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1. INTRODUCTION

Cutting along curves is the basic tool for working with topological surfaces. When
the surface is equipped with a metric, the surgery is typically made along shortest
non-trivial cycles, where non-trivial may mean non-contractible or (surface) non-
separating, depending on the application. Here, we are interested in cycles with a
different property: a cycle is tight if it is shortest in its free homotopy type. Note
that a shortest non-trivial cycle is going to be tight, but the converse does not hold.

We are interested in the algorithmic aspects of finding a tight, non-trivial cycle.
Like most previous algorithmical works concerning curves on surfaces [Cabello and
Chambers 2007; Cabello and Mohar 2007; Chambers et al. 2006; Colin de Verdière
and Erickson 2006; É. Colin de Verdière and F. Lazarus 2004; 2005; Eppstein
2003; Erickson and Har-Peled 2004; Erickson and Whittlesey 2005; Kutz 2006], we
consider the combinatorial surface model. A combinatorial surface M is an edge-
weighted multigraph G embedded on a surface, and only curves arising from walks
in G are considered. The length of a path is the sum of the weights of its edges,
counted with multiplicity. The complexity of a combinatorial surface, denoted by
n, is the sum of the number of its vertices, edges, and faces.

The theory of graphs embedded on surfaces, a natural generalization of the theory
of planar graphs, is a very active research area. See the monograph [Mohar and
Thomassen 2001] for an introduction. Algorithmical aspects of topological graph
theory are also playing an important role in several graph problems. See for example
the recent linear-time algorithm of Kawarabayashi and Reed [2007] for testing if a
given graph has bounded crossing number.

The main result of this paper is an algorithm to compute a tight, surface non-
separating cycle on an orientable combinatorial surface in O(n log n) time. The
best previous solution to the problem of finding a tight, non-trivial cycle was to
compute the globally shortest non-trivial cycle, which can be done in O(n2 log n)
time with an algorithm by Erickson and Har-Peled [2004] or in O(g3n log n) time
with an algorithm by Cabello and Chambers [2007]. (See [Cabello and Mohar 2007;
Kutz 2006] for other relevant results.)

This new algorithm has the following implications:

— In the approach of [Colin de Verdière and Erickson 2006] for finding shortest
curves homotopic to a given one, the bottleneck of the preprocessing part was to
find a tight, non-trivial cycle. With our result, we can speed up their preprocessing
from O(min{g3, n}n logn) to O(gn log n).

— We can compute the shortest cycle (freely) homotopic to a given boundary
component in O(n log n) time. The previous best algorithm [Colin de Verdière and
Erickson 2006] used O(gn log n) time.

— We can compute a shortest contractible cycle that encloses a non-empty set
of faces in O(n log2 n) time.

— We show that a subquadratic algorithm to find a shortest non-contractible
cycle would imply a subquadratic algorithm to compute the girth of any sparse
graph G(V, E) with |E| = O(|V |).

— In topological graph theory, several of the proofs based on cutting along short-
est non-trivial cycles carry out if instead we cut along a tight, non-trivial cycle.
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Thus, algorithmic counterparts of several basic theorems can be improved with our
new result.

2. BACKGROUND

Surfaces. We summarize some basic concepts of topology. See [Hatcher 2001;
Massey 1967; Stillwell 1993] for a comprehensive treatment.

A (topological) surface (or 2-manifold) Σ is a compact topological space where
each point has a neighbourhood homeomorphic to the plane or to a closed halfplane.
A boundary point in Σ is a point with the property that no neighbourhood is
homeomorphic to the plane. The boundary of Σ is the union of all boundary points,
and it is known to consist of a finite number (possibly 0) of connected components,
each component homeomorphic to a circle. The surface is non-orientable if it
contains a subset homeomorphic to the Möbius band, and orientable otherwise.
An orientable surface is homeomorphic to a sphere with a number g ≥ 0 of handles
attached to it and a number b ≥ 0 of disjoint open disks removed, for a unique
pair g, b ≥ 0. A non-orientable surface is homeomorphic to the connected sum of g

projective planes and a number b ≥ 0 of disjoint open disks removed, for a unique
pair g, b ≥ 0. In both cases, g is the genus of the surface and b is the number of
boundary components.

