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Abstract A nonplanar graph G is near-planar if it contains an edge e such that G− e

is planar. The problem of determining the crossing number of a near-planar graph is
exhibited from different combinatorial viewpoints. On the one hand, we develop min-
max formulas involving efficiently computable lower and upper bounds. These min-
max results are the first of their kind in the study of crossing numbers and improve the
approximation factor for the approximation algorithm given by Hliněný and Salazar
(Graph Drawing GD’06). On the other hand, we show that it is NP-hard to compute
a weighted version of the crossing number for near-planar graphs.

Keywords Crossing number · Near-planar · Almost planar · Planar separation ·
Dual distance · Facial distance · NP-hardness

1 Introduction

Crossing number minimization is one of the fundamental optimization problems in
the sense that it is related to various other widely used notions. Besides its mathe-
matical interest, the concept is relevant in VLSI design [2, 10, 11], in combinatorial
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geometry [20], number theory [3, 19, 21], and for the aesthetics of drawing graphs [1,
16]. We refer to [12, 18] and to [23] for more details about diverse applications of
this important notion.

A nonplanar graph G is near-planar if it contains an edge e such that G − e is
planar. Such an edge e is called a planarizing edge. It is easy to see that near-planar
graphs can have arbitrarily large crossing number. However, it seems that understand-
ing the crossing number of near-planar graphs should be much easier than in unre-
stricted cases. This is supported by a less known, but particularly interesting result
of Riskin [17], who proved that the crossing number of a 3-connected cubic near-
planar graph G is equal to the length of a shortest path in the geometric dual graph
of the planar subgraph G − x − y, where xy ∈ E(G) is a planarizing edge. It fol-
lows that the crossing number of a 3-connected cubic near-planar graph can be com-
puted in polynomial time. Riskin asked if a similar correspondence holds in more
general situations. This was disproved by Mohar [14] and Gutwenger, Mutzel, and
Weiskircher [6]; see the discussion below. However, Hliněný and Salazar [7] showed
that for near-planar graphs of maximum degree � these two values are within a fac-
tor �.

In this paper we show that several generalizations of Riskin’s result are indeed
possible. We provide efficiently computable upper and lower bounds on the crossing
number of near-planar graphs in a form of min-max relations. These relations can
be extended to the non-3-connected case and even to the case when graphs have
weighted edges. As far as we know, these results are the first of their kind in the
study of crossing numbers. It is shown that they generalize and improve some known
results and we foresee that generalizations and further applications are possible.

On the other hand, we show that computing the crossing number of weighted near-
planar graphs is NP-hard. This discovery is a surprise and brings more questions than
answers.

2 Basic Notions

2.1 Drawings and Crossings

A drawing of a graph G is a representation of G in the Euclidean plane R
2 where

vertices are represented by distinct points and edges by simple polygonal arcs joining
points that correspond to their endvertices. A drawing is clean if the interior of every
arc representing an edge contains no points representing the vertices of G. If interi-
ors of two arcs intersect or if an arc contains a vertex of G in its interior we speak
about crossings of the drawing. More precisely, a crossing of a drawing D is a pair
({e, f },p), where e and f are distinct edges and p ∈ R

2 is a point that belongs to
interiors of both arcs representing e and f in D. If the drawing is not clean, then the
arc of an edge e may contain in its interior a point p ∈ R

2 that represents a vertex v

of G. In such a case, the pair ({v, e},p) is also referred to as a crossing of D.
The number of crossings of D is denoted by cr(D) and is called the crossing

number of the drawing D. The crossing number cr(G) of a graph G is the minimum
cr(D) taken over all clean drawings D of G. When each edge e of G has a weight
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we ∈ N, the weighted crossing number wcr(D) of a clean drawing D is the sum∑
we ·wf over all crossings ({e, f },p) in D. The weighted crossing number wcr(G)

of G is the minimum wcr(D) taken over all clean drawings D of G. Of course, if all
edge-weights are equal to 1, then wcr(G) = cr(G).

We shall discuss both, the weighted and unweighted crossing number. Most of the
results are treated for the general weighted case. However, some results hold only in
the unweighted case or are too technical to state for the weighted case. For a graph
we shall assume that it is unweighted (i.e., all edge-weights are equal to 1) unless
stated explicitly or when it is clear from the context that it is weighted.

A clean drawing D with cr(D) = 0 is also called an embedding of G. By a plane
graph we refer to a planar graph together with a fixed embedding in the Euclidean
plane. We shall identify a plane graph with its image in the plane.

2.2 Dual and Facial Distances

Let G0 be a plane graph and let x, y be two of its vertices. A simple (polygonal) arc
γ : [0,1] → R

2 is an (x, y)-arc if γ (0) = x and γ (1) = y. If γ (t) is not a vertex of
G0 for every t , 0 < t < 1, then we say that γ is clean. For an (x, y)-arc γ we define
the crossing number of γ with G0 as

cr(γ,G0) = |{t | γ (t) ∈ G0 and 0 < t < 1}|. (1)

This definition extends to the weighted case as follows. If the graph G0 is weighted
and the edge xy realized by an (x, y)-arc γ also has weight wxy , then each crossing
of γ with an edge e contributes wxy · we towards the value cr(γ,G0), and each
crossing ({v, xy},p) of xy with a vertex of G0 contributes 1 (independently of the
edge-weights).

Using this notation, we define the dual distance

d∗(x, y) = min{cr(γ,G0) | γ is a clean (x, y)-arc}.
We also introduce a similar quantity, the facial distance between x and y:

d ′(x, y) = min{cr(γ,G0) | γ is an (x, y)-arc}.
It should be observed at this point that the value d ′(x, y) is independent of the
weights—since all weights are positive integers, we can replace each crossing of an
edge with a crossing through an incident vertex (without increasing cr(γ,G0)) and
henceforth replace weight contributions simply by counting the number of crossings.

Let G∗
x,y be the geometric dual graph of G0 − x − y. Then d∗(x, y) is equal to the

distance in G∗
x,y between the two vertices corresponding to the faces of G0 − x − y

containing x and y. Of course, in the weighted case the distances are determined by
the weights of their dual edges. This shows that d∗(x, y) can be computed in linear
time by using known shortest path algorithms for planar graphs. Similarly, one can
compute d ′(x, y) in linear time by using the vertex-face incidence graph (see [15]).

Clearly, d ′(x, y) ≤ d∗(x, y). Note that d∗ and d ′ depend on the embedding of
G0 in the plane. However, if G0 is (a subdivision of) a 3-connected graph, then this
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dependency disappears since G0 has essentially a unique embedding. To compensate
for this dependence, we define d∗

0 (x, y) (and d ′
0(x, y)) as the minimum of d∗(x, y)

(resp. d ′(x, y)) taken over all embeddings of G0 in the plane.

