time [9].

Making a shortest path tree from each vertex s € S, we compute all the values dg (s, v)
fors € S, v € V(G). Each shortest path tree takes O (V log V + g) time in general, and
O (V) time if g = O(V!~%). Therefore, we need O(,/gV(V logV + g)) time in total,
or 0(/gVV)ifg=0(V'™®).

For each pair (s;, t;), we can now compute the value dé (si, ;) of item (i) in O (4/gV)
time. For all pairs, this amounts to O (k+/gV) time.

For item (ii), let Gy, ..., G, be the connected components of G — S, let k; be the
number of pairs (s;, #;) that are in component G; and let V; be the number of vertices
of the graph G;. Because each G; is planar, the values dg; (s;, #;) for the k; pairs in the
component G; can be computed in O ( VjS/ ‘4 kj \/Vj ) time as shown in Lemma 2. Since
each pair (s;, ;) is in at most one component of G — S, we have ) _k; < k. Therefore,

we can compute the distances dg, (s;, ;) for all pairs using O(ZJ-(VJ-’%/2 + kjy/ Vj)) <
oy, Vj3/2 +V Y k) £ O(V*2 4+ /Vk) time. This completes the proof. O

4. Separating versus Non-Separating Cycles

In this section we characterize the surface non-separating cycles using the concept of
crossing; see Fig. 1. For two simple closed curves that cross transversally, the number of
crossings is the cardinality of the intersection of their images. For two arbitrary simple

AV

Fig. 1. Left: a crossing without shared edges. Center and right: cycles with shared edges and four crossings;
we count crossings after contracting the common edges.
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closed curves, the number of crossings is the minimum number of crossings over all small
perturbations of the curves that make all the intersections transversal. When the simple
curves are cycles in an embedded graph G, any common segment can be perturbed to
two parallel curves that are arbitrarily close, and defer all the crossings to the endpoints
of the common segment. This leads to the following equivalent, combinatorial definition
of number of crossings for cycles C = ugpe - - - urexuo and C’' = ugey, - - - ujejuy in an
embedded graph G. If C, C’ do not have any common edge, for each pair of common
vertices u; = u; we count a crossing if the edges e;_1, ¢; of C and the edges e¢;_i, ¢; of
C’ alternate in the local rotation around u; = u; (where the indices are taken modulo
k + 1 and [ + 1, respectively); the number of all crossings is denoted by cr(C, C). If
C, C’ are distinct and have a set of edges E’ in common, then ¢r(C, C’) is the number of
crossings after contracting G along E’. Finally, if C = C’, then we define cr(C, C') =0
if C is two-sided, and cr(C, C') = 1 if C is one-sided.

Consider a tree—cotree decomposition (7', U, X) of G, and consider the set of cycles
Carux) = {eycle(T,e) | e € X} ={Cy, ..., C,}. Note that if C is a surface separating
cycle, then it splits the surface into two components. Thus, every other cycle crosses
C an even number of times. The following result tells that this parity property with the
cycles in Cr,y, x) is enough to characterize the separating cycles.

Lemmad. A cycle C in G is surface non-separating if and only if there is some cycle
Ci € Ciru.x) such that C and C; cross an odd number of times, that is, cr (C, C;) = 1
(mod 2).

Proof. For the proof, we need the concept of (Z,-)homology, which we introduce next;
see Chapter 2 of [14] for a comprehensive treatment of homology. A set of edges E’ is
a 1-chain; it is a 1-cycle if each vertex has even degree in E’; in particular, every cycle
in the graph is a 1-cycle, and also the symmetric difference of 1-cycles is a 1-cycle. The
set of 1-cycles with the symmetric difference operation + is an Abelian group, denoted
by C;(G). This group can also be viewed as a vector space over Z, and is henceforth
called the cycle space of the graph G. If f is a closed walk in G, the edges that appear
an odd number of times in f form a 1-cycle. For convenience, we denote the 1-cycle
corresponding to f by the same symbol f.

