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Abstract

Suppose that K ⊆ G is a graph embedded in some surface and F is a face of K with
singular branches e and f such that F ∪ ∂F is homeomorphic to the torus minus an
open disk. An embedding extension of K to G is a simple embedding if each K-bridge
embedded in F is attached to at most one appearance of e and at most one appearance
of f on ∂F . Combinatorial structure of minimal obstructions for existence of simple
embedding extensions is described. Moreover, a linear time algorithm is presented
that either finds a simple embedding, or returns an obstruction for existence of such
embeddings.

1 Introduction

Let K be a subgraph of a graph G and suppose that we are given an embedding of K into a
(closed) surface Σ. The embedding extension problem asks whether it is possible to extend
the given embedding of K to an embedding of G, and any such embedding is said to be an
embedding extension of K to G. An obstruction for embedding extensions is a subgraph Ω
of G− E(K) such that the embedding of K cannot be extended to K ∪Ω.

Special cases of embedding extension problems have been treated in [5, 6, 7, 8]. In
this paper we examine a more involved special case of the embedding extension problem
where K is 2-cell embedded in some surface and there is a face F of K such that there
are two branches e, f of K appearing twice on ∂F in order e, f , e−, f− (where e−, f−

denote the traversals of the corresponding branches in the reverse direction) and no other
part of ∂F is singular (cf. Section 2). We are interested in obstructions for extending the
embedding of K such that all bridges of K are embedded in the face F in such a way that
each of them is attached to at most one appearance of e and to at most one appearance
of f . We refer to such embeddings as simple embeddings. Importance of detecting and
classifying obstructions for simple embeddings lies in the fact (cf. [9, 10]) that obstructions
for general embedding extension problems can be expressed by means of these obstructions
and the obstructions described in [6].
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Embedding extension problems can be used, in particular, to construct embeddings
of graphs in surfaces, or to find obstructions for such embeddings. Given G, K, and F
as above, we are able to find a simple embedding extension in F , or construct a “nice”
obstruction for the existence of simple embeddings by means of a linear time algorithm
(see Theorem 6.1). It is shown that the obtained obstructions can be transformed into
obstructions of bounded size if we allow K to be changed (see Section 7). This result is
used as one of the basic steps in the design of linear time algorithms for embeddability of
graphs in general surfaces [9, 10].

At the same time, combinatorial structure of minimal obstructions is considered. The
structure can be described in terms of “millipedes” which are rather simple but arbitrarily
large subgraphs encountered also in other embedding extension problems (cf. [5]–[8]).

Embeddings in orientable surfaces can be described combinatorially by specifying a
rotation system [3]: for each vertex v of the graph G we have a cyclic permutation πv of
its neighbors, representing their circular order around v on the surface. In order to make a
clear presentation of our algorithm, we have decided to use this description only implicitly.
Whenever we say that we have an embedding, we mean such a combinatorial description.
Whenever used, it is easy to see how one can combine the embeddings of some parts of the
graph described this way into the embedding of larger species.

Concerning the time complexity of our algorithms, we assume a random-access machine
(RAM) model with unit cost for basic operations. This model was introduced by Cook and
Reckhow [2] and is used also in other similar algorithms, e.g. [4]. More precisely, our model
is the unit-cost RAM where operations on integers of value O(n) need only constant time
(where n is the order of the given graph).

2 Obstructions

Let K be a subgraph of G. A vertex of K of degree in K different from 2 is a main vertex of
K. For convenience, if a connected component of K is a cycle, then we choose an arbitrary
vertex of it and declare it to be a main vertex of K as well. A branch of K is any path in
K (possibly closed) whose endpoints are main vertices but no internal vertex on this path
is a main vertex. A bridge of K in G (also called a K-bridge in G) is a subgraph of G
which is either an edge xy ∈ E(G)\E(K) (together with its ends) such that x, y ∈ V (K),
or it is a connected component of G− V (K) together with all edges (and their endpoints)
joining this component and K. Each edge of a K-bridge B with an endpoint in K is a foot
of B. The vertices of B ∩K are the vertices of attachment of B. If a K-bridge is attached
to a single branch of K, it is said to be local . The number of branches of K is called the
branch size of K.

Let K ⊆ G be a subgraph of G with a given 2-cell embedding in some surface. Let F
be a face of K. A main vertex x or a branch e of K is singular in F if it appears more than
once on the facial walk ∂F of F . The face F is singular if it contains a singular branch or
a singular vertex. If ∂F contains exactly k singular branches (and no other singular parts),
then F is said to be k-singular . We say that F is at most 1-singular if it is either 1-singular,
non-singular, or the only singularity is a vertex that appears on ∂F exactly twice.

Suppose that Ω ⊆ G − E(K). If Ω has the property that there are no embedding
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Figure 1: Corner obstructions.

extensions of K to K ∪ Ω with certain properties, then Ω is said to obstruct embeddings
of G with these properties. We will be interested in obstructions Ω that have no simple
embeddings, i.e., Ω obstructs simple embeddings. Such an obstruction will be called a corner
obstruction. In Figure 1, two examples of corner obstructions for embeddings into a 2-
singular face are presented. The first one is a single bridge, while the second consists of
three bridges.

To measure the size of Ω we use the number b(Ω) which is equal to the number of
branches of K ∪ Ω that are contained in Ω. We say that Ω is of bounded size if b(Ω) is
bounded by certain constant (independent of G).

The next result will enable us to replace every K-bridge in G by a subgraph of bounded
size such that the simple embedding extension problem for the new graph is equivalent to
the original one.

Lemma 2.1 ([7]) Every K-bridge B in G contains a subgraph B̃ with b(B̃) ≤ 71 such
that for an arbitrary set of non-local K-bridges B1, . . . , Bk, every simple embedding of K ∪
B̃1 ∪ · · · ∪ B̃k can be extended to a simple embedding of K ∪ B1 ∪ · · · ∪ Bk. Additionally,
if a bridge B is attached only to both singular branches of a 2-singular face and B admits
a simple embedding, then b(B̃) ≤ 5. Moreover, the replacement of all K-bridges B by their
subgraphs B̃ can be done in linear time.

Throughout the paper we will assume that no K-bridge in G is local. By Lemma 2.1
we can replace all bridges B by their subgraphs B̃ of bounded size. From now on we will
assume that this replacement has already been made.

If Ω is an obstruction, let B(Ω) be the union of those (reduced) K-bridges that contain
at least one edge of Ω. By Lemma 2.1, B(Ω) has bounded size if and only if the number of
bridges in Ω is bounded. Therefore we may work only with obstructions composed of entire
K-bridges. Having two such obstructions, Ω1 and Ω2, we can combine them into a single
obstruction by taking their union, Ω = Ω1 ∪ Ω2, that obstructs all embedding extensions
that are obstructed by either of them. By our assumption, b(Ω) ≤ b(Ω1) + b(Ω2).

Let F be at most 2-singular face of K with singular branch e. The two appearances of e
on ∂F will be distinguished as the lower and the upper appearance. An upper-embedding
(respectively, a lower-embedding) of a K-bridge B is a simple embedding of B in F such
that it is not attached to e at its lower (respectively, upper) appearance.
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A millipede in G based on e is a subgraph M of G − E(K) which can be expressed as
M = B◦

1 ∪B◦
2 ∪ · · · ∪B◦

m (m ≥ 6) where:

(M1) Each of B◦
1 and B◦

m is a union of a bounded number of K-bridges in G that has (or
is allowed to have) a fixed simple embedding in F .