2.3 Overview of Results

The following proposition is clear from the definition of d∗:

Proposition 2.1 If G0 is a weighted planar graph and x, y ∈ V (G0), then cr(G0 +
xy) ≤ d∗

0 (x, y).

This result shows that the value d∗
0 (x, y) is of interest. Gutwenger, Mutzel, and

Weiskircher [6] provided a linear-time algorithm to compute d∗
0 (x, y). In Sect. 4 we

study d∗
0 (x, y) from a combinatorial point of view and obtain a min-max expression

for the value of d∗
0 (x, y) that turns out to be very useful.

Riskin [17] proved the following strengthening of Proposition 2.1 in a special case
when G0 is 3-connected and cubic:

Theorem 2.2 ([17]) If G0 is a 3-connected cubic planar graph, then

cr(G0 + xy) = d∗
0 (x, y).

Riskin also asked if Theorem 2.2 extends to arbitrary 3-connected planar graphs.
One of the authors [14] has shown that this is not the case: for every inte-
ger k, there exists a 5-connected planar graph G0 and two vertices x, y ∈ V (G0)

such that cr(G0 + xy) ≤ 11 and d∗
0 (x, y) ≥ k. See also Gutwenger, Mutzel, and

Weiskircher [6] for an alternative construction.
However, several extensions of Theorem 2.2 are possible, and some of them are

presented in this paper. In particular, we show how to deal with graphs that are not 3-
connected, and what happens when we allow vertices of arbitrary degrees. In Sect. 5
we shall prove the lower bound of the following theorem:

Theorem 2.3 If G0 is a weighted planar graph and x, y ∈ V (G0), then

d ′
0(x, y) ≤ cr(G0 + xy) ≤ d∗

0 (x, y).

If G0 is an unweighted cubic graph, then for every planar embedding of G0,
d ′(x, y) = d∗(x, y). Therefore, d ′

0(x, y) = d∗
0 (x, y), and Theorem 2.3 implies The-

orem 2.2. We can also use Theorem 2.3 to improve the approximation factor in the
algorithm of Hliněný and Salazar [7]; see Corollary 5.5 below.

A key idea in our results is to show that d∗
0 (x, y) (respectively d ′

0(x, y)) is closely
related to the maximum number of edge-disjoint (respectively vertex-disjoint) cycles
that separate x and y. The notion of the separation has to be understood in a certain
strong sense that is introduced in Sect. 4. This result yields a dual expression for d∗

0
(respectively d ′

0) and is used to show that d∗
0 (x, y) is closely related to the crossing

number of G0 + xy.
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Finally, we show in Sect. 6 that computing the crossing number of weighted
near-planar graphs is NP-hard. Our reduction uses weights that are not polynomi-
ally bounded, and therefore it does not imply NP-hardness for unweighted graphs.

2.4 Intuition

To understand the difficulty in computing the crossing number of a near-planar graph,
let us consider the graph G0 + xy shown in Fig. 1 (taken from [14]), where the
subgraph inside each of the “darker” triangles is a sufficiently dense triangulation
that requires many crossings when crossed by an arc. By drawing the vertex x in the
outside, we see that xy is a planarizing edge. The drawing in Fig. 1 shows that its
crossing number is at most 11, but it is also clear that d∗(x, y) in the graph G0 can
be made as large as we want.

This construction can be generalized such that a similar redrawing as made there
for x is necessary also for y (in order to bring these two vertices “close together”).
At first sight this seems like the only possibility which may happen—to “flip” a part
of the graph containing x and to “flip” a part containing y. And maybe some repeti-
tion of such changes may be needed. If this were the only possibility of making the
crossing number smaller than the one coming from the planar drawing of G0, this
would most likely give rise to a polynomial time algorithm for computing the cross-
ing number of near-planar graphs. However, the authors can construct examples, in
which additional complications arise.

Despite these examples and despite our NP-hardness result for the weighted case,
the following question may still have a positive answer:

Problem 2.4 Is there a polynomial time algorithm which would determine the cross-
ing number of G0 + xy if G0 is an unweighted 3-connected planar graph?

Fig. 1 A near-planar graph
G0 + xy whose crossing
number is unrelated to d∗(x, y)

in the graph G0
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3 Planar Separations and Connectivity Reductions

Let G0 be a planar graph, x, y distinct vertices of G0, and let Q be a subgraph of G0 −
x − y. We say that Q planarly separates vertices x and y if for every embedding of
G0 in the plane, x and y lie in the interiors of distinct faces of the induced embedding
of Q. In other words, every (x, y)-arc must intersect Q.

Let Q be a subgraph of G. A Q-bridge in G is a subgraph of G that is either (i) an
edge not in Q but with both ends in Q (and its ends also belong to the bridge), or (ii)
a connected component of G − V (Q) together with all edges (and their endvertices
in Q) which have one end in this component and the other end in Q. Let B be a
Q-bridge. Vertices of B ∩ Q are vertices of attachment of B (shortly attachments).

Let C be a cycle in G0. Two C-bridges B and B ′ are said to overlap on C if
either (i) C contains four vertices a, a′, b, b′ in this order such that a and b are at-
tachments of B and a′, b′ are attachments of B ′, or (ii) B and B ′ have (at least)
three vertices of attachment in common. We define the overlap graph O(G0,C) of
C-bridges (see [15]) as the graph whose vertices are the C-bridges in G0, and two
vertices are adjacent if the two bridges overlap on C. Since G0 is planar, the overlap
graph is bipartite. Distinct C-bridges are weakly overlapping if they are in the same
connected component of O(G0,C), and in that component they belong to distinct
bipartite classes.

If B is the set of C-bridges in a connected component of O(G0,C), then an em-
bedding of G0 in the plane can be changed into another embedding by flipping the
bridges in B: Those that were in the interior of C are now in the exterior, and vice
versa. See Fig. 2 for additional explanation of the flipping operation.

Tutte [22] characterized when G0 +xy is non-planar, i.e., when cr(G0 +xy) ≥ 1,
by proving

Theorem 3.1 (Tutte [22]) Let x, y be vertices of a planar graph G0. Then G0 + xy

is non-planar if and only if G0 − x − y contains a cycle C such that the C-bridges of
G containing x and y, respectively, are overlapping.

The graph G0 + xy is non-planar if and only if in every embedding of G0, x and
y do not appear on a common face. This is obviously equivalent to the condition that
G0 − x − y planarly separates x and y. Observe that Theorem 3.1 does not need the

Fig. 2 Flipping a weakly-overlapping set of bridges. In this example, the bridges B1,B2, . . . ,B5 form a
connected component of O(G0,C)
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whole graph G0 −x −y to planarly separate x and y; it guarantees that a single cycle
in G0 − x − y does. Our goal is to generalize this result to arbitrary subgraphs that
planarly separate x and y. However, in this case we will only be able to say that for
some cycle its bridges containing x and y weakly overlap.