Two 1-chains E;, E, are homologically equivalent if there is a family of facial walks
fi, ..., f: of the embedded graph G such that E; + f; +- - -+ f; = E,. Being homolog-
ically equivalent is an equivalence relation compatible with the symmetric difference of
sets. The 1-cycles that are homologically equivalent to the empty set, form a subgroup
B1(G) of C1(G). The quotient group H,(G) = Ci(G)/B1(G) is called the homology
group of the embedded graph G.

A set L of 1-chains generates the homology group if for any cycle C’ in G, there is a
subset L’ C L such that C’ is homologically equivalent with > . Ei. There are sets
of generators consisting of g 1-chains. It is known that any set of loops that gives a cutset
generates the homology group H;(G). Since the repeated edges in a loop disappear, we
conclude that the set of cycles Cir. vy xy = {Ci, ... C,} generates H;(G).

We next argue that a cycle C is separating if and only if it corresponds to the trivial
element of H(G). Indeed, if C is a separating cycle, then GAC has two connected
components. Let I be the set of indices such that f;, i € I, are the faces in one of the
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components. Then we have C = ), _, fi, and therefore C is homologically equivalent
to the empty set. Conversely, if C is a trivial element of the homology group, then there
are indexes I such that C = )., fi. Since C is a cycle, it follows that the boundary of
the union of the faces f;, i € I, is C. Therefore, C separates f;,i € I, from f;,i ¢ I.
For the rest of the proof, we use that non-separating cycles are non-trivial elements of
the homology group.

Let fo, ..., fr be the 1-cycles that correspond to the facial walks. Then fy = f; +
<o+ frand Cru.x) U{fi, ..., fr}is a generating set of C;(G). If E; is a 1-cycle, then
Ei =3 c;Cji+ Y ;e fi for certain indices I, J. We define cr, (C) as the modulo 2
value of

D er(€.Cp+ Y er(C. fiy=> er(C.C;) mod 2.

jeJ iel jeJ

It is easy to see that crg,;: Ci(G) — Z, is a homomorphism. Since cr(C, f;) = 0 for
every facial walk f;, crg, also determines a homomorphism H,(G) — Z;.

If C is a surface separating cycle, then it corresponds to the trivial element of H; (G), so
every homomorphism maps it to zero. In particular, forevery j,cr(C, C;) = cr¢;(C) =0
(mod 2).

Let C be a non-separating cycle and consider G = GAC. Take a vertex v € C, which
gives rise to two vertices v’, v” € V(G). Since C is non-separating, there is a simple
path P in G connecting v', v". The path P is a loop in G (not necessarily a cycle), but
it contains a cycle C’ that crosses C exactly once.

Since C(r i, x) generates the homology group, there is a subset C' C C(r,y, x) such that
the cycle C’ and ZC’_ <c Ci are homologically equivalent. However, then 1 = cr¢/(C) =
ZC,EC’ cr(C, C;) (mod 2), which means that for some C; € C’, it holds that cr (C, C;)
1 (mod 2).

ol

5. Shortest Non-Separating Cycle

Let 7, be a shortest-path tree from vertex x € V(G). Let us fix any tree—cotree partition
(T, U,, X,), and let C, = {cycle(T,,e) | e € X,}. Foracycle C € C,, let Odd(C) be
the set of cycles that cross C an odd number of times. It follows from Lemma 4 that
Uc cc, Odd(C) is precisely the set of non-separating cycles. We will compute a shortest
cycle in Odd(C), for each C € C,, and take the shortest cycle among all them; this will
be a shortest non-separating cycle.

We next show how to compute a shortest cycle in Odd(C) for C € C,. Firstly, we
use that 7, is a shortest-path tree to argue that we only need to consider cycles that
intersect C exactly once; a similar idea is used by Erickson and Har-Peled [10] for their
2-approximation algorithm. Secondly, we reduce the problem of finding a shortest cycle
in Odd(C) to an O (V)-pairs distance problem.

Lemma 5. Among the shortest cycles in Odd(C), where C € Cy, there is one that
crosses C exactly once.