(M2) B◦
2 , . . . , B

◦
m−1 are distinct K-bridges.

(M3) For i = 2, . . . ,m − 2, B◦
i and B◦

i+1 have neither simultaneous upper-embeddings nor
simultaneous lower-embeddings but they have both simultaneous simple embeddings
where B◦

i is upper-embedded and B◦
i+1 is lower-embedded, or vice-versa. The bridges

B◦
1 ∪ B◦

2 ∪ B◦
m−1 ∪ B◦

m have unique simple embedding in F . Moreover, if m is even,
then, under this embedding, B◦

2 and B◦
m−1 are embedded in the same way (both

upper- or both lower-embedded). If m is odd, then B◦
2 and B◦

m−1 are embedded in
distinct ways.

(M4) For i ≥ 1 and i + 2 ≤ j ≤ m, no simple embedding of B◦
i interferes with any simple

embedding of B◦
j .

In this paper, we may assume that each of B◦
1 and B◦

m contains at most 23 K-bridges.
By (M1) and (M3) the millipede M obstructs those simple embedding extensions in F

for which B◦
1 and B◦

m are embedded in accord to (M1). Millipedes can be arbitrarily long.
See Figure 2 for an example. Millipedes which are not of bounded size do not contain
obstructions of bounded size since the removal of an arbitrary bridge B◦

i from M gives a
subgraph which admits simple embeddings (by (M3) and (M4)).

Figure 2: A millipede based on e.

Let M be a millipede. For i = 2, 3, . . . ,m− 1, denote by li and ri the leftmost and the
rightmost attachment of B◦

i on e, respectively, where “left” and “right” is with respect to
Figure 2. (It follows by (M3) and m ≥ 6 that B◦

i has at least one attachment on e.)
By (M3) and (M4) if follows that M◦:= B◦

2 ∪ · · · ∪B◦
m−1 has exactly two (substantially

different) simple embeddings. Let B� be the set of those bridges B◦
i , 2 ≤ i ≤ m−1, that are

not attached to the “right” part of ∂F − e. Suppose that |B�| ≥ 4. It is easy to see that in
each simple embedding of M◦, at least one bridge from B� is lower-embedded and at least
one bridge from B� is upper-embedded. Denote by Blo

� (Bup
� ) the “leftmost” lower-embedded
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(upper-embedded, respectively) bridge from B� (under one of the two simple embeddings
of M◦). Note that the pair {Blo

� , B
up
� } is independent of the choice of the embedding.

Similarly we define Blo
r , B

up
r ∈ B� (with respect to the same embedding of M◦). We claim

that Blo
� and Bup

� have neither simultaneous lower nor simultaneous upper-embedding.
Suppose, for example, that they have simultaneous upper-embedding. We may assume
that Bup

� is embedded to the “left” of Blo
� . By (M3), there exists a bridge B ⊂ M◦ whose

upper-embedding overlaps with the upper-embedding of Bup
� . Then B is embedded in the

same way as Blo
� under every simple embedding of M◦. Obviously, B is not attached to

the “right” part of ∂F − e since in that case it would also overlap with Blo
� . On the other

hand, B �∈ B�, since it would be attached to e to the “left” of Blo
� which is a contradiction

with our choice of Blo
� . We also want that Blo

r and Bup
r have neither simultaneous lower nor

simultaneous upper-embedding. If this is not the case, suppose that Bup
r is attached to e

to the right of Blo
r . It is easy to see that Blo

r overlaps only with bridges in B�. Replace Bup
r

with the “rightmost” bridge of M◦ that overlaps with Blo
r . Then Blo

r and Bup
r have the

required property. In the case when Bup
r has been changed, we also remove the original Bup

r

from the set B�.
Let f ′ be the “rightmost” foot of Blo

� on e. (The rightmost foot is well defined with
respect to a simple embedding of Blo

� in F .) Subdivide f ′ by inserting a new vertex vlo
�

of degree 2. Introduce similarly vertices vup
� in Bup

� , and vlo
r , v

up
r in Blo

r , B
up
r , respectively

(in the latter two cases with respect to their “leftmost” feet). Then add to M the edges
f1 = vlo

� v
lo
r and f2 = vup

� v
up
r . Finally, delete bridges B� \ {Blo

� , B
up
� , B

lo
r , B

up
r } from M .

If |B�| < 4, then we leave M unchanged. We repeat the same procedure with bridges Br

that are not attached to the “left”. After these changes, the obtained set of bridges con-
tains B◦

1 , B
◦
m and at most 8 additional bridges. (We have at most three bridges from the

original B�, at most three from Br, and at most two bridges that are attached both to the
“left” and “right”.) Denote the resulting graph by M̃ and call it the squashed millipede.
This way we reduce the size of M , while essentially preserving its embedding extension
properties. To preserve also the interference of M with other bridges of K, we need to
apply another change described below (the operation (SQ1) or (SQ2)).

Suppose that in the procedure of squashing we had |B�| ≥ 4. Let L1 = Blo
� , L2 = Bup

� ,
R1 = Blo

r , R2 = Bup
r be the bridges that participate in squashing of B�. By (M3) and (M4)

it follows that L1∪L2∪R1∪R2 has at most one attachment out of e. We call this attachment
the left apex of the millipede. Denote by l′i the “leftmost” vertex of attachment on e of Li

and by r′i the “rightmost” attachment on e of Ri (i = 1, 2). Let I =
⋂

i=1,2
(l′i, r′i) ⊆ e and

let D� ⊆ G− E(K) be the union of all K-bridges that have an attachment in I. Similarly
we define Dr with respect to Br (if |Br| ≥ 4). We also get the right apex of M . The set
consisting of the left and the right apex (if defined) ofM is the apex ofM . Let D = D�∪Dr.
The bridges in D will be used in defining the squashing operation on G. We distinguish
two cases:

(SQ1) M◦ ∪ D admits a simple embedding in F . We replace M◦ ∪ D in the graph G by
the squashed millipede M̃ and denote the obtained graph by G̃. It is easy to see
that the embedding of K can be simple extended to G̃ if and only if it can be simple
extended to G. Note that M̃ is contained in G̃. The operation of replacing G by G̃
and replacing M by M̃ is called squashing of the millipede M . It is important that
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any obstruction for simple embedding extensions to G̃ is also an obstruction for G.

(SQ2) M◦∪D has no simple embedding in F . In this case, M◦∪D contains a corner obstruc-
tion Ω (of bounded size) for extending the embedding of K to a simple embedding
of K ∪M◦ ∪D. Such an obstruction can be obtained in linear time as follows. If D
contains a bridge B′ that is not attached only to I and to the apex of the millipede,
then Ω = B′∪L1∪L2∪R1∪R2 is an obstruction of bounded size. Otherwise, let {x, y}
be the apex of the millipede. If x �= y, let K ′ = K ∪ xy. If x = y, we add an edge xz
instead of xy where z is a vertex of K in the part of ∂F − e that does not include x.
Results of [8] can be applied to get the required corner obstruction Ω contained in
M◦∪D by solving a 2-prism embedding extension problem for K ′∪M◦∪D extending
the obvious embedding of K. (Note that solving this auxiliary 2-prism problem also
enables us to distinguish between (SQ1) and (SQ2).) We may assume that every
K ′-bridge in K ′ ∪M◦ ∪D has a simple embedding in F . Then it admits upper and
lower embeddings. Results of [8, Theorem 7.1] imply that in this case Ω contains at
most 4 bridges. For convenience, the replacement of M by Ω is also called squashing
of M . In this case, G̃ = G, and M is replaced by the obstruction Ω of bounded size
that obstructs stronger than M .

