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Abstract

Let k be a positive integer and let G be a graph of order n ≥ k.
It is proved that the sum of k largest eigenvalues of G is at most
1
2 (
√

k +1)n. This bound is shown to be best possible in the sense that
for every k there exist graphs whose sum is 1

2 (
√

k + 1
2 )n − o(k−2/5)n.

A generalization to arbitrary symmetric matrices is given.

1 Introduction

If G is a graph of order n, let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of its
adjacency matrix A = A(G), listed in the decreasing order. In this paper
we consider the sum

Λk(G) = λ1 + λ2 + · · · + λk

of k largest eigenvalues of the graph, where 1 ≤ k ≤ n.
Study of the behavior of Λk(G) for large values of k, in particular for

k = �n
2 �, is of interest in theoretical chemistry. Roughly speaking, eigenval-

ues of molecular graphs of (conjugated) hydrocarbons correspond to energy
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levels of π-electrons, and the corresponding eigenvectors describe electron
orbitals. Therefore, the sum of the largest eigenvalues, which correspond
to orbitals with lowest energy levels, determine the total energy of the elec-
trons. Since the quantity Λ�n

2 �(G) is harder to handle analytically, Gutman

introduced the related concept of the energy of a graph, E(G) =
∑n

i=1 |λi|
to approximate Λ�n

2 �(G). Observe that E(G) = 2Λ�n
2 �(G) if G is bipartite,

since eigenvalues of a bipartite graph come in pairs, λi = −λn−i+1. Today,
there is a vast literature in this area. We refer the reader to surveys [8, 9].

Another motivation to study the quantity Λk(G) came from a result of
Gernert [6], who proved that Λ2(G) ≤ n if G is a regular graph of order n.
He conjectured that this inequality holds for all graphs. Gernert’s conjecture
was disproved by Nikiforov [11], who gave examples of graphs with Λ2(G) ≥
29+

√
329

42 n−25 > 1.122n−25 and proved that Λ2(G) ≤ 2√
3
n < 1.155n. A year

later, Ebrahimi et al. [4] (independently) discovered new counterexamples
to Gernert’s conjecture and improved the lower bound of Nikiforov:

Theorem 1.1 ([4, 11]) If G is a graph of order n, then

1
n

(λ1 + λ2) ≤ 2√
3

<
8.083

7
.

For every n ≡ 0 mod 7, there exists a graph of order n with λ1+λ2 = 8
7n−2.

We will study the sum of k largest eigenvalues in a more general setting
by considering arbitrary symmetric matrices of order n. We denote this set
by Sn = {A ∈ R

n×n | AT = A}. However, our main interest is in symmetric
n × n matrices whose entries are between 0 and 1. We will denote this set
by

Mn = {A ∈ Sn | 0 ≤ Aij ≤ 1 for 1 ≤ i, j ≤ n}.
For 1 ≤ k ≤ n, we define

τk(n) = sup{ 1
nΛk(A) | A ∈ Mn} (1)

and
τk = lim sup

n→∞
τk(n). (2)

Theorem 1.1 shows that 8
7 ≤ τ2 < 8.083

7 . It is also easy to see that
τk ≤ τk+1 for every k ≥ 1.

Let us first make a rather straightforward observation that for the study
of the quantity τk it suffices to consider 01-matrices, and in particular the
adjacency matrices of graphs. This is stated formally in the next result. We
denote by Gn ⊆ Mn the set of all adjacency matrices of graphs of order n.
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Proposition 1.2 For every integer k ≥ 1, we have

τk = sup{τk(A) | A ∈ Mn, n ≥ k}
= sup{τk(A) | A ∈ Gn, n ≥ k}
= lim sup

n→∞
{τk(A) | A ∈ Gn}.

Proof. It is easy to see that it suffices to prove the following claim. For
every integer n, every ε > 0, and every A ∈ Mn, there exists an integer
N = N(A, ε) such that for every integer r ≥ 1 there is a matrix A(r) ∈ GrN

such that τk(A(r)) ≥ τk(A) − ε.
Let n, ε, A, and r be as above. Since τk(A) is a continuous function of

the entries of A, there exists a rational matrix B ∈ Mn such that τk(B) ≥
τk(A) − ε

2 . Let q be the least common multiple of the denominators of all
rational entries of B, and let N = nq. For 1 ≤ i ≤ n and 1 ≤ j ≤ n, let
dij = rqBij. Clearly, dij is an integer that is smaller or equal to rq. Let Cij

be a symmetric 01-matrix of order rq, in which each row and each column
contains precisely dij 1’s. (It is easy to see that such matrices exist.) Finally,
let C be the matrix of order rN = nrq, which is composed of blocks Cij ,
1 ≤ i ≤ n, 1 ≤ j ≤ n.