Proof. Let P, P’ be the two shortest paths that, together with an edge, define C. The
family of cycles Odd(C) satisfies the 3-path-condition, and the paths P, P’ are disjoint,
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except at x. Therefore, from Lemma 1 we conclude that there is a shortest cycle Cy in
0Odd(C) that contains at most one segment of P, and one segment of P’. It follows that
C and Cy can cross at most twice, and since Cy € Odd(C), they must cross exactly
once. O

Lemma 6. For any C € C,, we can compute a shortest cycle in Odd(C) in
O((VlogV + g)/gV) time, or O(V/gV) time ifg = O(V'79).

Proof. Consider the graph G = G4C. Each vertex v on C gives rise to two copies
v/, v” of vin G. In G a cycle that crosses C exactly once (at vertex v, say) gives rise to
apathin G from v’ to v” (and vice versa). Therefore, finding a shortest cycle in Odd(C)
is equivalent to finding a shortest path in G between pairs of the form (v/, v") with v
on C.In G, we have O(V) pairs (v, v”) with v on C, and using Lemma 3 we can find
the shortest path connecting a closest pair (v), vy) in O((V log V + g)4/gV) time, or
oV /gV)ifg = 0(V'7%). O

Theorem 7. Let G be a graph with V vertices 2-cell embedded on a surface of
gbzs g, without 1- or 2-gons. We can find a shortest surface non-separating cycle in
0(g3/2V3/2 logV + gS/ZVI/Z) time, or 0((gV)3/2) time if g = O(V'7%).

Proof. Since UCecX 0Odd(C) is precisely the set of non-separating cycles, we find a
shortest non-separating cycle by using the previous lemma for each C € C,, and taking
the shortest among them. The running time follows because C, contains O(g) loops. [

Observe that the algorithm by Erickson and Har-Peled [10] outperforms our result for
g = Q(V'310g*3 V). Therefore, we can recap concluding that a shortest non-separating
cycle can be computed in O (min{(gV)2, V(V + g)log V}) time.

6. Shortest Non-Contractible Cycle

Like in the previous section, we consider a shortest-path tree T, from vertex x € V(G),
and we fix a tree—cotree partition (7, Uy, X,). Consider the cutset given by the loops
L, = {loop(T, e) | e € X,}. By increasing the number of vertices to O(gV), we can
assume that L, becomes a system of cycles (instead of loops) whose pairwise intersection
is x. This can be shown by slightly modifying G in such a way that L, can be transformed
without harm; we give the precise modification in the proof of the following result.

Lemma 8. The problem is reduced to finding a shortest non-contractible cycle in an
embedded graph G of O(gV) vertices with a given system of cycles C, such that each
cycle from C, consists of two shortest paths from x plus an edge. This reduction can be
done in O(gV) time.

Proof. Throughout this proof we assume that the given embedding is represented in
such a way that signatures of edges in 7, are all positive. For vertices u, u’ € V(G),
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Fig. 2. How to modify the graph such that a loop lo = loop(Ty, ) € Ly becomes a cycle. The edges v;v}’
have length 0.

we use Plu, u’] for the (unique) path in T, from u to u’. For a loop [ € L,, we define
split(l) as the vertex v on [/ such that the part that appears twice in / is equal to P[x, v].
In particular, split(/) = x if and only if [ is a cycle.

Our first goal is to change the graph G and the spanning tree 7 in such a way that
the loops in L, will all become cycles whose pairwise intersection is only the vertex x.
To achieve this goal, we proceed as follows.

There is nothing to do if all loops in 7, are cycles. Otherwise, consider a loop [
in L, that is not a cycle and whose repeated part Py = P|x, split(ly)] is shortest. Let
X = v, v1, ..., vy = split(ly) be the consecutive vertices on Py. Let v;; and v,/(+1 be
the neighbors of v that are on the loop [y and are distinct from vi_;. Assume, moreover,
that the edges of /y around vy have local rotation vi_y, Vg41, VU, 41 (in clockwise order
on Fig. 2). The edges incident with each vertex v; (1 < i < k) that are not on the
path vy, vy, ..., Vg4 can be classified as those on the left or on the right of that path.
Now we replace the path x, vy, ..., v in G with two paths Pj = x, v, ..., v; and
Py = x,v{,..., v/, and add the edges vjv] (1 < i < k) between them. All edges
incident with v; that are on the right of v; in G are now incident with v}, while the rest
are incident with v/, i = 1, ..., k. In particular, the edge vy v, which is on the right
of vy, is replaced by the edge v, v} ;, while the edge vivi 4 is replaced by v;/viy . See
Fig. 2. The edges that correspond to previous edges have the same length in the new
graph, while all new edges v;v! have length 0.