Proposition 2.2 Let M be a millipede. Then the graph G̃ obtained after squashing of
M admits essentially the same simple embedding extensions as G. More precisely, every
simple embedding extension to G gives rise to a simple embedding of G̃ that coincides with
the embedding of G on G∩ G̃. Conversely, having a simple embedding of G̃, the embedding
of G ∩ G̃ can be extended to a simple embedding of G.

Proof. If G = G̃, there is nothing to prove, so assume that m ≥ 9. The case (SQ1) is easy
to verify, and we leave the details to the reader. In the case (SQ2), Ω ⊆ G− E(K). Since
Ω is an obstruction for any simple embedding extensions, the claims of the proposition are
vacuously satisfied.

Proposition 2.2 enables us (after squashing) to pretend that M is of bounded size
(since M turns into M̃ ). If we use squashing, the new edges f1, f2 have to be replaced by
B◦

2 ∪ · · · ∪B◦
m−1 at the very end.

Let Ω be a corner obstruction. We say that Ω is of class 0 , if it is of bounded size
and does not contain millipedes. For k > 0, Ω is of class k if it contains a millipede
M = B◦

1 ∪ · · · ∪ B◦
m (with respect to some choice of allowed embeddings of B◦

1 and B◦
m)

such that Ω̃ obtained after squashing the millipede M is of class k− 1. In particular, every
millipede is of class 1. Finally, Ω is said to be nice if it is of class k for some bounded
k ≥ 0. Proposition 2.2 shows that nice obstructions have bounded number of different
simple embeddings.

Suppose that we have an obstruction Ω0 of class k. Let G̃ be the graph obtained
by successive squashing of k millipedes in Ω0. Denote by Ω̃0 the corresponding squashed
obstruction Ω0. Suppose that Ω1 is an obstruction of class l in G̃. Then Ω̃ = Ω̃0 ∪ Ω1

determines an obstruction Ω in G (after replacing squashed parts by millipedes) which
is of class k + l or less. We will use such a recursive construction of obstructions in our
algorithms and simply refer to them as a union of Ω0 and Ω1 (or Ω̃0 and Ω1). The operation
of obtaining the union will also be called combining of obstructions.
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3 2-restricted embeddings

Let K ⊆ G be 2-cell embedded in some orientable surface. Denote by B a set of K-bridges
in G. Suppose that B contains no local bridges and that for every B ∈ B at most two
simple embeddings in faces of K are allowed. The following result is proved in [6].

Lemma 3.1 ([6]) Let G, K, B be as above, and let Q =
⋃{B | B ∈ B}. There is a linear

time algorithm which either finds an embedding extension of K to K ∪ Q, or returns a
nice obstruction Ω ⊆ Q for those embedding extensions that use only allowed embeddings of
bridges in B.

The same result holds for non-orientable surfaces [6]. However, the notion of millipedes
(and hence of nice obstructions) must be slightly extended in such a case.

We will apply the algorithm of Lemma 3.1 in the case when the embedding of K has
a 2-singular face F . In such a case there may exist bridges with up to 4 different simple
embeddings. In order to be able to apply the 2-restricted embedding algorithm, we choose
one of the singular branches, say f , and prohibit bridges to be attached to one of its
appearances on ∂F . Suppose that a nice obstruction which contains a millipede M based
on the other singular branch e has been obtained and that (SQ1) has been performed
for squashing. In our applications we later test all simple embeddings of M (including
those embeddings that have bridges attached to the “forbidden” appearance of f). If
two bridges B◦

i , B
◦
j of M◦ with indices i, j of the same parity are attached to different

appearances of f , then the corresponding embedding of the squashed millipede M̃ is not
simple. However, the embedding of M̃ can be replaced by a simple embedding of M̃
without affecting the rest of the embedded graph since the case (SQ1) was used to squash
M . Therefore, it is enough to consider only simple embeddings of M̃ when trying to find
a simple embedding extension of M to G.

4 Planarity

There are well known linear time algorithms which for a given graph determine whether
the graph is planar or not. The first such algorithm was obtained by Hopcroft and Tarjan
[4]. Extensions of planarity testing algorithms also return an embedding (rotation system)
if the input graph is planar [1], or find a small obstruction – a subgraph homeomorphic to
K5 or K3,3 – if the graph is non-planar [11, 12]. Recall that a subgraph of G homeomorphic
to K5 or K3,3 is called a Kuratowski subgraph of G.

Lemma 4.1 There is a linear time algorithm that, given a graph G, either exhibits an
embedding of G in the plane, or finds a Kuratowski subgraph of G.

We refer to the algorithm of Lemma 4.1 as planarity testing . The following extension
of planarity testing is presented in [8]:

Lemma 4.2 ([8]) Let F be a non-singular face of 2-cell embedded subgraph K of G, and
let B be a set of K-bridges in G. There is a linear time algorithm which either finds
a simultaneous embedding of B in F , or returns an obstruction of bounded size for such
embeddings.
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By using Lemma 3.1, we can solve the embedding extension problem when the face F
contains a singular branch or a singular vertex (and no other singular parts):

Lemma 4.3 Let F be a singular face of 2-cell embedded subgraph K of G and let B be a set
of K-bridges in G. Suppose that the only singular piece of F is a branch e of K such that
F ∪ e is homeomorphic to the cylinder, or it is a vertex which appears at most twice on ∂F .
There is a linear time algorithm which either finds a simultaneous simple embedding of B
in F , or returns a nice corner obstruction for such embeddings.

More involved is the situation when we have a set B of bridges embeddable in more than
just a single (singular) face F . We will need the following special case of such a situation.

Lemma 4.4 Let F be a 2-singular face of 2-cell embedded subgraph K of G and let B be
a set of K-bridges in G. Suppose that the singular pieces of F , branches e and f , appear
on ∂F in interlaced order, e, f, e−, f−. Let P be either a path, or the union of two paths
embedded in F as shown in Figure 3. Suppose that all bridges in B are of bounded size
(including those containing P ). Suppose also that there are no local K-bridges in G. Then
there is a linear time algorithm that either finds a simple embedding of B in F extending
the embedding of K ∪ P , or discovers a nice obstruction for such embedding extensions.

Figure 3: Removal of 2-singularity by one or two paths.

Remark. The path P represented in Figure 3(a) is attached to vertex y on a non-singular
part of ∂F and to vertex x such that P leaves at most 1-singular faces. (Admissible region
for x is shown bold. Arrows indicate that the corresponding endpoint of the bold segment
is not included.) In case of Figure 3(b), P consists of two paths P1 and P2 that together
leave at most 1-singularity. Vertices y1, y2 are both on f as shown, while x1 and x2 can
appear anywhere on the corresponding bold segments.

Proof. If there are no K-bridges with three essentially different simple embeddings ex-
tending the embedding of P in F , then we do the following. For every simple embedding
of the bridge(s) containing P that extends the embedding of K ∪ P , we apply Lemma 3.1.
(Note that there are at most four cases.) We either get a simple embedding, or up to 4
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nice obstructions for such extensions. The combination of these obstructions is the desired
corner obstruction.