A path in Σ is a continuous mapping p : [0, 1] → Σ, a cycle is a continuous
mapping γ : S

1 → Σ, a loop with basepoint x is a path such that x = p(0) = p(1),
and an arc is a path whose endpoints are on the boundary. Curve is a generic
term used for paths, cycles, arcs, and loops. A curve is simple when the mapping
is injective, except for the common endpoint in the case of loops.

Two paths or arcs p, q with p(0) = q(0) and p(1) = q(1) are homotopic if there
is a continuous function h : [0, 1]2 → Σ such that p(·) = h(0, ·), q(·) = h(1, ·),
h(·, 0) = p(0), and h(·, 1) = p(1). Two cycles α, β are (freely) homotopic if there is
a continuous function g : [0, 1] × S

1 → Σ such that α(·) = g(0, ·) and β(·) = g(1, ·).
Simple curves are typically identified with their image because, up to reversal of
the parameterization, any two parameterizations with the same image correspond
to homotopic curves.

A cycle is contractible if it is homotopic to the constant loop. Cutting along
a simple contractible cycle gives two connected components, and one of them is
a topological disk. A simple cycle α is non-separating if cutting the surface along
(the image of) α gives rise to a unique connected component. Non-separating cycles
are non-contractible, while contractible cycles are separating. Being contractible or
separating is a property invariant under homotopy of cycles.

We use the notation Σ α to denote the surface obtained after cutting Σ along a
simple curve α. Points along the curve α become boundary points in Σ α. Contrary
to what is common in topological graph theory, we do not paste disks to the new
boundary components, unless explicitly mentioned. We denote by Σ (α1, . . . , αk)
the surface obtained inductively as (Σ (α1, . . . , αk−1)) αk.

Combinatorial surface. Most of our results will be phrased in the combinatorial
surface model. This model is dual to the cross-metric surface model; see [Colin
de Verdière and Erickson 2006] for a discussion. A combinatorial surface M is a
surface Σ(M) together with a multigraph G(M) embedded on Σ(M) so that each
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simple non-simple

Fig. 1. Example to clarify the concept of essentially simple curve. Depending on how the walk
behaves inside the disk the curve is essentially simple or not.

face of G is a topological disk. The complexity of a combinatorial surface M is
defined as the sum of the number of vertices, edges, and faces of G(M). The genus
and the number of boundary components of M are those of Σ(M).

In the combinatorial surface model, we only consider curves that arise as walks
in G(M). Note that a cycle in a combinatorial surface corresponds to a closed walk
in G(M), possibly with repeated edges or vertices. The multiplicity of a curve α is
the maximum number of times that an edge appears in the graph-walk that defines
α. The complexity of a curve α is the number of edges, counted with multiplicity,
in the graph-walk that defines α.

A curve in a combinatorial surface is essentially simple when there is an infinites-
imal continuous perturbation in Σ that makes it simple. Note that an essentially
simple curve in a combinatorial surface may use the same edge multiple times. See
Figure 1. Figure 6(left) also contains an example of an essentially simple curve that
uses the same vertex twice. Two curves α and β in a combinatorial surface cross c

times if: (i) there exist infinitesimal continuous perturbations of α and β that cross
transversally c times; and (ii) any infinitesimal continuous perturbations of α and
β have at least c points in common.

We assume that the graph G(M) has positive edge-weights, which gives a “met-
ric” to the model. The length |α| of a curve α is defined as the sum of the weights
of the edges in the graph-walk that defines α, counted with multiplicity. A cycle or
an arc is tight if it is shortest in its homotopy class.

Families of curves. We say that two curves α, β include a bigon if there are
essentially simple subpaths pα ⊆ α and pβ ⊆ β with common endpoints such that
pα and pβ bound a topological disk.

A tight system of disjoint arcs in a combinatorial surface with boundary is a
family of essentially simple arcs α1, α2, . . . , αk such that

—no two distinct arcs αi, αj share an edge or cross;

—the arc αi is a tight arc in M (α1, . . . , αi−1).

A tight octagonal decomposition of a surface is the decomposition induced by a
family of essentially simple tight cycles α1, . . . , αk, where each vertex is adjacent
to at most two cycles and the boundary of each component in M (α1, . . . , αk) has
precisely 8 segments from the cycles α1, . . . , αk. Tight octagonal decompositions
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Fig. 2. Figure for Lemma 3.3. If α enters D, then β does not define a smallest cylinder D.

play a fundamental role in [Colin de Verdière and Erickson 2006] for computing
shortest curves homotopic to a given curve; we refer the reader to [Colin de Verdière
and Erickson 2006] for details.