The new graph is naturally embedded in ¥ as well. We replace the loop [ in L, by the
cycle Py, lo\ P[vo, vil, Py. Therest of loops (or cycles) in L, remain the same except that
their segment common with P is replaced with the corresponding new segments. They
keep being loops (or cycles) because we have chosen [y such that length(P[x, split(ly)])
is shortest among non-simple loops in 7.

We repeat the procedure until L, consists of only cycles; we need O(g) repetitions.
Each cycle in L, may have two paths from x in common with other cycles. Consider a
longest path P that two cycles C, C’ € L, have in common. Using the same technique
as above, we can modify the graph and the cycles C, C’ in such a way that they share one
path less; details are similar and omitted. We keep repeating this step until any pair of
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cycles intersects only at x. We have to repeat this step at most 2| L, | = 2g times because,
at each step, a new edge adjacent to x that is used by some cycle is created. Therefore,
the cycles in the resulting set pairwise intersect only in vertex x.

Let G be the final graph that is obtained and let L, be the final set of cycles. Observe
that each cycle in L,is composed of two shortest paths from x plus an edge. Itis clear that
a shortest non-contractible cycle in G corresponds to a shortest non-contractible cycle
in the original graph G, as well as shortest paths in G correspond to shortest paths in G.
The problem reduces then to finding a shortest non-contractible cycle in G. However,
observe that the number of vertices has increased; each step may add O (V) vertices, and
therefore G consists of 0(gV) vertices. This reduction can easily be done in O(gV)
time. O

The problem that remains is to find a shortest non-contractible cycle in a new graph
G with O(gV) vertices where we are given a system of cycles C,. Moreover, each cycle
of C, consists of two shortest paths from x plus an edge. Let C* be the set of shortest
non-contractible cycles in G. Using Lemma 1, we obtain the following property.

Lemma 9. Among the cycles in C*, there is one that crosses each cycle in C, at most
twice.

Proof. Consider the 2g shortest paths P that define the cycles in C,. They are pairwise
disjoint, except at x. Since the set of shortest non-contractible cycles satisfies the 3-path-
condition, Lemma 1 implies that there is a shortest non-contractible cycle Cy € C* that
contains at most one segment from each P € P. It follows that each cycle C € C, can
be crossed at most twice by C. O

Since C, is a system of cycles, the set D = X4C, is a topological disk, and the
corresponding graph G, = G4C, is planar. In G each cycle from C, corresponds
to two paths on the boundary of D. We can glue an infinite number of copies of D to
construct the universal cover of . However, because of Lemma 9, we can find a shortest
non-contractible cycle by constructing only a portion of this universal cover. These are
the main ideas to prove the following result.

Theorem 10. Let G be a graph with V vertices 2-cell embedded on a surface of genus
g, without 1- or 2-gons. We can find a shortest non-contractible cycle in O (g®®V3/%)
time.

Proof. According to Lemma 8, we assume that G has O (gV) vertices and we are given
a system of cycles C, such that each cycle of C, consists of two shortest paths plus an
edge. Moreover, because of Lemma 9, there is a shortest non-contractible cycle crossing
each cycle of C, at most twice.

Consider the topological disk D = £4C, and the planar graph G, = G4C,. Let
U be the universal cover that is obtained by gluing copies of D along the cycles in C,,
and let Gy be the graph that is obtained by gluing copies of G p according to the same
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pattern. The graph Gy is naturally embedded in U, and it is an infinite planar graph,
unless X is the projective plane P2, in which case Gy is finite.