If C is a cycle and z is a vertex in V (G) \ V (C), then we denote by Bz(C) the C-
bridge that contains z. If C is clear from the context, we simply write Bz for Bz(C).
The next result follows easily from the definitions by using the flipping operation.

Lemma 3.2 Let C be a cycle in G0 − x − y. Then the cycle C planarly separates x

and y if and only if Bx(C) and By(C) are distinct weakly overlapping C-bridges.

We continue with some connectivity reductions. The first one is obvious.

Lemma 3.3 Suppose that G0 = G1 ∪G2, where G1 ∩G2 is either empty or a cutver-
tex of G0, and suppose that x, y ∈ V (G1). Then a subgraph Q of G0 −x−y planarly
separates x and y if and only if Q ∩ G1 planarly separates x and y in G1.

If x and y are in different components of G0, they cannot be planarly separated,
so we may assume that G0 is connected. Our second reduction (together with the first
one) will enable us to restrict our attention to 2-connected graphs.

Lemma 3.4 Suppose that G0 = G1 ∪ G2 where G1 ∩ G2 is a cutvertex v of G0
and x ∈ V (G1), y ∈ V (G2). Then the following conditions are equivalent for every
subgraph Q of G0 − x − y:

(a) Q planarly separates x and y.
(b) Either Q ∩ (G1 − v) or Q ∩ (G2 − v) planarly separates x and y.
(c) Either Q ∩ (G1 − v) planarly separates x and v or Q ∩ (G2 − v) planarly sep-

arates y and v.

Proof Clearly, (c) ⇒ (b) ⇒ (a). It remains to see that ¬ (c) ⇒ ¬ (a). Let us therefore
assume that neither Q∩(G1 −v) planarly separates x and v nor Q∩(G2 −v) planarly
separates y and v. This means that there are embeddings of G0 in which there is
an (x, v)-arc γ1 avoiding Q ∩ (G1 − v) and a (v, y)-arc γ2 avoiding Q ∩ (G2 − v),
respectively. It is clear that γ1 and γ2 may be chosen so that none of them intersects an
edge incident with v. Let us take the induced embedding of G1 of the first embedding,
and redraw it so that γ1 arrives to v from the outer face. Similarly, take the induced
embedding of G2 of the second embedding, and redraw it so that γ2 arrives to v from
the outer face. Now it is easy to see that these two embeddings can be combined into
an embedding of G0 and γ1, γ2 combined into an (x, y)-arc that avoids Q. See Fig. 3
for illustration, where Q is exhibited by using thick edges. �

Lemma 3.5 Suppose that G0 is 2-connected and that it can be written as G0 =
G1 ∪ G2, where G1 ∩ G2 = {u,v} ⊂ V (G0). Suppose that x, y ∈ V (G1), and let Q

be any subgraph of G0 −x −y. Let G+
1 be the graph obtained from G1 by adding the

edge uv. If Q∩G2 contains a path from u to v, let Q1 = (Q∩G1)+uv. Otherwise,
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Fig. 3 Planar separations and cutvertices

let Q1 = Q∩G1. Then Q planarly separates x and y in G0 if and only if Q1 planarly
separates x and y in G+

1 .

The proof of Lemma 3.5 is not hard and is left to the reader.

Lemma 3.6 Suppose that G0 + xy is 3-connected and that G0 can be written as
G0 = G1 ∪ G2, where G1 ∩ G2 = {u,v} ⊂ V (G0). Suppose that x ∈ V (G1) \ {u,v}
and y ∈ V (G2)\{u,v}. For i = 1,2, let G+

i be the graph obtained from Gi by adding
a new vertex zi adjacent to u and v. Let Q be any subgraph of G0 − x − y and let
Qi = Q ∩ Gi . Then Q planarly separates x and y in G0 if and only if either Q1
planarly separates x and z1 in G+

1 or Q2 planarly separates y and z2 in G+
2 .

Proof One direction is easy. For the other one, suppose that for i = 1 and for
i = 2, Qi does not planarly separate x (or y) and zi . Embeddings, where these pairs
of vertices are not separated by Qi , are easily combined into an embedding of G0
showing that Q does not planarly separate x and y. �

The reduction to G+
1 as described in Lemma 3.5 enables us to assume that the

graph G = G0 +xy is 3-connected. After that, Lemma 3.6 can be used, if appropriate,
to reduce planar separation problems to the case when G0 itself is essentially 3-
connected. By this we mean that G0 can be obtained from a 3-connected graph by
adding some edges in parallel to existing edges and by subdividing some edges. It is
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worth noting that all connectivity reductions discussed above can be made in linear
time by using the algorithm of Hopcroft and Tarjan [8].

Our final result in this section is a generalization of Tutte’s Theorem 3.1.

Theorem 3.7 Let G0 be a planar graph. If Q ⊆ G0 − x − y planarly separates x

and y, then there is a cycle C ⊆ Q that planarly separates x and y.

Proof We may assume that Q is a minimal subgraph that planarly separates x and y.
By Lemma 3.3, we may assume that G0 + xy is 2-connected. Let B1,B2, . . . ,Br

be the blocks of G0, where x ∈ V (B1), y ∈ V (Br), and vi = Bi ∩ Bi+1 (i = 1, . . . ,

r − 1) are distinct cutvertices of G0. For convenience, let v0 = x and vr = y. Then it
follows by Lemma 3.4 that Q does not contain cutvertices of G0 and therefore, by the
minimality assumption on Q, the whole subgraph Q is contained in a single block
Bi in which it planarly separates the vertices vi−1 and vi . By applying induction on
the number r of blocks, we conclude that Q is a cycle if r ≥ 2. Thus, we may assume
henceforth that G0 is 2-connected.

By using Lemma 3.5, it is easy to reduce the proof to the case when G0 + xy is
3-connected, which we assume henceforth.

It is easy to see that every subgraph that planarly separates two vertices contains a
cycle. Let C1 be a cycle in Q. Because of the minimality of Q, there is an embedding
of G0 in the plane such that x is in the interior of C1 and y is in the exterior of C1.
If C1 planarly separates x and y, we are done. Otherwise, by Lemma 3.2, the C1-
bridges Bx(C1) and By(C1) are in distinct components O1, O2 of the overlap graph
O(G0,C1). Also, since G0 + xy is 3-connected, the overlap graph has no other than
these two components. This implies that C1 can be written as the union of two paths,
C1 = A ∪ B , where A and B have two vertices a, b in common, and all attachments
of the C1-bridges in O1 (resp. in O2) are in A (resp. B).