Suppose now that B contains bridges that admit more than two simple embeddings
extending the embedding of K ∪P . Let B ∈ B be one of such bridges. Then B is attached
to e and the only attachment on e is the vertex x (x1 or x2 in case (b)). In particular,
x ∈ V (e) (respectively, x1 or x2 is on e). It is possible that B is attached only to x and y
(xi and yj , i, j ∈ {1, 2}, respectively). In that case, we can assume that B is the only such
bridge in case (a) and that there are at most four such bridges in case (b). Otherwise,
B is necessarily attached to f , and in case (a), it may have one further attachment, the
vertex y �∈ V (e ∪ f). Note that B has exactly three simple embeddings. (We say that B is
3-embeddable.) Let B0 ⊆ B be the set of bridges consisting of the bridge(s) containing P ,
together with 3-embeddable bridges that are attached to y. If B0 contains more than five
bridges, any six of them form an obstruction for simple embeddings which is of bounded
size. Thus, we assume that this is not the case. For every simple embedding of bridges
in B0 extending the embedding of K ∪ P we continue with the procedure described in the
sequel. This procedure will find a nice obstruction for simple extensions of the embedding
of K ∪ B0 (or stop after constructing a required simple embedding of K ∪ B). Finally,
combination of all obtained obstructions is the desired corner obstruction.

After fixing an embedding of K ∪ B0, we may still have 3-embeddable bridges. Their
only attachments are the vertex x (or x1, or x2) on e and one or more vertices on f .

Let us first suppose we have case (a). As the first step we try to find an obstruction for
embedding extensions where all 3-embeddable bridges attach to x at the same side as P
(Lemma 3.1). We either stop after obtaining an embedding extension, or else we get a nice
obstruction Ω1.

Now, for every embedding of Ω1 extending the embedding ofK∪B0, there is a bridgeQ ∈
Ω1∪B0 embedded in the singular part F1 of F such thatQ separates the two appearances of x
on ∂F1. Otherwise, we could re-embed Ω1 so that the 3-embeddable bridges are attached
to x only at the “lower” side of e. Consequently, we can find an obstruction for extensions of
this embedding to K ∪B (or discover an embedding) by applying Lemma 3.1. This lemma
can be applied since every remaining bridge has at most two embeddings with a possible
exception of an edge which could have 3 embeddings. All such edges (corresponding to
different embeddings of Ω1) can be added to Ω1 and then we can assume, their embedding
is fixed. If we do not get an embedding extension, we combine all obtained nice obstructions
with Ω1 ∪ B0 into a required nice obstruction Ω.

It remains to explain the corresponding procedure in case (b). If x2 is to the left
of x1, then there are no 3-embeddable bridges, and it is easy to get a solution. Otherwise,
3-embeddable bridges are of two classes:

(i) Attached to f above y2, and attached to x1.

(ii) Attached to f below y1, and attached to x2.

If x1 = x2, then we can proceed as in case (a). Let Ω1 be a nice obstruction for
embedding extensions having all bridges of class (i) in F1 lower-embedded, and all bridges
of class (ii) in F1 upper-embedded. Every embedding of Ω1 has a bridge in the central
face F1 separating the two appearances of x1 = x2. We conclude as above.
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Suppose that x1 �= x2. Consider nine cases where we allow bridges of class (i) and bridges
of class (ii) to have only two of the three possible embeddings (for all bridges in the same
class of the same type). In each of these restricted problems, any other bridge has at most
two simple embeddings. Therefore, Lemma 3.1 can be used. If we do not get an embedding
extension, we obtain nine nice obstructions Ω1, . . . ,Ω9 for such restricted problems. Let Ω′

be the combination of Ω1, . . . ,Ω9. Every simple embedding of Ω′ extending the embedding
of B0 has either bridges of class (i) or bridges of class (ii) embedded in all three ways
(obviously not both at the same time). Moreover, this embedding has only non-singular
faces (otherwise we could get rid of three distinct ways of embedding bridges of the same
class). Therefore, there is at most one 3-embeddable bridge (attached only to two vertices),
and for every embedding of such a bridge we use Lemma 3.1. The combination of B0 ∪ Ω′

with all obtained obstructions will be a final corner obstruction.

To apply Lemma 4.4, we will use the following obvious result.

Lemma 4.5 Let F be a 2-singular face and B a set of K-bridges simple embedded in F
such that we get at most 1-singular faces. Then B contains path(s) that are embedded as
requested in Lemma 4.4. Moreover, such path(s) can be found in linear time.

5 Weak 2-singularity

Suppose thatK ⊆ G is 2-cell embedded in some surface. A face F of K is weakly 2-singular ,
if it contains on its border a singular branch, say e, and a singular main vertex x which
is not an endpoint of e and appears on ∂F exactly twice. Moreover, it is required that
there are no other singular vertices or branches on ∂F (see Figure 4). A face F is at most
weakly 2-singular if every vertex appears on ∂F at most twice, and there are a branch e
and a vertex x on ∂F that contain all singular vertices and edges of ∂F . (This also includes
at most 1-singular faces.)

Figure 4: A weakly 2-singular face.

Lemma 5.1 Let F be a 2-singular face of 2-cell embedded subgraph K of G and let B be
a set of K-bridges in G. Suppose that the singular pieces of F , branches e and f , appear
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on ∂F in interlaced order e, f, e−, f−. Let P1, P2 be paths embedded in F as shown in Figure
4. Suppose that all bridges in B are of bounded size (including those containing P1, P2).
Suppose also that there are no local K-bridges in G. Then there is a linear time algorithm
that either finds a simple embedding of B in F extending the embedding of K ∪ P1 ∪ P2, or
discovers a nice obstruction for such embedding extensions.

Remark. Paths P1, P2 in Figure 4 are attached to distinct vertices y1, y2 (respectively)
on f and to vertex x on e such that P1 ∪ P2 leaves weakly 2-singular face. Note that y1
is closer to the upper appearance of e than y2. As in Lemma 4.5, paths P1 and P2 with
these properties can be found (in linear time) whenever a set of bridges simple embedded
in a 2-singular face leaves a weakly 2-singular subface.

Proof. Let B0 be the union of bridges that contain P1 and P2. If simple embedding of B0

extending the embedding of P1 ∪P2 is at most 1-singular, we apply Lemma 4.4. Otherwise,
let B1 ⊆ B\B0 be the set of bridges that are attached to e only at x and have an attachment
on f that is above y2 (possibly at y2). Similarly, let B2 ⊆ B \ (B0 ∪B1) be the set of bridges
attached to f only at y1 and attached to e only to the left of x (including x). Note that every
other bridge has at most two simple embeddings extending the embedding of B0. First, we
try to embed B such that no bridge from B1 is upper-embedded and no bridge from B2 is
attached to the right appearance of y1. To solve this problem, we can apply Lemma 3.1.
Let Ω1 be the obtained obstruction. We claim that every simple embedding of B0 ∪ Ω1

extending the embedding of B0 is at most 1-singular. Clearly, every such embedding has
either a bridge B1 ∈ B1 that is upper-embedded, or a bridge B2 ∈ B2 that is attached to
the right. In the latter case, B2∪P1 obviously leaves at most 1-singular faces. In the former
case, if the embedding of B0 ∪ Ω1 is not at most 1-singular, then there is a face containing
two appearances of x. Hence, the upper-embedded bridges from Ω1 attached to e only at x
can all be re-embedded into lower-embedding. This gives a “forbidden” embedding of Ω1,
which is a contradiction.

By the above claim we can use Lemma 4.4 to get nice corner obstructions (or an embed-
ding) for each simple embedding of B0 ∪ Ω1. Their combination is a required obstruction.