3. TOOLBOX

We next list results that will be used in our proofs and algorithms.

Lemma 3.1 [Hass and Scott 1985]. Given two homotopic cycles α, β in an
orientable surface, if they have some common point, then they include a bigon.

Lemma 3.2 [Erickson and Har-Peled 2004]. For any given basepoint x in
a combinatorial surface, orientable or not, we can find in O(n log n) time a shortest
non-separating loop with basepoint x.

Lemma 3.3. Let M be a surface, orientable or not, with at least one boundary
component, let σ be one of its boundary components, and let α be a tight essentially
simple cycle or a tight essentially simple arc whose endpoints are not in σ. Every
tight cycle homotopic to σ in M α is also a tight cycle homotopic to σ in M.

Proof. Let β be a tight cycle in M homotopic to σ. Then σ and β bound a
cylinder D in M. We choose β such that D is smallest possible, i.e., no other tight
cycle homotopic to σ bounds a cylinder which is contained in D. We will show that
α is disjoint from the interior of D, which will then imply that β is also a tight
cycle in M′ = M α homotopic to σ. To see this, suppose that α enters D; see
Figure 2. Then α ∩ D contains an essentially simple path α′ whose endpoints x, y

are on β, and thus α and β include a bigon. Because of tightness of β and α, both
segments of this bigon have the same length, and we can replace the segment of β

with α′. The new curve is homotopic to σ and contradicts the minimality of D.
This completes the proof.

Lemma 3.4. Let M be a combinatorial surface, orientable or not, with complex-
ity n and exactly one boundary component σ. We can find in O(n log n) time a
tight system of disjoint arcs α1, . . . , αk such that M (α1, . . . , αk) is a topological
disk of complexity O(n).

Proof. Contract σ to a point pσ to obtain a combinatorial surface M′. Let
k = 2g if M is orientable and k = g if M is non-orientable, where g is the genus of
M. Consider in M′ a greedy system of loops `1, . . . , `k with basepoint pσ, defined
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pσ
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σ
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Fig. 3. Figure for Lemma 3.4. Left: Example for k = 4 showing T and e1, . . . , e4 as a compact
representation of the loops `1, . . . , `4. Right: The final tight system of disjoint arcs α1, . . . , α4

obtained in the example; the crossing between α2, α3 does not occur in the surface.

iteratively as follows: for each i, `i is a shortest loop ` with basepoint pσ such
that M′ (`1, . . . , `i−1, `) is connected. Erickson and Whittlesey [2005] describe an
algorithm to compute in O(n log n) time a compact representation of this greedy
system of loops `1, . . . , `k in O(n) space. The compact representation is given by a
shortest path tree T rooted at pσ and a collection of k edges e1, . . . , ek not contained
in T . In this representation, `i is the loop obtained by following the path in T from
pσ to an endpoint of ei, the edge ei, and the path in T from the other endpoint of
ei to pσ. See Figure 3 left. Note that each loop `i has multiplicity at most two.

Unmaking the contraction back to M, each loop `i becomes an arc βi in M with
endpoints at σ, and moreover M (β1, . . . , βk) is a topological disk. It follows from
the greediness of the construction that each βi is tight in M (β1, . . . , βi−1). Note
that an edge could appear in several curves βi. However, an arc βi intersects the
union β1 ∪ · · · ∪βi−1 in a connected subpath, namely in a subpath of T . Therefore,
assigning each edge to the curve βi with smallest index i where it appears, and
removing it from the rest of curves, we obtain a set of curves α1, . . . , αk that do not
share any edge. See Figure 3 right. Note that this operation can be done in O(n)
from the implicit representation of the greedy system of loops. After this operation,
each curve αi is an essentially simple tight arc in M (α1, . . . , αi−1). Since each
curve αi has multiplicity at most two and no two curves share an edge, the surface
M (α1, . . . , αk) is a topological disk of complexity O(n), as required.