Since Q is a minimal separating set, for every e ∈ E(C1) there exists an embed-
ding ψe of G0 such that there is an (x, y)-arc γ that intersects Q only in the edge e.
Let e be the edge of A incident with its endvertex a. Then it may be assumed that the
initial segment γ1 of γ from x to e does not intersect any of the bridges in O2. To
see this, let us first observe that there is an (a, b)-arc β that is internally disjoint from
G0. Assuming that x is ψe-embedded in the interior of C1, it also lies in the interior
of A ∪ β , while none of the bridges in O2 lies inside A ∪ β . If γ intersected β , it
would have to cross it again to return into the interior of A ∪ β before crossing the
edge e. Therefore, we would be able to take the part of γ from x to its first intersec-
tion with β , then follow β until reaching the last intersection of γ with β , and then
again follow γ towards e. This proves our claim.

Similarly, if we take the edge f ∈ E(B) that is incident with a, we get an arc
γ2 from y to f that does not intersect Q or any edge in O1 in the corresponding
embedding ψf .

Let ψ be an embedding of G0 in which A∪ O1 is embedded as in ψe, and B ∪ O2
is embedded first as in ψf , and then flipped, so that y ends up being embedded
inside C1. The arcs γ1 and γ2 can be added to this embedding so that they do not
cross any edges of Q. They can be modified to come close to the endvertex a of e

and f , respectively. Since Q planarly separates x and y, these two arcs cannot be
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joined together without intersecting Q. This means that Q − E(C1) contains a path
D joining a with another vertex b′ of C1.

So far, C1 was any cycle in Q. Let us assume henceforth that C1 is selected such
that the union of all bridges in O1 has minimum number of edges possible. This as-
sumption implies that D is contained in an O2 bridge and b′ ∈ V (B). (If D were in a
bridge in O1, we could replace C2 by the cycle contained in A∪D and contradict the
minimality property of O1.) Since γ2 does not intersect D (as it does not intersect Q),
y is contained in the interior of the unique cycle C2 ⊆ D ∪ B . Among all candidates
for D, we select one such that the interior of C2 (under the embedding ψ ) is as large
as possible.

Let us now consider the cycle C2 ⊂ Q instead of C1. Observe that Bx(C2) con-
tains all C1-bridges in O1, the whole path A and the segment of B from b to b′. In
particular, a and b′ are vertices of attachment of Bx(C2).

Similarly, as argued above for C1, the C2-bridges form two components of
O(G0,C2) (or we are done). The cycle can be split into two segments A′,B ′ such
that the bridges in O′

1 are attached to A′ and the bridges in O′
2 are attached to B ′.

Since a, b′ ∈ V (A′), the segment B ′ is contained either in B or in D. In the second
case we can flip O′

2 together with the arc γ2, and get an embedding of G0 in which
γ1 and γ2 can be joined without intersecting Q. (To see this, we use our assumptions
that O1 did not contain a path in Q separating x from O2 and that D was such that
the interior of C2 was largest.) Thus, B ′ ⊆ B . It is now evident that the C1-bridge BD

containing D cannot weakly overlap with the bridges in O2, since BD consists of D

and all C2-bridges with an attachment on D together with a subset of Bx(C2), and all
these are in O′

1. This contradiction completes the proof. �

4 The Dual Distance

We keep using the notation and assumptions of Sect. 3. Moreover, we shall assume
from now on that the vertex y lies on the outer face whenever we have an embedding
of G0 in the plane. This means that for every cycle C ⊆ G0 − y, the vertex y lies in
the exterior of C. Alternatively, we may consider embeddings of G0 in the 2-sphere,
and then we define the interior and the exterior of any cycle C ⊆ G0 − y such that y

is in the exterior.
In some of the following results we consider a fixed embedding of G0 in the plane.

For this purpose we use the name plane graph to denote the graph together with its
specified embedding in the plane.

For a plane graph G0, a sequence Q1, . . . ,Qk of edge-disjoint cycles of G0 is
nested if for i = 1, . . . , k, all edges of the cycles Qj (j < i) lie in the interior of Qi ,
while all edges of the cycles Qj (j > i) lie in the exterior of Qi . If the embedding of
G0 is not specified, then we say that cycles Q1, . . . ,Qk are nested if they are nested
in some embedding of G0 (in which y is on the boundary of the outer face).

Lemma 4.1 Let G0 be a plane graph, let x, y ∈ V (G0), and suppose that y lies
on the outer face. If Q1 and Q2 are edge-disjoint cycles that planarly separate
vertices x and y, then there exist nested edge-disjoint cycles Q′

1,Q
′
2 such that

E(Q′
1)∪E(Q′

2) ⊆ E(Q1)∪E(Q2) and such that Q′
1,Q

′
2 planarly separate x and y.
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Proof We will consider Q1 and Q2 as closed curves in the plane. This will enable
us to classify each of their common vertices either as a crossing or a touching point.
Observe that the number of crossings is even. If Q1 and Q2 have no crossings, then
they are already nested and there is nothing to prove. Therefore, we may assume by
applying Lemmas 3.3–3.4 that G0 is 2-connected. Similarly, by applying Lemma 3.5,
we may assume that G0 + xy is 3-connected. (Note that, when applying Lemma 3.5,
if both Q1 and Q2 pass through G2, we replace G2 by two edges in parallel. When
going back to G0, we have to replace (Q1 ∪ Q2) ∩ G2 by two paths that do not cross
each other in G2.)

If G0 is not 3-connected, then by Lemma 3.6 any cycle that planarly separates x

and y is contained in one part of any 2-separation. This enables us to reduce to the
case when G0 is essentially 3-connected.

Let us now consider the subgraph H = Q1 ∪ Q2 of G0 and its embedding in the
plane. If Q1 and Q2 are not nested in G0, then Q1 and Q2 cross an even number of
times. This implies that H is 2-connected. In particular, every face of H is bounded
by a cycle. Let Q′

1 be the cycle bounding the face containing x, and let Q′
2 be the

face bounding y. Since every (x, y)-arc crosses Q1 and Q2, the cycles Q′
1 and Q′

2
cannot have an edge in common. Since G0 is essentially 3-connected, every cycle in
G0 − x − y planarly separates x and y. This shows that Q′

1 and Q′
2 are cycles whose

existence we were to prove. �

Lemma 4.2 Let G0 be a plane graph. If Q1, . . . ,Qk are edge-disjoint cycles of G0

that planarly separate vertices x and y of G0, then there are nested edge-disjoint
cycles Q′

1, . . . ,Q
′
k such that

⋃k
i=1 E(Q′

i ) ⊆ ⋃k
i=1 E(Qi) and such that Q′

1, . . . ,Q
′
k

planarly separate x and y.