6 Simple embeddings

Let K be a subgraph of G such that no K-bridge in G is local. Suppose that K is 2-cell
embedded in some surface such that there is a face F of K with singular branches e and f
which appear on ∂F interlaced: e, f , e−, f−, the second time in the opposite direction.
Let B be a set of K-bridges in G and let Q =

⋃ {B | B ∈ B}. In this section we describe
an algorithm which decides if it is possible to embed all members of B in F such that every
bridge has a simple embedding.

Let ∂F = aebfce−df−. The open segments a, b, c, d of ∂F are assumed to be non-
singular and pairwise disjoint. The segments α = f−ae, β = ebf , γ = fce−, and δ = e−df−

are called the corners of F (see Figure 5). We say that a bridge B ∈ B is (simple) embedded
in the corner α if it is embedded in F so that it is attached only to the appearances of e
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and f that participate in α. Note that this does not exclude B being attached to segments
b, c, or d. Simple embeddings in other corners are defined analogously.

Theorem 6.1 Let G, K, F , B, and Q be as above. There is a linear time algorithm that
either finds a simple embedding extension of K to K ∪ Q in F , or returns a nice corner
obstruction Ω ⊆ Q for such embedding extensions.

Proof. First of all, we determine for each of the bridges B ∈ B all of its simple embeddings
in F . If B ∈ B has no simple embedding in F , then Ω = B can be taken as a corner
obstruction of bounded size (Lemma 2.1). From now on we will assume that every B ∈ B
admits a simple embedding and that the list of admissible corners is determined. Recall
that, according to Lemma 2.1, all bridges are of bounded size.

Figure 5: 2-singular face of K.

Suppose that there is a bridge B ∈ B attached to a vertex of a and to a vertex of c.
Then every simple embedding of B removes the singularity of F . By applying Lemma 4.4
we either obtain a simple embedding, or we get a required nice obstruction. Similarly, when
there is a bridge B ∈ B attached to a and b. Of course, the same method applies for bridges
joining b and d, or b and c, etc. From now on we may assume that there are no bridges
attached to two of the segments among a, b, c, or d.

Next, try to embed all bridges attached to a into the corner α, and similarly the bridges
at b, c, d into their corners β, γ, δ, respectively. We can use planarity testing to get such
an embedding (for all corners simultaneously). If the test fails, we get an obstruction Ω′ of
bounded size such that every embedding of Ω′ in F contains a K-bridge B in K ∪Ω′ which
is not embedded in its corresponding corner. We may assume that B is attached to a.
Let P be a path from a to an attachment of B which is not in the corner α. Apply Lemma
4.4 to get a simple embedding or a corner obstruction for extending the embedding of Ω′.
Finally, the union of obtained obstructions (for different embeddings of Ω′) completes our
task.

We may henceforth assume that the above planarity test was successful. Throughout
the following steps, the bridges in B will be divided into three classes:

(a) embedded bridges,
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(b) labeled bridges,

(c) bridges that have not yet been processed by the algorithm.

Bridges of particular classes will satisfy some additional properties. Each of the bridges
in the above classes (a) and (b) has been assigned to a corner (α, β, γ, or δ) in which it is
supposed to be (simple) embedded. All embedded bridges can be simultaneously embedded
in their corresponding corners. Let ae be the segment on ∂F containing a and the part of
the singular branch e from a to the “rightmost” attachment on e of embedded bridges in
the corner α. Similarly, let af be the segment of f from the “uppermost” attachment on f
(of bridges of class (a) embedded in the corner α) to a together with a. If a bridge B ∈ B
has an attachment in the interior of the segment ae, then it is either embedded in the
corner α, or it is a bridge of class (a) or (b) assigned to δ. Similarly, bridges attached in
the interior of af are either embedded in α, embedded in β, or labeled and assigned to β.
During the algorithm, the similar property will hold also for the corners β, γ, and δ. It
is a simple consequence of these requirements that no bridge of class (c) interferes with
already embedded bridges. Note also that a bridge attached to the interiors of both ae

and af is already embedded (i.e., of class (a)). Some bridges assigned to a corner, say α,
can also be embedded in a corner different than α. However, every such embedding together
with the embedded bridges leaves at most 1-singularity of F .

Furthermore, every labeled bridge has been labeled because of some of the requirements
given above. For example, if B is a labeled bridge assigned to β, then it has an attachment
in the interior of af or in the interior of ce (corresponding to the corner γ). Properties
of labeled bridges given above imply that no labeled bridge assigned to a corner, say α,
interferes with the already embedded bridges in α.

Bridges attached to a, b, c, or d have been (simple) embedded in their corresponding
corners. Initially, these bridges are of class (a) (i.e., they are considered as embedded). This
defines the segments ae, af , be, bf , etc., and all remaining bridges attached to interiors of
these intervals are labeled and assigned to appropriate corners. It may happen that some
bridge would be assigned to two different corners. In such a case, we proceed as in Cycling
procedure when the planarity testing fails, with Ω′ being one of the bridges assigned to
two corners (and i = 2). Otherwise, every labeled bridge is assigned to exactly one of the
corners. It is easy to see that in this case no labeled bridge, if embedded in its corner,
interferes with any of the embedded bridges. (But it may interfere with some other labeled
bridges.) All other bridges of B are unlabeled (of class (c)). At this point we also define
B1 as follows. Consider bridges of class (a) embedded in their corners, and let B1 be the
set of those bridges which are attached to e or to f and have at least one of their edges on
the boundary of the “central” subface of F . Note that B1 contains at most 8 bridges (see
Figure 6). If none of the bridges is attached to the interior of a, b, c, or d then classes (a)
and (b) remain empty and the subgraph B1 is undefined.

The algorithm will in a general step choose one of the corners, say α, and try to embed
all labeled bridges assigned to α in this corner. If successful, the segments ae and af will be
updated and some bridges of class (c) will become labeled and assigned to corners β or δ.
If not successful, or if the already embedded bridges (including the new ones) leave at most
1-singularity, we will be able to construct a nice corner obstruction Ω0 with the property
that any simple embedding of Ω0 in F is at most 1-singular. If none of such embeddings

13



Figure 6: An example of B1 composed of four bridges.

of Ω0 can be extended to a simple embedding of K∪Q, then we will get the required corner
obstruction.

We let i = 2 and proceed with the Cycling procedure explained below.
Cycling procedure. Let us now give the details of the general step. At the ith step, the

next corner from the circular sequence α, γ, β, δ, is selected. We assume that in the selected
corner there is at least one labeled bridge. Otherwise, we select the next corner. (In this
case, we do not increment the step counter i in order that the bridges Bi are always defined.
If none of the corners contains labeled bridges, we stop this procedure and continue with the
part called Harmless embedding that is explained below.) Suppose that the selected corner
is α. We take all labeled bridges in this corner and try to embed them simultaneously
in α using Lemma 4.2. If the test fails, we find an obstruction Ω′ consisting of one or
two bridges. For every simple embedding of Ω′ extending the embeddings of bridges of
class (a), Ω′ leaves at most 1-singularity in F . Applying Lemma 5.1 or Lemma 4.4 on
bridges of classes (b) and (c) we either get a simple embedding extension, or get a nice
obstruction Ω′′ for embedding extensions. (In applying Lemma 5.1, or Lemma 4.4, already
embedded bridges define the boundary of the face F , while the path P is a part of a bridge
in Ω′.) The union Bi of Ω′ and these obstructions (for different embeddings of Ω′) has
the property that the original simple embedding of B1 ∪ · · · ∪ Bi−1 cannot be extended to
a simple embedding of B1 ∪ · · · ∪ Bi−1 ∪ Bi. In this case we proceed with the part of the
algorithm called Obstruction compression described in the sequel.