It is easy to see that every eigenvalue λi(B) of the matrix B gives rise
to the eigenvalue νi = rqλi(B) of C. (The corresponding eigenvector is just
a “lift” of an eigenvector of B.) Therefore,

τk(C) ≥ 1
nrq

k∑
i=1

νi =
1
n

k∑
i=1

λi(B) = τk(B) ≥ τk(A) − ε

2
.

Clearly, C is a 01-matrix, but it may happen that C /∈ GrN since its diagonal
entries may be nonzero. However, we set A(r) ∈ GrN to be the matrix
obtained from C by replacing all diagonal elements with zeros. Then it is
easy to see that λi(A(r)) ≥ λi(C) − 1. Thus, if we take N to be larger than
2nε−1, we conclude that

τk(A(r)) ≥ τk(C) − k

rN
≥ τk(C) − ε

2
≥ τk(A) − ε.

Trivially, τk ≤ k. It is also easy to prove that τk ≤ √
k, simply by using

the Cauchy-Schwartz inequality. The main result of this note is an improved
upper bound for τk:
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Theorem 1.3 For every integer k ≥ 2, we have τk ≤ 1
2(1 +

√
k).

The proof of the theorem is given in Section 2.
For k = 2, the bound of Theorem 1.3 is weaker than Nikiforov’s bound in

Theorem 1.1. It is also unlikely that it is best possible for other values of k.
However, examples provided in Section 3 show that the bound of Theorem
1.3 is essentially best possible if k is large enough.

Theorem 1.4 Let q be an odd prime power and let k = q2 − q + 1. Then

τk ≥ (√k + 1
)(

1
2 − 1

4k−1/2 + 1
16k−1 − 1

16k−3/2 + O(k−2)
)
.

The proofs of this result and of the following corollary, which describes
almost exact asymptotic behavior of τk, are given in Section 3.

Corollary 1.5 For every k ≥ 2 we have

1
2

(√
k + 1

2

)− o(k−2/5) ≤ τk ≤ 1
2 (1 +

√
k).

By shifting and scaling, Theorem 1.3 implies a result which holds for the
sum of k largest (or smallest) eigenvalues of an arbitrary symmetric matrix.

Theorem 1.6 If a, b are real numbers, where a < b, and n is an integer,
let Sa,b

n be the set of all matrices A ∈ Sn whose entries are between a and b.
Then for every integer k, 2 ≤ k ≤ n, and every A ∈ Sa,b

n we have

τk(A) ≤ b − a

2
(1 +

√
k) + max{0, a}.

Proof. Let Q be the all-1-matrix, and consider the matrix B = A − aQ.
Then 1

b−a B ∈ Mn. By Theorem 1.3,

k∑
i=1

λi(B) ≤ n

2
(1 +

√
k)(b − a). (3)

It is known that largest eigenvalues of the sum of two matrices are ma-
jorized by the sum of the eigenvalues of the two matrices (cf., e.g., [10,
Theorem 4.3.27]). In our case this gives:

k∑
i=1

λi(A) ≤
k∑

i=1

λi(B) +
k∑

i=1

λi(aQ). (4)

Since
∑k

i=1 λi(aQ) is at most 0 if a ≤ 0, and is equal to an if a ≥ 0, the
inequality of the theorem follows from (3) and (4).
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2 Proofs

For A ∈ Sn, let us denote by σ2(A) the �2-norm of A,

σ2(A) =

(
1
2

n∑
i=1

n∑
j=1

|Aij |2
)1/2

.

We shall need an estimate on the eigenvalues of A in terms of σ2(A).

Lemma 2.1 If A ∈ Sn has eigenvalues λ1, . . . , λn, then

λ2
1 + λ2

2 + · · · + λ2
n = 2

(
σ2(A)

)2
.

Proof. Since A is symmetric, we have (A2)ii =
∑n

j=1 A2
ij . Therefore,

2σ2(A)2 = tr(A2) =
∑n

i=1 λ2
i .

Let q = (q1, . . . , qn)T and Q = qqT . Then Q is a symmetric matrix of
rank 1 with its only nontrivial eigenvalue κ = tr(Q) = ‖q‖2. Clearly, the
corresponding eigenvector is q.

Given a matrix A ∈ Sn, we define its q-complement as the matrix A′,
defined by A′ = Q−A, where Q = qqT is as above. Let λ1 ≥ λ2 ≥ · · · ≥ λn

be the eigenvalues of A in the decreasing order, and let λ′
1 ≥ λ′

2 ≥ · · · ≥ λ′
n

be the eigenvalues of A′.

Lemma 2.2 (a) λ1 + λ′
1 ≥ ‖q‖2.

(b) λi + λ′
n−i+2 ≤ 0 for i = 2, 3, . . . , n.