Proof The proof follows rather easily by applying Lemma 4.1 consecutively on pairs
of cycles Qi,Qj . One has to make sure that after finitely many steps we get a col-
lection of nested cycles. This is done as follows. First we apply the lemma in such
a way that one of the cycles in the family has none of the edges of the other k − 1
cycles in its interior. After this is done, we repeat the process with the remaining k−1
cycles. �

After this preparation, we are ready to discuss a dual expression for the dual dis-
tance, both for the 3-connected and for the general case.

Theorem 4.3 Let G0 be a planar graph and x, y ∈ V (G0). If r ≥ 0 is an integer,
then the following statements are equivalent:

(a) r ≤ d∗
0 (x, y).

(b) There exists a family of r edge-disjoint cycles Q1, . . . ,Qr , each of which pla-
narly separates x and y.

(c) For every embedding of G0 in the plane, where y lies on the outer face, there ex-
ists a family of r nested edge-disjoint cycles Q1, . . . ,Qr , each of which planarly
separates x and y.
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Proof Equivalence of (b) and (c) follows from Lemma 4.2. It is also clear from the
definitions (cf. Lemma 3.2) that (b) implies (a). The proof of the reverse implication
that (a) yields (b) is by induction (using connectivity reductions of Lemmas 3.3–3.6)
and also gives an efficient linear-time algorithm for finding d∗

0 (x, y) nested cycles
planarly separating x and y. We will denote by λ(x, y,G0) the maximum number of
edge-disjoint cycles in G0 − x − y that planarly separate x and y.

Our goal is to prove that d∗
0 (x, y) ≤ λ(x, y,G0). By using the connectivity reduc-

tion of Lemma 3.3, we may assume that G0 + xy is 2-connected. Using the notation
from the beginning of the proof of Theorem 3.7 and applying Lemma 3.4, we con-
clude that

λ(x, y,G0) =
r∑

i=1

λ(vi−1, vi,Bi).

A similar formula holds for d∗
0 :

d∗
0 (x, y,G0) =

r∑

i=1

d∗
0 (vi−1, vi,Bi).

Therefore we may assume henceforth that G0 is 2-connected. Moreover, by
Lemma 3.5, we may assume that G0 + xy is essentially 3-connected.

If G0 is essentially 3-connected (i.e., 3-connected up to subdivided edges and par-
allel edges), then it has essentially a unique embedding in the plane. Then it is easy to
get a collection of d∗(x, y) = d∗

0 (x, y) vertex-disjoint cycles, each of which contains
x in its interior and y in its exterior. Because of (essentially) unique embeddability,
these cycles are planarly separating x and y, so their bridges Bx and By are weakly
overlapping. This shows that λ(x, y,G0) ≥ d∗

0 (x, y).
For the final subcase, assume that G0 has an “essential” 2-separation. This

means that G0 = G1 ∪ G2, where G1 ∩ G2 = {u,v} ⊂ V (G0), x ∈ V (G1) \ {u,v},
y ∈ V (G2) \ {u,v}, and each of G1,G2 has a vertex different from u,v, x, y. For
i = 1,2, let the graph G+

i and its vertex zi be as introduced in Lemma 3.6. By the
induction hypothesis, d1 = d∗

0 (x, z1,G
+
1 ) = λ(x, z1,G

+
1 ) and d2 = d∗

0 (y, z2,G
+
2 ) =

λ(y, z2,G
+
2 ). By Lemma 3.6,

λ(x, y,G0) = λ(x, z1,G
+
1 ) + λ(y, z2,G

+
2 ) = d1 + d2. (2)

Consider an embedding ψ1 of G+
1 for which d∗(x, z1,G

+
1 ) = d1 and an embed-

ding ψ2 of G+
2 for which d∗(y, z2,G

+
2 ) = d2. These two embeddings can be com-

bined into an embedding of G0 for which d∗(x, y,G0) ≤ d1 + d2. This implies that
d∗

0 (x, y,G0) ≤ d1 + d2. After combining this inequality with (2), we conclude that
d∗

0 (x, y,G0) ≤ λ(x, y,G0), which we were to prove. �

Corollary 4.4 The value of d∗
0 (x, y) is equal to the maximum number of edge-

disjoint cycles that planarly separate x and y.

The above dual expression for d∗
0 (x, y) is a min-max relation which offers an

extension to the weighted case. Suppose that the edges of G0 + xy are weighted and
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that all weights are positive integers. Then we can replace each edge e 
= xy by we

parallel edges (each of weight 1). Let G̃0 be the resulting unweighted graph. It is
easy to argue that d∗

0 (G0, x, y) is equal to d∗
0 (G̃0, x, y) · wxy . By Corollary 4.4, this

value can be interpreted as the maximum number of edge-disjoint cycles planarly
separating x and y in G̃0.

5 Facial Distance

In this section we shall prove Theorem 2.3. First, we need a dual expression for
d ′(x, y) which can be viewed as a surface version of Menger’s Theorem.

Proposition 5.1 Let G0 be a plane graph and x, y ∈ V (G0) where y lies on the
boundary of the exterior face. Let r be the maximum number of vertex-disjoint cycles,
Q1, . . . ,Qr , contained in G0 − x − y, such that for i = 1, . . . , r , x ∈ int(Qi) and
y ∈ ext(Qi). Then d ′(x, y) = r .

Proof Since every (x, y)-arc intersects every Qi , we conclude that d ′(x, y) ≥ r . The
converse inequality is proved by induction on d ′(x, y). There is nothing to show if
d ′(x, y) = 0. Let F be the subgraph of G0 containing all vertices and edges that are
cofacial with x. Since d ′(x, y) ≥ 1, F contains a cycle Q such that x ∈ int(Q) and y ∈
ext(Q). Delete all vertices and edges of F except x, and let G1 be the resulting plane
graph. It is easy to see that d ′

G1
(x, y) = d ′

G0
(x, y) − 1. By the induction hypothesis,

G1 has d ′
G0

(x, y) − 1 disjoint cycles that contain x in their interior and y in the
exterior. By adding Q to this family, we get d ′(x, y) such cycles. This shows that
d ′(x, y) ≤ r . �

The cycles Q1, . . . ,Qr in Proposition 5.1 all contain x in their interior and y in
their exterior. Therefore, they behave essentially like cycles on a cylinder that separate
the two boundary components of the cylinder. Hence they are nested cycles separating
x and y.

One of the main results of this paper, Theorem 2.3, involves the minimum facial
distance taken over all embeddings of G0 in the plane. If G0 is 3-connected, then
d ′(x, y) is the same for every embedding of G0, and Proposition 5.1 yields a dual
expression for the facial distance. For general graphs, we need a similar concept as
used in the previous section.