Otherwise, the obtained simple embedding of labeled bridges in α is used as follows.
These bridges become unlabeled and embedded in the corner α. Also, the “outermost”
bridge is denoted by Bi. According to the change of ae and af , we get new labeled bridges
assigned to the corners β and δ. Then we increment the counter i. If some bridge is
attempted to be assigned to two corners (including labeled bridges assigned to a different
corner than previously), we take the offending bridge as Ω′. Then we proceed as above
(obtain Bi and continue with Obstruction compression). Another possibility is when B1 ∪
· · · ∪Bi−1 removes the 2-singularity. In this case we try to extend the obtained embedding
to K∪Q by using Lemma 5.1 or Lemma 4.4. We may assume that a nice corner obstruction
is obtained. Denote it by Bi and proceed with Obstruction compression. If none of the
above cases occurs, we return to the beginning of the Cycling procedure. It is easy to see
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that the amount of time spent by the Cycling procedure is linear in the number of bridges
that it embeds or labels.

Harmless embedding. We reach this case when there are no labeled bridges left. Denote
by B0 the embedded bridges. The bridges in B0 embedded in their corresponding corners do
not interfere with any of the remaining bridges, and they can be simultaneously embedded
in their corners. Thus, it is clear that the embedding of K can be extended to a simple
embedding of K ∪ Q if and only if the embedding of K can be extended to a simple
embedding of K ∪ Q′, where Q′ :=

⋃{B | B ∈ B \ B0}. Therefore, we may repeat the
above procedure with the smaller set of bridges B′ := B \ B0. There is a slight difference,
though. Now we do not have any bridges attached to the interiors of a, b, c, or d. (It
may happen that we have this situation from the very beginning in which case the first
traversal of the Cycling procedure was void.) If B′ = ∅ then we have a simple embedding.
Otherwise, let B1 be a bridge in B′. If possible, we choose B1 so that it has at least three
vertices of attachment. The bridge B1 has at most four different simple embeddings. For
each of them, we will repeat the following procedure. Let us consider the case when B1 will
be embedded into the corner α. Define ae and af as before. We label and assign to the
corner α all bridges of B′ that are attached to an interior point of ae and to an interior point
of af . In addition, we also label all bridges that have all vertices of attachment in ae ∪ af

(boundary vertices included). Using planarity testing (Lemma 4.2), we check if all labeled
bridges (including B1) can be simultaneously embedded in α. If so, then we repeat Cycling
procedure on the set B′ starting with i = 1, where none of the bridges is embedded, and the
labeled bridges are selected as above and assigned to the chosen corner α.

The above planarity test may have failed. In this case we get an obstruction Ω′ consisting
of one or two bridges. It is easy to see that no simple embedding of B1∪Ω′ with B1 in α is 2-
singular. For every such simple embedding of B1∪Ω′ we apply Lemma 5.1 (or Lemma 4.4).
We either get a simple embedding extension fromK toK∪Q′ (and hence also an embedding
extension to K ∪Q), in which case we are done, or we find a nice obstruction Ω′′ for simple
embeddings of B′ under the condition that B1 ∪ Ω′ is embedded as selected in this case.
The union of all such obstructions Ω′′ for different embeddings of B1 ∪Ω′ is an obstruction
for simple embeddings of B′ under the condition that B1 is embedded in the corner α. We
get the same outcome for the other three corners in which B1 is chosen to be (simple)
embedded. Obtaining an embedding in any of those cases, we stop. Otherwise, the union
of obtained obstructions is a nice obstruction for all simple embedding extensions. Note
that in some cases, obstructions are reached in Cycling procedure. If they are “long”, the
resulting obstruction Ω∗ produced in Obstruction compression does not contain B1. In such
a case we do not need to combine Ω∗ with other three obstructions.

It remains to see how to implement the above procedure in linear time. The odd case
is when in one or more cases for the initial embedding of B1, we continue working with
Cycling procedure. It can happen that this procedure stops with Harmless embedding. In
that case we can embed some of the bridges and continue with the remaining bridges.
The danger lies in the fact that we might have spent linear amount of time for one of the
previous cases for the initial embedding of B1 that was not successful, and later embed only
a constant number of bridges. This can give overall quadratic time complexity. A solution
to this problem is as follows. We perform in parallel all four cases (for the selection of
the initial corner of B1) and stop all of them if Harmless embedding is reached in any of
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them. It turns out that this parallelism needs not to be used more than once at the same
time. Let us remark that parallelism used above can be implemented in the chosen model
of computation (RAM) without increasing time complexity (see [5] for more details).

Obstruction compression. Let k := i (where i is the step counter in Cycling procedure).
Recall that we have a sequence B1, B2, . . . , Bk and for each j = 2, 3 . . . , k − 1, the bridge
Bj is embedded in the corresponding corner αj . (If B1 is obtained in the part Harmless
embedding, then also α1 is well defined. Otherwise, B1 can be composed of several bridges.
To unify presentation, we say also in this case that B1 is in α1 if the bridges in B1 are
embedded as chosen by the algorithm.) Moreover, the embedding of B1 ∪ · · · ∪ Bk−2 still
has a 2-singular face and the embedding of B1 ∪ · · · ∪Bk−1 cannot be extended to a simple
embedding of B1 ∪ · · · ∪ Bk−1 ∪ Bk. Our goal is to find a nice obstruction Ω with the
property that there is no simple embedding of Ω with B1 in α1 (if B1 ⊆ Ω). If k ≤ 15,
let L = B1 ∪ · · · ∪Bk. By the above, every simple embedding of L which has B1 in α1 is at
most 1-singular. Thus, L contains path(s) as required in Lemma 4.4. Applying this lemma
we either stop by finding an embedding extension, or get a nice obstruction for extending
the chosen embedding of L. The combination of obstructions for all possible embeddings
of L is the required obstruction Ω. The non-trivial case is when k > 15. In this case we
will obtain Ω as described below.

In the sequel we will use the following notation. We write (Bi, αi) → (Bj , αj) if every
simple embedding of Bi∪Bj with Bi embedded in αi and Bj embedded in a corner distinct
from αj is at most 1-singular. (Since Bi is embeddable in αi by construction, this implies
that Bj is attached to a vertex that is “covered” by Bi in the corner αi.) Note that for
every j, 2 ≤ j ≤ k − 1, there is an i < j such that (Bi, αi) → (Bj , αj). Moreover, i ≥ j − 3
because of our “cycling” choice of corners in Cycling procedure. We will occasionally use
the following obvious fact: if (Bi, αi) → (Bj , αj) and for l ≥ i we have αl = αi, then
(Bl, αl) → (Bj, αj). Let Θ = {Bk−14, Bk−13, . . . , Bk−2}. Since k > 15, every bridge in Θ is
attached only to e and f , and as there are no local bridges, it is indeed attached to both
branches. We distinguish two cases.

Case (A): There are indices i and j, k−14 ≤ i < j ≤ k−3, such that (Bi, αi) → (Bj , αj)
and (Bj , αj) → (Bi, αi). Then j − i ≤ 3. Note that αi and αj are adjacent corners.
Bridges Bi ∪Bj have three classes of simple embeddings as listed below. Other possibilities
are excluded since j < k− 1, and thus Bi, Bj embedded in their corners do not remove the
2-singularity. The classes of simple embeddings are:

(i) Embeddings where Bi∪Bj leaves at most 1-singularity of F . For every such possibility
we use algorithms of Section 4 to check if this embedding can be extended. If we
succeed, then we are done. Otherwise we get an obstruction for embedding extensions.
Denote by Ω1 the union of obtained obstructions for all such embeddings of Bi ∪Bj .