Let us fix a copy Dy of D, and let Uy be the portion of the universal cover U which
is reachable from Dy by visiting at most 2g different copies of D. Since each copy
of D is adjacent to 2|Cc| = 2g copies of D, Uy consists of (2g)%¢ = g®@®@ copies
of D. The portion Gy, of the graph G that is contained in Uy can be constructed in
0(g%®gV) = 0(g%®V) time. We assign to the edges in Gy, the same weights they
have in G.

A cycle is non-contractible if and only if its lift in U finishes in different copies of
the same vertex. Each time that we pass from a copy of D to another copy we must
intersect a cycle in C,. Using the previous lemma, we conclude that there is a shortest
non-contractible cycle whose lift intersects at most 2|C,| = O(g) copies of D. That is,
there exists a shortest non-contractible cycle in G whose lifting to U starts in Dy and is
contained in Gy, .

We can then find a shortest non-contractible cycle by computing, for each vertex
v € Dy, the distance in Gy, from the vertex v to all the other copies of v that are
in Gy,. Each vertex v € Dy has O(g°®) copies in Gy,. Therefore, the problem
reduces to computing the shortest distance in Gy, between O(g®® V) pairs of ver-
tices. Since Gy, is a planar graph with O(g%® V) vertices, the result follows from
Lemma 2(i). |

Observe that, for a fixed surface, the genus is constant and the running time of the
algorithm is O(V3/%). However, for most values of g as a function of V (when g >
clog V /loglog V for a certain constant c), the near-quadratic time algorithm by Erickson
and Har-Peled [10] is better.

7. Edge-Width and Face-Width

When edge-lengths are all equal to 1, shortest non-contractible and surface non-separat-
ing cycles determine combinatorial width parameters (see Chapter 5 of [20]). Since their
computation is of considerable interest in topological graph theory, it makes sense to
consider this special case in more details.

7.1.  Arbitrary Embedded Graphs

Recall the parameters measuring the width of embedded graphs that were introduced
in Section 2. The (non-separating) edge-width ew(G) (ewy(G), respectively) of an em-
bedded graph G is the minimum number of vertices in a non-contractible (surface non-
separating) cycle. Therefore, the non-separating edge-width can be computed by setting
w(e) = 1 for all edges e in G and running the algorithms from previous sections. The
(non-separating) face-width fw(G) (fwo(G), respectively) of an embedded graph G
is one half of the (non-separating) edge-width of its vertex—face incidence graph I': a
bipartite graph whose vertices are faces and vertices of G, and there is an edge between
face f and vertex v if and only if v is on the face f.
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Observe that, for this special case, a breadth-first-search tree is indeed a shortest-path
tree, and it can be computed in O (V + g) time, instead of O (V log V + g) that is required
for arbitrary lengths if the genus is high. This improves slightly the running time for this
special case.

Theorem 11. Let G be a graph with V vertices 2-cell embedded on a surface of genus
g, without 1- or 2-gons. Its non-separating edge-width and face-width can be computed
in O(g3?V3?2 4 g52V1/2) time. Its edge-width and face-width can be computed in
0(g%® V32 time.

It can happen that ew(G) = (V). The situation is different for the face-width
fw(G) for which there exist non-trivial bounds. The key tool is the following result by
Hutchinson [16], which improves a previous bound by Albertson and Hutchinson [1].

Theorem 12 [16]. Let T be a triangulation in an orientable surface of genus g. Then
ew(T) = 0(JV/glogg)ifg < V,and ew(T) = O(logg) ifg > V.

We now extend this result to non-orientable surfaces, and then provide a bound on
the face-width of graphs.

Lemma 13. Let T be atriangulation in an arbitrary surface of genus g. Then ew(T) =
O/V/glogg)ifg <V,and ew(T) = O(logg)ifg > V.

Proof. IfT isorientable, then the previous theorem suffices. For non-orientable surfaces
we form its orientable double cover Dy, as explained in Section 3. D7 is also a triangu-
lation and has genus § < 2g. By Theorem 12, D7 contains a non-contractible cycle C
of length O(y/2V/glogg) = O(\/V/glogg)if g <2V, and O(log g) = O(log g) if
g > 2V. The projection C of C to T is a closed walk in T which is non-contractible.
This walk contains a non-contractible cycle of length at most [V(C)| = ew(Dr), so
ew(T) < ew(Dr). Since g < 2g, the bound also follows for the non-orientable case. [

Theorem 14. Let G be a graph of order V embedded in a surface of genus g. Then
tw(G) =0((/V/glogg)ifg < V,and fw(G) = O(logg) ifg > V.