Proof. Part (b) is a version of Weyl inequalities; we give a self-contained
proof for completeness. Let us recall the Courant-Fischer min-max charac-
terization of the ith eigenvalue of a symmetric matrix:

λi = min
U

max
x∈U,‖x‖=1

〈Ax, x〉 (5)

where the minimum is taken over all (n − i + 1)-dimensional subspaces U
of R

n. Now, let y1, . . . , yi−2 be the eigenvectors of A′ corresponding to the
smallest i − 2 eigenvalues. If U ′ is an (n − i + 1)-dimensional subspace of
R

n which is orthogonal to all vectors y1, . . . , yi−2, then 〈A′x, x〉 ≥ λ′
n−i+2

for every x ∈ U ′ with ‖x‖ = 1. If we also ask that U ′ is orthogonal to
q, then 〈Qx, x〉 = 0 for every x ∈ U ′. By restricting the minimum in (5)
only to spaces U ′ that are orthogonal to y1, . . . , yi−2 and to q (if q is not a
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linear combination of y’s, then U ′ is uniquely determined), then we get the
inequality

λi ≤ min
U ′ max

x∈U ′,‖x‖=1
〈Ax, x〉

= min
U ′ max

x∈U ′,‖x‖=1
(〈Qx, x〉 − 〈A′x, x〉)

≤ −λ′
n−i+2.

This proves (b).
To prove (a), observe that tr(A) + tr(A′) = tr(Q) = ‖q‖2. Therefore

n∑
i=1

λi +
n∑

i=1

λ′
i = λ1 + λ′

1 +
n∑

i=2

(λi + λ′
n−i+2) = ‖q‖2.

By using (b), inequality (a) follows.

We are now ready for the proof of Theorem 1.3. By Proposition 1.2,
it suffices to prove that the adjacency matrix of any graph of order n ≥ k
satisfies τk(A) ≤ 1

2(1 +
√

k). By using the above notation, let us define
α = ( 1

nσ2(A))2 and α′ = ( 1
nσ2(A′))2, where A′ is the q-complement of A.

At this point we will take q = (1, . . . , 1)T , so Q is the all-1-matrix, and
‖q‖2 = n. Then

α + α′ =
1

2n2

n∑
i=1

n∑
j=1

(
A2

ij + (1 − Aij)2
)

=
1

2n2

n∑
i=1

n∑
j=1

(
1 + 2A2

ij − 2Aij

)

=
1
2
. (6)

Let us define νi = max{0, λi}. Lemma 2.2 implies that ν2
i ≤ λ

′2
n−i+2 for

i = 2, . . . , n. Part (a) of the same lemma shows that λ1 +λ′
1 ≥ n. By setting

t = 1
nλ1, we derive therefrom that

λ2
1 + λ

′2
1 ≥ t2n2 + (1 − t)2n2 = (1 − 2t(1 − t))n2. (7)
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The above inequalities will be used in the following estimates:

n2 = 2n2(α + α′) = 2σ2
2(A) + 2σ2

2(A
′)

=
n∑

i=1

λ2
i +

n∑
i=1

λ
′2
i

≥ λ2
1 + λ

′2
1 +

k∑
i=2

ν2
i +

k∑
i=2

λ
′2
n−i+2

≥ λ2
1 + λ

′2
1 + 2

k∑
i=2

ν2
i

≥ (1 − 2t(1 − t))n2 + 2
k∑

i=2

ν2
i .

This shows that
∑k

i=2 ν2
i ≤ t(1 − t)n2. An application of the Cauchy-

Schwartz inequality now yields:

( k∑
i=2

νi

)2

≤ (k − 1)
k∑

i=2

ν2
i

≤ (k − 1)t(1 − t)n2.

Therefore,
k∑

i=2

λi ≤
k∑

i=2

νi ≤ n
√

(k − 1)t(1 − t).

Finally, we conclude that

τk(A) ≤ t +
√

(k − 1)t(1 − t). (8)

The parameter t in (8) is between 0 and 1, and a routine calculation shows
that the right hand side has maximum value at t = 1

2(1 + k−1/2). The value
at this point is equal to 1

2 (1 + k1/2), so we conclude that

τk(A) ≤ 1
2
(1 +

√
k). (9)

This completes the proof of Theorem 1.3.
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3 Examples

The proof of Theorem 1.3 shows that graphs whose sum of the largest k
eigenvalues would be close to the derived upper bound, will have eigenval-
ues λ2, . . . , λk close to 1

2nk−1/2, and their complements will have smallest
eigenvalues close to −1

2nk−1/2. There are some well studied familes of graphs
whose eigenvalues exhibit such “extreme” behavior. We shall examine them
in more detail in order to provide lower bounds on τk. In particular, we
shall prove Theorem 1.4 and Corollary 1.5. We are assuming basic famil-
iarity with the notion of strongly regular graphs and refer to [3] or [7] for
details.