Let G0 be a graph and x, y ∈ V (G0). Then we define ρ(x, y,G0) as the largest
integer r for which there exists a collection of r vertex-disjoint cycles Q1, . . . ,Qr

in G0 − x − y such that for every i = 1, . . . , r , x and y belong to distinct weakly
overlapping bridges of Qi (i.e., Qi planarly separates x and y if G0 is planar). It
is convenient to realize that it may be required that the bridges containing x and y

indeed overlap (not only weakly overlap), so we get an extension of Tutte’s Theo-
rem 3.1.

Lemma 5.2 Let G0 be a planar graph and let r = ρ(x, y,G0). Then there exists a
collection of r vertex-disjoint cycles Q1, . . . ,Qr in G0 − x − y such that for every
i = 1, . . . , r , x and y belong to distinct overlapping bridges of Qi .
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Proof For i = 1, . . . , r , let Bi
x (resp. Bi

y ) be the Qi -bridge in G0 containing x

(resp. y), where Q1, . . . ,Qr are cycles from the definition of ρ. Note that every cycle
Qj (j 
= i) is contained either in Bi

x or in Bi
y . Therefore we can define a linear order

≺ on {Q1, . . . ,Qr} by setting Qi ≺ Qj if and only if Qj ⊆ Bi
y . By adjusting indices,

we may assume that Q1 ≺ Q2 ≺ · · · ≺ Qr .
The proof method used in particular by Tutte in [22] is to change each cycle Qi

by rerouting it through the Qi -bridges distinct from Bi
x and Bi

y in such a way that
the two bridges with respect to the new cycle still weakly overlap, but contain more
edges. The actual goal is to minimize the number t of edges that are neither on the
cycle nor in one of these two bridges. If Bi

x and Bi
y do not overlap but are weakly

overlapping, it is possible to decrease t . It follows that after a series of changes, that
do not affect any of the other cycles, the “big” bridges Bi

x and Bi
y overlap. We refer

to [9] and to [13] for an algorithmic treatment showing that these changes can be
made in linear time. �

The following lemma is the analogue of Corollary 4.4.

Lemma 5.3 d ′
0(x, y) = ρ(x, y,G0), that is, the value of d ′

0(x, y) is equal to the
maximum number of vertex-disjoint cycles that planarly separate x and y.

Proof Clearly, d ′
0(x, y) ≥ ρ(x, y,G0) since the cycles from the definition of ρ pla-

narly separate x and y and hence each of them contributes at least 1 to d ′(x, y) under
every embedding of G0 in the plane.

The main part of the proof, showing that d ′
0(x, y,G0) ≤ ρ(x, y,G0), follows the

same outline as the proof of Theorem 4.3. It is done by induction on |G0| using
connectivity reductions. By Lemma 3.3 we may assume that G0 +xy is 2-connected.
Using the notation from the beginning of the proof of Theorem 3.7 and applying
Lemma 3.4, we conclude that

ρ(x, y,G0) =
r∑

i=1

ρ(vi−1, vi,Bi).

A similar relation holds for d ′
0:

d ′
0(x, y,G0) ≤

r∑

i=1

d ′
0(vi−1, vi,Bi).

By the induction hypothesis, which can be applied if r ≥ 2, we conclude that
d ′

0(x, y,G0) ≤ ρ(x, y,G0). Therefore we may assume henceforth that G0 is essen-
tially 2-connected. Moreover, by Lemma 3.5, we may assume that G0 + xy is 3-
connected.

If G0 is essentially 3-connected, then it has essentially a unique embedding, and
we can apply Proposition 5.1 to get a collection of d ′(x, y) = d ′

0(x, y) vertex-disjoint
cycles separating x and y. Because of (essentially) unique embeddability, these cycles
are planarly separating x and y, so their bridges Bx and By are weakly overlapping.
This shows that ρ(x, y,G0) ≥ d ′

0(x, y).
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For the final subcase, assume that G0 has an “essential” 2-separation. This means
that G0 = G1 ∪ G2, where G1 ∩ G2 = {u,v} ⊂ V (G0), x ∈ V (G1) \ {u,v}, y ∈
V (G2)\{u,v}, and each of G1,G2 has a vertex different from u,v, x, y. For i = 1,2,
let the graph G+

i and its vertex zi be as introduced in Lemma 3.6. By taking the 2-
separation for which G+

1 is smallest possible, G+
1 is essentially 3-connected.

Let d1 = d ′
0(x, z1,G

+
1 ) = ρ(x, z1,G

+
1 ). Since G+

1 is essentially 3-connected, we
may assume that a collection of d1 disjoint nested cycles Q1, . . . ,Qd1 is taken in a
“greedy manner”, i.e., they contain as few edges in their interior as possible. Up to
symmetry between u and v, three outcomes may happen:

(a) u,v /∈ V (Qd1),
(b) u ∈ V (Qd1) and v /∈ V (Qd1), or
(c) u,v ∈ V (Qd1).

If (a) happens, then by Lemma 3.6

ρ(x, y,G0) = ρ(x, z1,G
+
1 ) + ρ(y, z2,G

+
2 ).

By using flipping operation it is easy to see that

d ′
0(x, y,G0) ≤ d ′

0(x, z1,G
+
1 ) + d ′

0(y, z2,G
+
2 ).

Hence, an application of induction completes the proof. Similar proof works for cases
(b) and (c). For the case (b), the recursive formula is

ρ(x, y,G0) = ρ(x, v,G+
1 ) + ρ(y,u,G+

2 ). (3)

In case (c) we have

ρ(x, y,G0) = ρ(x, z1,G
+
1 ) + ρ(y, z,G+

2 /{uz2, z2v}) (4)

where the vertex z is obtained after contracting the edges uz2, z2v in the graph G+
2 ,

i.e. by identifying u,v, z2 into a single vertex. Here we use the fact that

ρ(y, z2,G
+
2 ) ≤ ρ(y, z,G+

2 /{uz2, z2v}) + 1

since the contraction of the edges u and v can intersect only the “outermost” cycle
from a family of ρ(y, z2,G

+
2 ) disjoint cycles in G+

2 , and the other cycles planarly
separate y and z in the contraction G+

2 /{uz2, z2v}.
Formuli (3) and (4) are easily seen to hold (as inequalities) for d ′

0 replacing the
role of ρ. This completes the proof. �

We are ready for the proof of Theorem 2.3.

Proof of Theorem 2.3 We have already proved that cr(G0 + xy) ≤ d∗
0 (x, y). The

heart of the proof is to show that d ′
0(x, y) is a lower bound on cr(G0 + xy).