Proof. Consider the vertex—face incidence graph I', which has a natural embedding as
a quadrangulation in the same surface as G, that is, all facial walks consist of exactly
four edges. Let T = I + E(G) be the triangulation obtained from I" by adding all edges
of G in the quadrangular faces of I'. Then fw(G) = %ew(F) < ew(T).

From the previous lemma, we have ew(7T) = O(/|V(T)|/glogg) if g < |V(T)],
and O(logg) if g > |V(T)|. Since |V(T)| =V + |F(G)| = O(V + g), the first bound
reduces to ew(T) = O(+/V/glog g). This completes the proof. O
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7.2.  Face-Width in the Projective Plane

For the special case when G is embedded in the projective plane P2, we can improve the
running time for computing the face-width. The idea is to use an algorithm for computing
the edge-width whose running time depends on the value ew(G). This is achieved by
combining three ideas: an algorithm of Erickson and Har-Peled [10] to compute a non-
contractible cycle which is at most twice as long as a shortest non-contractible cycle;
a double cover of G which is planar; and Lemma 2(ii) for distance queries on planar
graphs. The result is as follows.

Lemma 15. If G is embedded in P? and ew(G) < t, then we can compute ew(G) and
find a shortest non-contractible cycle in O(V 1og? V + t/V log* V) time.

Proof. Consider the orientable double cover D¢ of G, as explained in Section 3. Dg
is a planar graph, and each vertex v of G gives rise to two vertices v, v’. Moreover,
any shortest non-contractible loop passing through a vertex v € V (G) is equivalent to a
shortest path in Dg between the vertices v and v'.

We can compute in O (V log V') time a non-contractible cycle C of G of length at most
2ew(G) < 2t using the results of [10]. Actually, this can be done in O (V') time by using
a breadth-first-search tree. Any non-contractible cycle in G has to intersect C at some
vertex. In particular, every shortest non-contractible cycle intersects C. Consider in Dg
the |C| < 2t pairs of vertices I1 = {(v, V') | v € V(C)}, and let P be a shortest path in
D¢ between a closest pair of IT. The path P can be found in O (V log? V +1/V log? V)
time using Lemma 2, and it corresponds to a shortest non-contractible cycle in G. O

Like before, consider the vertex—face incidence graph I which can be constructed
in linear time. We have ew(I") = 2fw(G), and from Theorem 14 we obtain ew(I") =
O (+/V). Therefore, the problem reduces to that of computing the edge-width of a graph
knowing a priori that ew(I") = 2fw(G) = 0K/V). Using the previous lemma with
t = O(\/V), we conclude the following.

Theorem 16. Let G be a graph with V vertices 2-cell embedded in P?, without 1- or
2-gons. We can compute its face-width in O(V log® V) time.

Juvan and Mohar [17] obtained a linear-time algorithm for deciding if tw(G) < k,
where k is a fixed constant. They needed the special case when k = 4 in an algorithm
for testing embeddability in the torus.

7.3. Face-Width in the Torus

We next describe an algorithm for computing the face-width for a graph G embedded
on the torus T. Consider the vertex—face incidence graph I'; we will compute ew(I") =
2fw(G). Observe that on a fixed surface, |V (I')| = (V).
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We compute in O(V log V) time a non-contractible cycle C of I' of length at most
2ew(I") = fw(G) using the results of [10]. We know that |C| = 0(\/7) by Theorem 14.
See also Lemma 17 below.

Fixavertex vy € C andfindin O (V log V) time a shortest non-contractible loop / from
vo. Let A be the non-contractible cycle obtained by removing the repeated edges from
. We know that A consists of two shortest paths from a vertex uy € V(I') plus an edge;
uog = vy if [ was a cycle, and uy # vy otherwise. Moreover, |A| < |I| < |C| = 0WV).