(ii) Assuming that αi = α, αj = β, the bridges Bi and Bj are embedded in corners δ and
γ, respectively (see Figure 7).

Let yi be the vertex of attachment of Bi on f that is as close to a as possible. Define
similarly yj . Let y be the lower of yi, yj, and let fy be the segment of f from a
to y. The segment fy of f remains singular after the embedding of Bi and Bj . The
bridges By ofK attached to fy (including y) can all be simultaneously embedded under
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Figure 7: An embedding in Case (A)(ii).

the bridges Bi and Bj with respect to their embeddings in α and β, respectively. This
is easy to see since (Bi, α) → (Bj , β), i < j < k − 1, and since we have not reached
a contradiction when considering Bi and Bj . Thus, if a simple embedding of some
bridge B �∈ By is obstructed by bridges in By embedded in their corners, it is also
obstructed by the chosen embeddings of Bi in δ and Bj in γ. Therefore, we may
assume without loss of generality that all bridges from By are embedded in the corners
α and β as determined by Cycling procedure. Therefore we have essentially removed
2-singularity. Using the algorithms of Section 4, we either get a simple embedding
extension, or we get a nice corner obstruction Ω2 for such extensions.

(iii) Embedding where Bi is in αi and Bj is in αj . We are going to show how to obtain
a nice corner obstruction Ω ⊇ Bi∪Bj ∪Bj+1 such that under every simple embedding
of Ω extending the embedding of Bi ∪Bj, either Bj+1 is embedded in its corner αj+1,
or the 2-singularity is removed. Consider a simple embedding of Bj+1 extending the
embedding of Bi∪Bj. Clearly, αj+1 �= αj. Suppose that αi = α and that αj = β. Let
r ≤ j be the largest index such that (Br, αr) → (Bj+1, αj+1). If i = r or j = r, then
we can take Ω = Bi ∪Bj ∪Bj+1. (Similarly if r = 1.) Otherwise, we will consider the
three possibilities for αj+1.

— If αj+1 = γ, then r ≥ j − 2. Since j + 1 ≤ k − 2, one can show that αr ∈ {β, δ}.
If αr = β, then r = j. The next case is when αr = δ. If (Bi, αi) → (Br, αr), then Br is
either embedded in αr, or 2-singularity is removed. Consequently, the same conclusion
applies to Bj+1, whenever Br is in αr. Thus, one can take Ω = Bi ∪Bj ∪Br ∪Bj+1.
The only other possibility is that (Bj+1, αj+1) → (Br, αr). In this case Br and Bj+1

are in the same relation as Bi and Bj . For their embeddings we also have cases (i)–
(iii). For (i) and (ii) we already know what to do. (It is easy to verify that (i) and
(ii) are valid for this case even though it can happen that j+1 = k− 2.) In case (iii),
Bj+1 is embedded in αj+1 as required. These three cases yield a nice obstruction Ω
such that every simple embedding of Ω has Bj+1 embedded in αj+1.

— Another possibility is αj+1 = δ. This case is similar to the above.

— The remaining choice is αj+1 = α. We may assume that αr = δ. (If αr = β,
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then also (Bj , αj) → (Bj+1, αj+1).) If (Bi, αi) → (Br, αr), then we are done again
since (Br, αr) → (Bj+1, αj+1). Otherwise, (Bs, αs) → (Br, αr), where r − 3 ≤ s < r
and αs = γ. (Similarly if s = 1.) We conclude as above.

Having Ω, we may consider only simple embeddings where Bi, Bj , Bj+1 are in their
corners. We intend to extend Ω in such a way that Bj+2 ⊆ Ω and every simple
embedding of Ω with Bi in αi, Bj in αj has Bj+2 in αj+2, or the 2-singularity is
removed. If (Bt, αt) → (Bj+2, αj+2) for some t ∈ {i, j, j+1}, we are done. Otherwise,
we have t = j − 1 and i ∈ {j − 3, j − 2}.
If i = j − 2, then αj−1 �= αi, αj . By our assumptions, αi = α, αj = β. Let
s < j − 1 be the largest index such that (Bs, αs) → (Bj−1, αj−1). If αs ∈ {αi, αj},
then either (Bi, αi) → (Bj−1, αj−1) or (Bj , αj) → (Bj−1, αj−1) (and we are done by
adding Bj−1 and Bj+2 to Ω). Otherwise, {αs, αj−1} = {γ, δ}. If Bs has been forced
in αs from α or β, then (Bi, αi) or (Bj , αj) also “implies” (Bs, αs) and we can stop
with Ω extended by Bs, Bj−1 and Bj+2. Same if s = 1. In the remaining case, we
have (Bj−1, αj−1) → (Bs, αs). These two pairs thus “imply” each other and by the
same conclusions as above we get an obstruction Ω̃ ⊃ Bs ∪ Bj−1 such that every
simple embedding of Ω̃ either removes the 2-singularity, or has Bs, Bj−1 embedded in
their corners. Note that only parts (i) and (ii) of Case (A) are used for this purpose,
since in (iii) we have the two bridges in the desired corners. Finally, we extend Ω by
adding Ω̃.

Suppose now that i = j − 3. Clearly, αj−1 �= αj = β. Since (Bi, αi) → (Bj, αj) and
since bridges are enumerated when their corner is considered, we have αj−1 �= αi = α.
Thus αj−1 ∈ {γ, δ}. By the same arguments as above, we get (Bs, αs) → (Bj−1, αj−1)
with {αs, αj−1} = {γ, δ} and conclude in the same way.

Now, that we have three consecutive bridges Bj , Bj+1, Bj+2 embedded in their re-
spective corners, all the subsequent bridges Bj+3, . . . , Bk−1 also go into their corners
(or we get at most 1-singularity).

Let Ω′ = Ω∪Bj+2∪· · ·∪Bk−1∪Bk. Embeddings of Ω′ with Bi, Bj embedded in their
corners are at most 1-singular. Thus, we get a nice obstruction (or we get a simple
embedding of K ∪Q) for each such embedding by the results of Section 4. Let Ω3 be
the union of these obstructions.

Finally, let Ω be the union of Ω1, Ω2, and Ω3. It is clear that Ω is a nice obstruction
for simple embedding extensions from K to K ∪ Q (under the condition that B1 is in α1

if B1 ⊆ Ω).
Case (B): Suppose now that among Bk−14, . . . , Bk−3 no two bridges “imply” each other.