Lemma 3.5. Let M be a combinatorial surface, orientable or not, with complex-
ity n and b ≥ 2 boundary components. We can find in O(n log n) time a tight
system of disjoint arcs β1, . . . , βb−1 such that M (β1, . . . , βb−1) has one boundary
and complexity O(n).

Proof. Let σ1, . . . , σb be the boundary cycles of M. We contract each σi to a
point pi, and find a shortest path tree T from p1. This can be done in O(n log n)
time. Let us re-index the points p2, . . . , pb so that no point pi appears in the subtree
of T rooted at pj for j < i; see Figure 4. Let πi denote the shortest path from p1
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Fig. 4. Figure for Lemma 3.5. Example showing the shortest path tree T from p1 to p2, . . . , pb

(left) and the paths β2, . . . , βb (right). The paths β7, β8 start at β5; we show the separation to
remark that β5, β7, β8 are pairwise edge-disjoint.

to pi contained in T . Each edge can appear in several paths πi, but we proceed
like in the proof of Lemma 3.4: we assign each edge to the path πi with smallest
index that contains it, and delete it from the rest. Let β2, . . . , βb be the paths
that are obtained. The curves β2, . . . , βb in the original surface M form a tight
system of disjoint arcs with the property that M (β2, . . . , βb) has one boundary.
Moreover, the multiplicity of each curve βi is one, and therefore M (β2, . . . , βb)
has complexity O(n).

4. FINDING ONE TIGHT CYCLE

Lemma 4.1. Let M be a combinatorial surface, orientable or not, with complex-
ity n, b ≥ 2 boundary components, and let σ be one of its boundary cycles. We can
find in O(n log n) time a tight cycle homotopic to σ that has complexity O(n).

Proof. Assume first that b = 2, and let σ′ be the boundary component distinct
from σ. Glue a disk over σ, and construct a tight system of disjoint arcs α1, . . . , αk

as described in Lemma 3.4. Cutting the surface M along α1, . . . , αk leaves an annu-
lus A of complexity O(n) whose boundary components are σ and σ′. Furthermore,
it follows from Lemma 3.3 that a tight cycle homotopic to σ in A is a tight cycle
homotopic to σ in M. Finally, the shortest generating cycle in A has complexity
O(n) and can be computed in O(n log n) time using the algorithm by Frederickson
[1987] because A has linear complexity. This concludes the case when b = 2.

The case when b > 2 can be reduced to b = 2 as follows. We glue a disk over σ and
construct a tight system of disjoint arcs β1, . . . , βb−2 as described in Lemma 3.5.
Note that the surface M′ = M (β1, . . . , βb−2) has two boundaries, one of them
arising from σ, and has complexity O(n). A tight cycle homotopic to the boundary
σ in M′ is a tight cycle homotopic to σ in M because of Lemma 3.3. Finally, note
that a tight cycle homotopic to the boundary σ in M′ can be found in O(n log n)
time because M′ has two boundaries, which was the previous case.

Note that in the following two results we only consider orientable surfaces.

Lemma 4.2. Let M be an orientable combinatorial surface. Let `x be a shortest
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x

`x

γ

x

`x

γ
π`x

πγ
π`x

πγ

Fig. 5. Figure for Lemma 4.2. The gray region represents a bigon between `x and γ. Left: the
case x ∈ π`x

. Right: the case x ∈ πγ .

non-separating loop with basepoint x, and let `′x, `′′x be the two copies of `x in M `x.
The tight cycle homotopic to `′x in M `x or the tight cycle homotopic to `′′x in M `x

is a tight cycle homotopic to `x in M.

Proof. We will show that in M there is a cycle γ that is homotopic to `x, it is
tight, and does not cross `x. Since γ does not cross `x, then γ is also homotopic to
`′x or `′′x in M `x, and it is tight, which implies the result.

Let γ be a tight cycle that is homotopic to `x (in M) and crosses `x as few times
as possible. We want to show that γ and `x do not cross. Assume for contradiction
that γ and `x cross. Then, by Lemma 3.1, they include a bigon. Let πγ ⊂ γ and
π`x

⊂ `x be the two subpaths that enclose the bigon; πγ and π`x
are homotopic

paths; see Figure 5. Let qγ be the subpath γ \πγ and let q`x
be the subpath `x\π`x

.
We distinguish two cases:

π`x
contains x. Let δ be the cycle πγ concatenated with q`x

. Note that δ crosses
`x twice less than γ does. Since πγ and π`x

are homotopic, δ is homotopic to `x

and γ. Since π`x
concatenated with qγ is a non-separating cycle through x, it holds

that

|`x| = |π`x
| + |q`x

| ≤ |π`x
| + |qγ |,

which implies |q`x
| ≤ |qγ |. We conclude that

|δ| = |πγ | + |q`x
| ≤ |πγ | + |qγ | = |γ|,

and since δ crosses `x twice less than γ, we get a contradiction.