The graph Iy = I'4A is planar. Let v’, v” be the two copies of v € A in T 4. Consider
the O(\/V) pairs TT = {(v/,v”) | v € V(A)} and find a pair (v}, v{) € II such that
dr,(vi, v{) = min{dr, (v', v") | (v/, v") € IT}in O(V log? V) time using Lemma 2. Let
P,, be a shortest path in I'4 from v] to v}, which is a non-contractible cycle B in I'". The
graph 'z = I'AB is planar as well.

We may assume that

2
31> 211 ()

If not, then we repeat the above procedure by starting with B playing the role of the
cycle C. Then we find new cycles A and B. If (1) is violated again, then the length of
the new cycle B would be strictly smaller than one-half of the length of the former cycle
A. This would imply that | B| < ew(I"), a contradiction.

Using Menger’s theorem for vertex-disjoint paths, we can prove the following bound.

Lemma 17. It holds that |A| - |B| = O(V).

Proof. Let M be the maximum number of vertex-disjoint paths from A’ to A”, the copies
of A in T 4. By Menger’s theorem, M is equal to the cardinality of a minimum (A’, A”)-
separator S in y,4. Since I'4 is embedded in a cylinder with A’ and A” being the cycles
on the boundary, the separator S gives rise to a closed curve y in the torus homotopic to
A that intersects I" precisely in the vertices in S. Since I' is a quadrangulation, the curve
y determines a non-contractible cycle C in I' of length at most 2|S| = 2M. In particular,
M > Sew(T) > ;IAl.

Let Ry, ..., Ry be disjoint (A", A”)-paths. Each R; together with a segment on A”
determines a path from a vertex v’ € V(A’) to its mate v” in A” of length at most
|R;|+ |A|. Consequently, |R;|+ 2|A| > |B|. Since Ry, ..., Ry are vertex disjoint and
(1) holds, we get

S V2
Viz ) IRl = M(B| - 3lAD = 3]A] (1 - 7) Bl

i=1

This completes the proof. |

Cycles A and B constructed above can be used for a fast computation of the face-width
of G.

Theorem 18. Let G be a graph with V vertices 2-cell embedded in the torus, without
1- or 2-gons. We can compute its face-width in O(V>/*1og V) time.
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Proof. Every non-contractible cycle in the torus is surface non-separating. Since the
cycles A, B are a cutset, the proof of Lemma 4 tells us that we can assume that a shortest
non-contractible cycle crosses either A or B an odd number of times.

We first assume that a shortest non-contractible cycle crosses A an odd number of
times. Since A is composed of two shortest paths (plus an edge), the argument used in
the proof of Lemma 5 shows that there is a shortest non-contractible cycle that crosses
A exactly once. In this case, B is a shortest non-contractible cycle, and we are done.

We now consider the case where every shortest non-contractible cycle crosses B an
odd number of times. The argument used in Lemma 5 shows that we can assume that a
shortest non-contractible cycle crosses A at most twice and, therefore, it crosses A twice
or not at all. Let C be one such shortest non-contractible cycle crossing B a minimum
number of times and A twice or not at all. Then C crosses B exactly once. To see this,
consider the crossings C has with A and B as you walk along C. A segment s of C
between two crossings of C with B must contain a crossing of C with A, as otherwise
s is contained in a copy of I'dA and it could be replaced by a homotopic segment of
B to reduce the number of crossings with B. Since between two crossings of C with B
there must be a crossing of C with A, then C and B can cross at most twice. However,
we were assuming that C crosses B an odd number of times, and we conclude that they
cross exactly once.

We distinguish two cases depending on the length of A:

o If |[A| > V/410og V, then |B| = O(V?3/*/log V) because of Lemma 17. We com-
pute the distance from v’ to v” for any v € B as follows. Consider the graph I'y =
I'4B, that is planar, and the |B| = O(V3/*/log V) pairs IT = {(v/,v") | v € B}.
We can then use Lemma 2 with 'z and IT to find in O (V>/* log V) time a shortest
path between the closest pair of I, which corresponds to a shortest non-contractible
cyclein I

o If |A| < V'/41ogV, consider the topological disk D = T\(A U B), make its
copy Dy, and construct the portion Uy of the universal cover reachable from D,
by crossing A at most twice and without crossing B. This needs five copies of D;
see Fig. 3. Let Iy be the cover of I" naturally embedded in Uy by gluing copies
of D.