Then we claim that there is a subsequence of Bk−14, . . . , Bk−2, say Q1, Q2, Q3, Q4, with
the following property. If βi is the corner of Qi, i = 1, 2, 3, 4, then (Q1, β1) → (Q2, β2) →
(Q3, β3) → (Q4, β4) → (Q1, β1). Let (Q4, β4) := (Bk−3, αk−3). Then for some i ≥ (k−3)−3,
(Bi, αi) → (Q4, β4). Let (Q3, β3) := (Bi, αi). Similarly, we have (B�, α�) → (Bi, αi) for
some ,, i > , ≥ (k − 3) − 6. By excluding the possibility of (Bk−3, αk−3) → (Bi, αi),
we have α� �= αk−3. Let (Q2, β2) := (B�, α�). Note that β2, β3, β4 are distinct corners.
Similarly, we get Q1 := Bj in the fourth corner, β1 �= β2, β3, β4. Let (Q0, β0) = (Bs, αs)
where s < j is the largest index such that (Bs, αs) → (Bj, αj). Since our Cycling procedure
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takes corners in the cycling sequence α, γ, β, δ, the difference i − , can be equal to 3 only
if (β2, β3) = (α, δ) or (β2, β3) = (β, γ). Extending this argument to other differences
and noting that β0, β1, β2, β3, β4 are consecutive corners, we see that (k − 3) − j ≤ 8.
Since k > 15 and by excluding Case (A), we have β0 = β4. As (Q0, β4) → (Q1, β1), we
also have (Q4, β4) → (Q1, β1), and the claim is proved.

Consider the simple embeddings of Q1∪Q2∪Q3∪Q4 in F . By their property of cyclically
“implying” each other, all embeddings where at least one of these bridges is in its corner,
are either at most 1-singular, or all of them are in their corners. The former possibilities
are handled by algorithms of Section 4. We may assume that in each case we get a nice
obstruction. (Having an embedding extension, we can stop.) The other case is when Q1,
Q2, Q3, Q4 are in their corners. Recall that Q1 = Bj and consider the bridge Bj+1.
Since (Br, αr) → (Bj+1, αj+1) for some r ≤ j, we also have (Qt, βt) → (Bj+1, αj+1)
for some t ∈ {1, 2, 3, 4}. Thus, every simple embedding of Bj+1 extending the chosen
embedding of Q1, Q2, Q3, Q4 either leaves at most 1-singularity, or has Bj+1 in αj+1.
Similarly for Bj+2, . . . , Bk−1.

It is easy to see that if none of Q1, Q2, Q3, Q4 is in its corner, then the 2-singularity is
removed. We either embed the remaining bridges (Section 4), or we get a nice obstruction for
simple embedding extensions. Recall that extensions of simple embedding of Bj, . . . , Bk−1

(each in its corner) are obstructed by Bk. We let Ω be the union of Bj ∪ Bj+1 ∪ · · · ∪
Bk−1 ∪ Bk together with all nice obstructions obtained above for the simple embeddings
of Bj , . . . , Bk−2 where at least one of these bridges is not in its corner. It is clear that Ω is
an obstruction for simple embeddings.

One can easily see that the presented proof yields an algorithm with linear time com-
plexity.

Theorem 6.1 has a “weaker” version: Suppose that the assumptions of Theorem 6.1 are
satisfied. There is a linear time algorithm that either finds an embedding extension (possibly
not simple) of K to K ∪ Q, or returns a nice obstruction Ω ⊆ Q for simple embeddings,
i.e., Ω has no simple embedding in F . This version is easier to implement and may be
sufficiently strong for some applications. The algorithm follows the proof of Theorem 6.1
except that applications of Lemmas 4.3 and 4.4 are replaced by their “weaker” versions
(with simpler algorithms), where we allow to return embeddings that are not simple.

Remark. Nice obstructions produced by our corner algorithm have bounded size up to
a bounded number of millipedes that they may contain. Millipedes can occur every time
a subset of bridges removes 2-singularity and the algorithms of Section 4 or 5 are applied to
get an obstruction for the corresponding simple embedding extension problem. However, if
we have two millipedes based on the same branch e or f , they can be replaced by a single
millipede together with a bounded number of additional bridges without loosing obstructing
properties. Consequently, every nice obstruction can be changed in a corner obstruction
which contains at most two millipedes. Moreover, this can be done in linear time.
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7 Obtaining a small obstruction

Theorem 6.1 gives a nice obstruction Ω for simple embedding extensions in a 2-singular
face. One can easily reduce Ω (in linear time) into an obstruction which is minimal in
the sense that no K-bridge B participating in Ω is redundant (i.e., Ω\B admits a simple
embedding).

Although minimal, Ω can be arbitrarily large. From the algorithmic point of view,
obstructions of bounded size are more convenient. For example, in [9] we need obstructions
of bounded size, but we allow K to be changed. The proof of Theorem 7.1 below describes
how this can be achieved in linear time.

Let W0 be a set of vertices of K. A subgraph K ′ of G is called a relative of K with
respect to W0 if the following holds:

(a) K ′ is homeomorphic to K and is obtained from K by replacing e and f by new
branches e′ and f ′, respectively, joining the same main vertices.

(b) All vertices of W0 ∩ e (respectively W0 ∩ f) and all their neighbors on e (f) appear
on e′ (f ′) in the same order as they appear on e (f).

Theorem 7.1 Let G, K, F , B, and Q be as in Theorem 6.1. Suppose that Q has no simple
embedding in F . There is a function c : N → N such that the following holds. If W0 is a set
of vertices of K, then there is a relative K ′ of K with respect to W0 such that the modified
embedding extension problem admits an obstruction Ω0 of branch size b(Ω0) ≤ c(|W0|).
Moreover, there is an algorithm of time complexity O(c(|W0|) |V (G)|) that finds K ′ and
Ω0.

Proof. Applying Theorem 6.1 we get a nice obstruction Ω for simple extensions. Replace
the bridges in Ω that correspond to squashed millipedes by the original millipedes. Suppose
that Ω contains a millipede M = B◦

0 ∪ · · · ∪ B◦
m based on e. We may assume that M has

been squashed using (SQ1).
Assume first that W0 ∩ e = ∅. We will use the notation introduced in Section 2. Recall

that M is composed of B�, Br and at most two additional bridges that are attached to both
sides of F . We will change e into a branch e′ contained in e∪B� such that the corresponding
embedding of the new graph K ′ = K − e + e′ admits a corner obstruction that coincides
with Ω outside B� and such that B� is replaced by at most four K ′-bridges. If |B�| < 4,
then no change of K is required. Otherwise, we have I =

⋂

i=1,2
(l′i, r′i) ⊆ e (cf. Section 2 for

details). Note that B� has exactly two simple embeddings in F . For every bridge B◦
i ∈ B�,

let Pi be a path in Bi joining li and ri (the leftmost and the rightmost vertex of attachment
of B◦

i on e, respectively). Select j such that B◦
j ∈ B� and lj is equal to the left endpoint

of I. Moreover, let k be the largest index such that B◦
k ∈ B� is attached entirely to I and

is embedded in the same way as B◦
j . Now replace the segment of I between lj and rk by

the paths Pj , Pj+2, . . . , Pk joined together by the segments (rj , lj+2), . . . , (rk−2, lk) of I.
Applying this change of I, all bridges in B� attached to I and embedded differently

than B◦
j merge into a single bridge B. Now a new corner obstruction of bounded size can

be obtained as follows. Instead of B we take its subgraph B̃ (see Lemma 2.1), and instead
of all bridges B◦

j ,. . . ,B
◦
k we take just B◦

j \ Pj and B◦
k \ Pk. This way, B� is replaced by at
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most four bridges. This construction and (SQ1) imply that Ω \ B� together with these four
bridges form a corner obstruction equivalent to Ω.

If W0 ∩ e �= ∅, we perform the same operation as described above on each segment σ
of e−W0, considering only those bridges of B� whose attachments to e are contained in σ.
The final number of bridges left from B� is O(|W0|).

Applying the same changes to Br and then also to other millipedes contained in Ω, we
obtain a relative of K and a desired corner obstruction of bounded size.
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