Let r = d ′
0(x, y). Lemmas 5.2 and 5.3 show that there are r vertex-disjoint cycles

Q1, . . . ,Qr such that for every i = 1, . . . , r , vertices x and y belong to distinct over-
lapping bridges of Qi . Let us denote these overlapping Qi -bridges by Bi

x and Bi
y . To
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simplify the notation in the sequel, we define Q0 = {x} and Qr+1 = {y}. Since Bi
x

and Bi
y overlap, one of the following cases occurs:

(i) There are paths P +
1 ,P +

2 ⊆ Bi
y joining Qi with Qi+1, and there are paths

P −
1 ,P −

2 ⊆ Bi
x joining Qi with Qi−1 such that the ends of these pairs of paths on

Qi interlace.
(ii) When the bridges Bi

x and Bi
y have precisely three vertices of attachment, they

may overlap only because their attachments a, b, c on Qi coincide. In that case,
we have paths P +

1 ,P +
2 ,P +

3 in Bi
y (resp. paths P −

1 ,P −
2 ,P −

3 in Bi
x ) joining a, b, c

with Qi+1 (resp. Qi−1).

If Case (i) occurs, let Si be the union of the paths P −
1 and P −

2 and let Ri be the
union of the paths P +

1 and P +
2 . If Case (ii) occurs, we define Si and Ri similarly, as

the union of the three paths in (ii) certifying the overlapping.
Suppose that we have a clean drawing of G0 + xy in the plane. We assign types to

certain crossings according to the following rules (where 1 ≤ i, j ≤ r):

(a) If two edges of the same cycle Qi cross, we declare such a crossing to be of
type i.

(b) If two cycles Qi and Qj cross, where j 
= i, then they make at least two cross-
ings, and we declare one of them to be a crossing of type i, and another one a
crossing of type j .

(c) If the edge xy crosses Qi , we declare such a crossing to be of type i.
(d) If there are no crossings of type i because of rules (a)–(c), then we consider the set

Fi of the edges on the paths S1, S2, . . . , Si and on the paths Ri,Ri+1, . . . ,Rr . If
an edge in Fi crosses an edge of Qi , we select one of such crossings and declare
it to be of type i.

(e) If two edges e ∈ E(Si) and f ∈ E(Ri) cross, we say that the crossing is of type
i.

(f) If two edges e ∈ E(Si) and f ∈ E(Qi+1) cross and this crossing does not have
type i + 1 assigned by rule (d), we say that this crossing is of type i. Similarly,
if two edges e ∈ E(Ri) and f ∈ E(Qi−1) cross and this crossing does not have
type i − 1 assigned by rule (d), we also say that this crossing is of type i.

(g) Finally, if the cycles Qi−1 and Qi+1 intersect more than twice, we take one of
the intersections that have no type assigned and declare it to be of type i.

Observe that by these rules, none of the crossings is of two different types (but for
some of the crossings, the type may not have been specified).

Our goal is to show that for every i = 1, . . . , r , there is a crossing of type i. This
will show that there are at least r crossings, so the theorem holds.

Suppose, reductio ad absurdum, that there is no crossing of type i (1 ≤ i ≤ r).
Then Qi does not cross itself because of rule (a). This enables us to speak about the
interior and exterior of Qi . Both x and y are in the interior of Qi (say) because of
rule (c). Moreover, Qi is not crossed by any of the other cycles Qj (j 
= i) because
of (b).

Suppose that Qi−1 is outside Qi . There is a path from Qi−1 to x, all of whose
edges are either on cycles Qj (j ≤ i − 2) or in the paths S1, S2, . . . , Si−1. Since x

is in the interior of Qi , this path crosses Qi and gives a crossing of type i either by
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rule (b) or (d). A similar argument can be used to exclude the possibility that Qi+1 is
outside Qi . Hence, Qi−1 and Qi+1 are both inside Qi .

Because of the rules (d) and (e), the edges in Ri cross neither Qi nor Si , and the
edges in Si cross neither Qi nor Ri . However, because of overlapping, and edge in
Ri ∪Qi+1 must cross an edge in Si ∪Qi−1. Let us first consider the case when Qi−1
and Qi+1 cross each other. If they have more than two crossings, then we have a
crossing of type i by rule (g). If there are precisely two crossings, then it is easy to
see that a crossing of Ri and Qi−1 (or of Si and Qi+1) must occur. Note that, because
rule (b) applies to i − 1 and i + 1, this crossing does not get type i − 1 or i + 1 by
rule (d). So, it has type i by rule (f).

Finally, suppose that Qi−1 and Qi+1 do not cross each other. By symmetry, we
may assume that the path P +

1 ⊂ Ri and Qi−1 cross. Now, Qi+1 is either in the interior
or outside Qi−1. In the former case, also the second path P +

2 in Ri crosses Qi−1,
while in the latter case, P +

1 has another crossing with Qi−1. Only one of these two
crossings can have type i − 1 by rule (d), so the other one gets type i by rule (f). This
excludes all possibilities and yields a contradiction. The proof is complete. �

As a corollary we get a generalization of Riskin’s Theorem 2.2 by omitting the
requirement about 3-connectivity and by letting x and y (and their neighbors) to have
degree bigger than three (equal to four, respectively).

Corollary 5.4 Let G0 be a planar graph. If its subgraph G0 − x − y has maximum
degree 3, then cr(G0 +xy) = d ′

0(x, y) = d∗
0 (x, y). In particular, the crossing number

of G0 + xy is computable in linear time.

Another corollary is an approximation formula for the crossing number of near-
planar graphs if the maximum degree is bounded.

Corollary 5.5 Let G0 be a planar graph. If the graph G0 − x − y has maximum
degree �, then

d ′
0(x, y) ≤ cr(G0 + xy) ≤

⌊
�

2

⌋

d ′
0(x, y).

and
⌊

�

2

⌋−1

d∗
0 (x, y) ≤ cr(G0 + xy) ≤ d∗

0 (x, y).

Proof Observe that d∗
0 (x, y) ≤ ��

2 �d ′
0(x, y) because there are at most ��

2 � edge-
disjoint cycles through any vertex and d∗

0 (x, y) is defined by a collection of d∗
0 (x, y)

nested cycles (cf. Theorem 4.3). �

Corollary 5.5 is an improvement of a theorem of Hliněný and Salazar [7] who
proved the result with the factor � instead of ��

2 �.
A graph G is said to be d-edge-apex if G has a vertex z of degree at most d + 1

such that G − z is planar. Let us observe that every near-planar graph is essentially
1-edge-apex (subdivide the planarizing edge in order to create z).
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Problem 5.6 Is there a result similar to Corollary 5.4 for 2-edge-apex cubic graphs?

6 NP-Hardness of wcr(·) for Near-Planar Graphs

Consider the following decision problem:

WEIGHTED CROSSING NUMBER

Input: G,k, where G is an edge-weighted graph and k > 0.
Question: Is wcr(G) ≤ k?