π`x
does not contain x. Let δ be the cycle π`x

concatenated with qγ . Note that
δ crosses `x twice less than γ does. Since πγ and π`x

are homotopic, δ is homotopic
to γ and `x. Since q`x

concatenated with πγ is a non-separating cycle through x,
it holds that

|`x| = |q`x
| + |π`x

| ≤ |q`x
| + |πγ |,

which implies |π`x
| ≤ |πγ |. We conclude that

|δ| = |π`x
| + |qγ | ≤ |πγ | + |qγ | ≤ |γ|,

and since δ crosses `x twice less than γ, we get a contradiction.
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Note that Lemma 4.2 does not hold for non-orientable surfaces: any two non-
contractible cycles in the projective plane cross an odd number of times.

Theorem 4.3. Let M be an orientable combinatorial surface with complexity
n. We can find in O(n log n) time a cycle that is tight, essentially simple, surface
non-separating, and has complexity O(n).

Proof. Choose a point x ∈ M, and construct a shortest non-separating loop
`x with basepoint x. Since M is an orientable surface, M′ = M `x has two new
boundary components `′x and `′′x arising from `x. We find γ′, a tight cycle homotopic
to `′x in M `x, and γ′′, a tight cycle homotopic to `′′x in M `x, and return the
shorter cycle among γ′, γ′′. This finishes the description of the algorithm.

The cycle γmin returned by the algorithm is tight because of Lemma 4.2. Since
the cycle γmin is homotopic to the essentially simple, non-separating loop `x in
M, it follows that γmin is also non-separating and essentially simple. As for the
running time, note that `x can be found in O(n log n) time because of Lemma 3.2,
and the cycles γ′, γ′′ can also be obtained in O(n log n) time using Lemma 4.1
because M `x has at least two boundary components.

It is unclear if our approach can be extended to non-orientable surfaces because
Lemma 4.2 does not hold for non-orientable surfaces.

5. CONSEQUENCES AND CONCLUSIONS

Using Theorem 4.3 we can find a tight octagonal decomposition of an orientable sur-
face M without boundary in O(gn log n) time, improving the previous O(n2 log n)
time bound of [Colin de Verdière and Erickson 2006]. This improves the prepro-
cessing time in their results.

Theorem 5.1. Let M be an orientable cross-metric surface with complexity n,
genus g ≥ 2, and no boundary. We can construct a tight octagonal decomposition
of M in O(gn log n) time.

Proof. Consider the construction described in Theorem 4.1 of [Colin de Verdière
and Erickson 2006]. Their first step is to find a tight cycle in M, which they imple-
ment finding a globally shortest non-separating cycle in O(n2 log n) time. (Finding
this cycle can be done in O(g3n logn) time using the more recent result of Cabello
and Chambers [2007].) Using Theorem 4.3, we can now perform this first step in
O(n log n) time. After this, the rest of their construction takes O(gn log n) time,
and the result follows.

Theorem 5.2. Let M be an orientable combinatorial surface with complexity n,
genus g ≥ 2, and no boundary. Let p be a path on M, represented as a walk in
G(M) with complexity k. We can compute a shortest path p′ homotopic to p with
complexity k′ in O(gn log n + gk + gnk̄) time, where k̄ = min{k, k′}.
For a cycle γ, we can do the same in O(gn log n + gk + gnk̄ log(nk̄)) time.

Proof. The preprocessing time for constructing a tight octagonal decomposition
has gone down from O(n2 log n) to O(gn log n) because of the previous result. The
result follows then from the algorithms in [Colin de Verdière and Erickson 2006].
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Another consequence of our results is a faster algorithm for computing a shortest
cycle homotopic to a given boundary of a surface. For the following results, we can
return to arbitrary surfaces, orientable or not.