BFS(ro. V], *)

Copies v of vertices in B

Fig. 3. Portion of the universal cover reachable by crossing A at most twice and B not at all. We show some
of the concepts used in the proof.
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Fig. 4. A path of length [ in I'¢ yields a path of length at most / + 2|A| in Dy.

In Dy, let v, v), ..., v"B‘ be the consecutive vertices of one copy of B. The
shortest cycle we are seeking corresponds to a shortest path connecting v, with
some copy v, of v;.

We make for each v; a BFS(I'y, v}, |[A| — 1), where BFS(Iy, u, t) is a breadth-
first-search tree from vertex u in the graph I'y clipped at depth ¢, that is, only
including vertices up to depth 7. If a shortest non-contractible cycle has length
strictly smaller than | A|, then its lift in I'g has to be contained in BES(T'g, v;, |A|—1)
for some v; € B. Therefore, once we have BFES(I'y, v;, |[A| — 1) for all v, € B we
can easily find a shortest non-contractible cycle.

We claim that it takes O (V>/*1og V') time to construct the trees BFS(I'y, v, |[A|—
1) foralli =1,...,|B]. Observe that the proof of the claim will finish the proof
of the theorem. The proof is as follows. Define the sets By = {v; 44 | i =
0,...,LIB|/4|Al]} fork =1, ..., 4|A|; that is, By consists of v; and each 4|A|th
vertex along B. Observe that B\ |, By = {v‘/B‘_(‘B‘ mod 4[A]) <+ > vIIBIfl} consists
of O(|A]) = O(V'/*log V) vertices. Therefore, the trees BFS(I'g, u, |A| — 1) for
u € B\ U, Bx can be computed in O(V'/*1log V) - O(V) = O(V>/*1log V) time.

If u’,v' € By, then er(A (u',v") > 4|A| because B is a shortest path in [4A.
This implies that dr, (u’, v') > 2| A| because any shortest path of length / in I'y can
be clipped by Dy to obtain a path of length at most / 4+ 2| A|; see Fig. 4. Therefore,
ifu’, v’ € By, we have BES(I'y, u’, |A| — 1) NBFS(I'y, v/, |A| — 1) = @. Since for
any fixed k, each edge of I'y appears at most once in the trees {BFS(Ig, u, [A|—1) |
u € By}, we can compute BES(I'g, u, |A| — 1) for all u € By in O(V) time. The

parameter k takes the values 1, ..., 4|A| = o' log V), and therefore we need
O(V'41ogV)-0(V) = 0O(V>*log V) time to compute BES(Ty, u, |A| — 1) for
all u € | J, B. This finishes the proof of the claim and of the theorem. O

8. Conclusions

We have presented algorithms for finding shortest non-contractible and surface
non-separating cycles for graphs embedded on a surface. For a fixed surface, our
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algorithms run in O(V?3/2) time, which is a considerable improvement over previous
results. Our algorithms can be used to compute the (non-separating) edge-width and the
(non-separating) face-width of embedded graphs.

Our algorithms work for undirected graphs with non-negative edge-lengths. Similar
results for directed graphs seem much harder because non-contractible or non-separating
cycles do not satisfy the 3-path-condition anymore. Finding shortest cycles with prop-
erties that do not satisfy the 3-path-condition remains an elusive problem.

We have also given a near-linear running time algorithm for computing the face-
width in the projective plane; for the torus, we show how to compute the face-width in
O(V>/*log V) time. We feel that one of the most appealing open questions is finding
near-linear running time algorithms for computing the face-width of graphs embedded
on a (possibly fixed) surface. Our approach when dealing with the projective plane and
the torus does not seem to extend to surfaces of higher genera.
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