This problem is NP-complete because it generalizes the problem CROSSING NUM-
BER , which is NP-complete [5]. We will see that this problem remains NP-complete
when restricted to near-planar graphs. We will use the notation [n] = {1, . . . , n}.

Let a1, . . . , an be natural numbers, and let S = ∑
i∈[n] ai . We define the edge-

weighted graph G(a1, . . . , an) as follows (cf. Fig. 4):

• its vertices are u1, . . . , un and v1, . . . , vn;
• there is a Hamiltonian cycle Q = u1u2 · · ·unv1v2 · · ·vnu1, each edge of which has

weight S2;
• there are edges ei = uivi with weight ai for each i ∈ [n].

It is easy to see that G(a1, . . . , an) is near-planar: the removal of the edge u1vn

makes the graph planar, as can be seen in Fig. 5. For any subset of indices I ⊆ [n],
let s(I ) := ∑

i∈I ai .

Lemma 6.1 It holds that

2 · wcr(G(a1, . . . , an)) = min
I⊆[n]

{
(s(I ))2 + (s([n] \ I ))2

}
−

∑

i∈[n]
a2
i .

Fig. 4 The graph
G(a1, . . . , an)

Fig. 5 The graph
G(a1, . . . , an) − u1vn is planar
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Proof To simplify notation, let us take G = G(a1, . . . , an) throughout this proof.
Note that in the clean drawing of G given in Fig. 4 each edge ei intersects any other
edge ej , j 
= i, and therefore, the weighted crossing number of that drawing is

1

2

⎛

⎝
∑

i∈[n]

∑

j∈[n]\{i}
ai · aj

⎞

⎠ = 1

2

⎛

⎝
∑

i∈[n]
ai · (s([n]) − ai)

⎞

⎠

= 1

2

⎛

⎝s([n])2 −
∑

i∈[n]
a2
i

⎞

⎠ ≤ 1

2
S2.

Thus wcr(G) ≤ S2/2.
Consider a clean drawing D0 of G such that wcr(G) = wcr(D0). In the drawing

D0 cannot be that an edge of the cycle Q = u1u2 · · ·unv1v2 · · ·vnu1 participates in a
crossing, because otherwise it would contribute weight over S2 to wcr(D0) and D0

would not be optimal. Thus in the drawing D0 the cycle Q defines a closed Jordan
curve in the plane, and each edge ei is contained either in its interior region int(Q)

or in its exterior region ext(Q). Let I0 denote the set of indices i ∈ [n] such that ei

is contained in int(Q). For any two distinct indices i, j ∈ I0, the edges ei, ej cross
inside int(Q). Symmetrically, for any two distinct indices i, j ∈ [n] \ I0, the edges
ei, ej cross in ext(Q). Therefore we have

2 · wcr(D0) ≥
∑

i∈I0

∑

j∈I0\{i}
ai · aj +

∑

i∈[n]\I0

∑

j∈[n]\(I0∪{i})
ai · aj

=
∑

i∈I0

ai · (s(I0) − ai) +
∑

i∈[n]\I0

ai · (s([n] \ I0) − ai)

= (s(I0))
2 + (s([n] \ I0))

2 −
∑

i∈[n]
a2
i

≥ min
I⊆[n]

{
(s(I ))2 + (s([n] \ I ))2

}
−

∑

i∈[n]
a2
i ,

and hence

2 · wcr(G) = 2 · wcr(D0) ≥ min
I⊆[n]

{
(s(I ))2 + (s([n] \ I ))2

}
−

∑

i∈[n]
a2
i .

For the other inequality, consider a subset of indices I ∗ such that

(
s(I ∗)

)2 + (
s([n] \ I ∗)

)2 = min
I⊆[n]

{
(s(I ))2 + (s([n] \ I ))2

}
.

We can make a drawing D∗ of G where Q is drawn as a Jordan curve, the edges
ei, i ∈ I ∗ are drawn in int(Q) with each pair crossing exactly once, and the edges
ei, i ∈ [n]\I ∗ are drawn in ext(Q) with each pair crossing exactly once. We therefore
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have

2 · wcr(D∗) =
∑

i∈I∗
ai · (s(I ∗) − ai) +

∑

i∈[n]\I∗
ai · (s([n] \ I ∗) − ai)

= (
s(I ∗)

)2 + (
s([n] \ I ∗)

)2 −
∑

i∈[n]
a2
i

= min
I⊆[n]

{
(s(I ))2 + (s([n] \ I ))2

}
−

∑

i∈[n]
a2
i

and thus

2 · wcr(G) ≤ 2 · wcr(D∗) = min
I⊆[n]

{
(s(I ))2 + (s([n] \ I ))2

}
−

∑

i∈[n]
a2
i .

�

Lemma 6.2 The equality

wcr(G(a1, . . . , an)) = S2/4 −
∑

i∈[n]
a2
i /2

holds if and only if there exists I ⊂ [n] such that s(I ) = s([n] \ I ) = S/2.

Proof Note that

min
I⊆[n]

{
(s(I ))2 + (s([n] \ I ))2

}
≥ min{A2 + B2 | A + B = S,A ≥ 0,B ≥ 0} = S2/2,

and there is equality if and only if there is some I ⊂ [n] such that s(I ) = s([n] \ I ) =
S/2. The result then follows from Lemma 6.1. �

Theorem 6.3 The problem WEIGHTED CROSSING NUMBER is NP-complete for
near-planar graphs.

Proof We first show that the problem WEIGHTED CROSSING NUMBER is in NP.
In a drawing D of a graph G with wcr(D) = wcr(G) each two edges intersect at
most once: if there would be two edges e, e′ intersecting twice then they contain two
subpaths p ⊂ e,p′ ⊂ e′ with common endpoints, and we can reduce the weighted
crossing number of the drawing by replacing p by a subpath “parallel” to p′, or
by replacing p′ by a subpath parallel to p. Therefore, an optimal drawing can be
guessed in O(|V (G)|2) space as a planar graph inserting additional vertices at each
crossing and subdividing the edges appropriately; for subdividing the edges we also
have to guess along each edge in what order the crossings appear. This shows that
WEIGHTED CROSSING NUMBER is in NP.

To show NP-hardness, consider the following NP-complete problem [4].



Algorithmica

PARTITION

Input: natural numbers a1, . . . , an.
Question: is there I ⊂ [n] such that

∑
i∈I ai = ∑

i∈[n]\I ai?

Consider the function φ that maps the input a1, . . . , an for PARTITION into the input

G(a1, . . . , an), S
2/4 −

∑

i∈[n]
a2
i /2

for Weighted Crossing Number. Clearly, φ can be computed in polynomial time.
Because of Lemma 6.2 both problems have the same answer. Therefore we have
a polynomial time reduction from PARTITION to WEIGHTED CROSSING NUMBER

that only uses near-planar graphs. �
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