Theorem 5.3. Let M be a combinatorial surface with complexity n, orientable
or not, and let σ be a given boundary cycle in M. We can find in O(n log n) time
a tight cycle homotopic to σ that has complexity O(n).

Proof. If M has more than two boundary components, the result follows from
Lemma 4.1.

If M is orientable and has only one boundary component σ, we compute a tight
non-separating, essentially simple cycle γ using Theorem 4.3, and then find a tight
cycle σ̃ homotopic to σ in M γ. Finally, we return the cycle σ̃. This algorithm
is correct because the returned cycle σ̃ is homotopic to σ and is tight because
of Lemma 3.3. As for the running time and the complexity of σ̃, note that γ

is obtained in O(n log n) time and has complexity O(n) because of Theorem 4.3.
Therefore M γ has precisely three boundary components and complexity O(n).
Hence σ̃ can be obtained in O(n log n) time and has complexity O(n) because of
Lemma 4.1.

It remains the case when M is non-orientable and has only one boundary compo-
nent σ. We use the orientable double cover Mo of M, which is a particular covering
space of M. We next describe an algorithmic construction of Mo; see [Hatcher
2001, Section 1.3] or [Massey 1967, Chapter 5] for a general treatment of covering
spaces. Since each face of f is a topological disk, it has two distinct sides. Make
two copies f ′, f ′′ of each face f of M, color blue one side of f ′ and red the other
side, and color also the sides of f ′′ exchanging the colors red and blue with respect
to f ′. Finally, for any edge e of M between faces f1, f2, glue along the copies of e

either the two pairs f ′

1, f
′

2, and f ′′

1 , f ′′

2 or the two pairs f ′

1, f
′′

2 , and f ′′

1 , f ′

2, so that
there are consistent colors on either side after gluing. One then obtains the surface
Mo, which turns out to be connected and orientable. Note that Mo has complexity
O(n) and can be constructed from M in O(n) time assuming any standard repre-
sentation of M. There is a natural projection π : Mo → M that sends a point in
a face f ′ or f ′′ of Mo to the same point in the original face f of M.

There are two boundary cycles σ1, σ2 in Mo such that σ = π ◦ σ1 = π ◦ σ2.
A cycle α in M is homotopic to the boundary σ if and only if there is a cycle
α1 in Mo homotopic to the boundary σ1 that satisfies α = π ◦ α1. Therefore, it
holds that if β is a tight cycle homotopic to σ1 in Mo, then π ◦ β is a tight cycle
homotopic to the boundary σ in M. Thus, the problem reduces to finding a tight
cycle homotopic to the boundary σ1 in the orientable combinatorial surface Mo,
which we have already solved before.

This result also implies that we can compute a shortest contractible cycle that
encloses a given face f of M in O(n log n) time: cut the interior of f out from M
and compute the shortest cycle homotopic to the new boundary.

We next discuss the problem of finding a shortest essentially simple, contractible
cycle in a combinatorial surface. However we want to avoid trivial solutions con-
sisting of a single vertex, a walk through a single edge in both directions, or more
generally a walk contained in a tree. Thus we require that the part enclosed by the
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cycle contains at least one face of the graph. To formalize this, let us say that a
cycle γ in a combinatorial surface M is an enclosing cycle if it is essentially simple,
contractible, and any topological disk in M γ contains a non-empty set of faces.
In general M γ has one topological disk, unless M is a sphere. When M is not
a sphere, a shortest enclosing cycle can be found by finding, for each face f , the
shortest contractible cycle that encloses f , and reporting the shortest among them.
We next give a faster algorithm that uses a more global approach. Our algorithm
reduces the problem to that of finding a shortest enclosing cycle in a topological
disk, which equivalent to finding a minimum cut in the dual weighted graph.

Theorem 5.4. Let M be an orientable combinatorial surface with complexity
n. We can find in O(Tmin−cut(n) + n log n) time a shortest enclosing cycle, where
Tmin−cut(n) is the time needed to find a minimum cut in a planar weighted graph
of size n.

Proof. If M is a combinatorial surface homeomorphic to a sphere, the edges
in a shortest enclosing cycle correspond to a minimum cut in the weighted graph
dual to G(M), and therefore the result follows. If M is a topological disk, we glue
a disk along the boundary of M to obtain a combinatorial sphere M′. A shortest
enclosing cycle in M′ corresponds to a shortest enclosing cycle in M, and therefore
the result follows.

It remains the case when M is not a combinatorial sphere or disk. We first de-
scribe the algorithm and then discuss its correctness. The algorithm is as follows.
First, compute a tight, essentially simple, non-separating cycle α in M using The-
orem 4.3, and construct the surface M1 = M α, which has at least two boundary
components. Let b be the number of boundary components of M1. Then, take
M2 = M1 (β1, . . . , βb−1), where β1, . . . , βb−1 is the tight system of disjoint arcs
arising from Lemma 3.5. It follows that M2 has precisely one boundary cycle.
Next, construct a tight system of disjoint arcs α1, . . . , αk for M2 as described in
Lemma 3.4 and construct the topological disk M3 = M2 (α1, . . . , αk). Finally
compute a shortest enclosing cycle in the disk M3, and return it as answer. Any
surface constructed during the algorithm has complexity O(n), and therefore the
procedure we have described takes O(n log n) + Tmin−cut(O(n)) time.

We next show the correctness of the algorithm. Consider a shortest enclosing
cycle γ bounding a disk Dγ that does not contain any other shortest enclosing
cycle. The exchange argument used in the proof of Lemma 3.3 shows that a tight
cycle or arc α in M is disjoint from the interior of Dγ . It follows that, for any
tight cycle or arc α, a shortest enclosing cycle γ in M α is also a shortest enclosing
cycle in M. Since during the algorithm we only cut along tight arcs and cycles, it
is clear that the shortest enclosing cycle in M3 is a shortest enclosing cycle in the
original surface M.

Currently, the best algorithm for computing minimum cuts in planar graphs
takes O(n log2 n) time [Chalermsook et al. 2004]. Therefore, we can find a shortest
enclosing cycle in a combinatorial surface in O(n log2 n) time.

We next consider the problem of computing the girth of an abstract weighted
graph, defined as the length of a shortest closed walk without repeating vertices.
Note that in the following result we are not assuming any embedding of the input
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Ce

C ′ C ′′

Fig. 6. Figure for the second case of Theorem 5.5. The dots represent the same vertex. A shortest
enclosing cycle Ce (left) that repeats some vertex can be split into two cycles C′ and C′′ that are
non-contractible (right).

graph.

Theorem 5.5. Let G be a weighted graph with m edges. The girth of G can be
found in O(Tnc(m) + m log2 m) time, where Tnc(n) denotes the time needed to find
a shortest non-contractible cycle in combinatorial surface with complexity n and
genus n.

Proof. Note that any graph G with m edges can easily be embedded in an
orientable surface of genus g = O(m) [Mohar and Thomassen 2001]. Consider this
embedded graph as an orientable combinatorial surface M without boundary, and
compute a shortest non-contractible cycle Cnc in M using O(Tnc(m) time and a
shortest enclosing cycle Ce in M using O(m log2 m) time. It is known that the
cycle Cnc does not repeat any vertex of G because of the 3-path property [Cabello
and Mohar 2007]. We then distinguish two cases:

— If Ce does not repeat any vertex as well, we return the shortest between
Cnc, Ce, and the result is clearly correct.

— If Ce does repeat some vertex, then Cnc defines the girth of G, and we can
just return Cnc. To see that indeed Cnc defines the girth of G, split the cycle Ce

into two cycles C′ and C′′ at a vertex where Ce passes twice. See Figure 6. It
cannot be that both C′, C′′ are contractible, as otherwise one of them would be
enclosing and shorter. Therefore, C′ or C′′ is non-contractible, and is shorter that
Ce. This means Cnc is shorter than Ce, and therefore shorter than any enclosing
cycle.

An algorithm finding shortest non-contractible cycles in a combinatorial surface
with complexity n in O(n2−ε) time, for some constant ε > 0, would imply that the
girth of a graph with m vertices can be computed in O(m2−ε) time. However, for
sparse graphs no algorithms to compute the girth in O(m2−ε) time are currently
known; see [Alon et al. 1997] for the best known bounds for unweighted graphs of
bounded girth. Therefore, we cannot expect a substantial improvement over the
near-quadratic algorithm of [Erickson and Har-Peled 2004] for finding shortest non-
contractible cycles, unless the girth of sparse graphs can be computed substantially
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faster.
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