Taylor [14] described a construction of strongly regular graphs, which
are known today as Taylor graphs, cf. [3]. They are related to the notion of
two-graphs. We shall need a family of Taylor graphs (originally described
in [13]) that can be obtained as follows.

Let q be an odd prime power, and let H be a non-degenerate Her-
mitian form in PG(2, q2) with the corresponding Hermitian curve U . Note
that |U | = q3 + 1. Let Δ be the set of triples {x, y, z} from U such that
H(x, y)H(y, z)H(z, x) is a square in the field GF(q2) if q ≡ 3 (mod 4), and
is a non-square in GF(q2) if q ≡ 1 (mod 4). Let H(q) be the set of all graphs
G with vertex set U such that the triple {x, y, z} of vertices is in Δ if and
only if x, y, z induce a subgraph with an odd number (i.e., eithe 1 or 3) of
edges. Taylor proved that H(q) is non-empty and that for every u ∈ U , there
is a unique graph Gu ∈ H(q), in which the vertex u has degree 0. Its vertex-
deleted subgraph H ′

q = Gu − u is one of the Taylor graphs. It is a strongly
regular graph of order n = q3 and with parameters

(
q3, 1

2(q − 1)(q2 + 1),
1
4 (q − 1)3 − 1, 1

4 (q − 1)(q2 + 1)
)
. Finally, the complement H ′

q of H ′
q is also a

strongly regular graph. Its parameters can be easily computed:(
q3, 1

2(q + 1)(q2 − 1), 1
4(q + 3)(q2 − 3) + 1, 1

4(q + 1)(q2 − 1)
)
.

The parameters of a strongly regular graph determine its eigenvalues and
their multiplicities (cf., e.g., [7, Section 10.2]). The eigenvalues are λ1 =
1
2 (q+1)(q2−1) (simple eigenvalue), λ2 = 1

2(q2−1) (with multiplicity q(q−1)),
and λn = −1

2(q + 1) (with multiplicity (q − 1)(q2 + 1)). So, if we take
k = q2 − q + 1, we get

τk(H ′
q) =

1
2q3

(q + 1)(q2 − 1) +
1

2q3
(q2 − 1) · q(q − 1)

=
q4 − 1
2q3

.
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A routine calculation now gives the following lower bound on τk(H ′
q)

τk(H ′
q) ≥

(√
k + 1

)(
1
2 − 1

4k−1/2 + 1
16k−1 − 1

16k−3/2 + O(k−2)
)

(10)

if k = q2 − q + 1 and q is an odd prime power. This completes the proof of
Theorem 1.4.

Since there is a prime between every integer x and x + o(x3/5) (see,
e.g., [2]) and since τk is non-decreasing in terms of k, we conclude from (10)
that

τk ≥ (√k + 1
)(

1
2 − 1

4k−1/2 − o(k−9/10)
)

for every k. This yields Corollary 1.5.

At the end we provide some further families of graphs and estimates for
the values of τk(G) which may be of certain interest.

Let n be a prime that is congruent to 1 modulo 4. The Paley graph Pn

of order n has vertex set V = {0, . . . , n − 1}, and two vertices i, j ∈ V are
adjacent if and only if i − j is a non-zero square modulo n, i.e., i 
= j and
there exists an integer x such that i− j ≡ x2 (mod n). It is well known that
Pn is a strongly regular graph with eigenvalues λ1 = n−1

2 and λi = 1
2(
√

n−1)
for i = 2, . . . , k, where k = n−1

2 ; see, e.g., [7] for details. Therefore,

τk(Pn) =
n − 1
2n

+
k − 1
2n

(
√

n − 1) =
1
4
(
√

n + 1) − o(1).

This implies that

τk ≥ 1
4
(
√

2k + 1 + 1). (11)

Somewhat similar eigenvalue behavior can be found in the Latin square
graphs (see [7, Section 10.4]). If OA(N, d) is an orthogonal array, it defines
a strongly regular graph with parameters (N2, d(N − 1), N − 2+ (d− 1)(d−
2), d(d − 1)) (see, e.g., [7] for definitions). The “extremal” behavior with
respect to τk in this family of graphs is achieved for d ≈ 1

3N , where it gives
the bound

τk ≥ 2
√

3
9

(
√

k + 1)(1 + o(1)) > 0.3849 (
√

k + 1)(1 + o(1))

for k = d(N − 1). Orthogonal arrays with d as large as 1
3N exist if N is a

prime power, and the added factor (1 + o(1)) compensates for the missing
values of k.

9



Random graphs exhibit similar eigenvalue behavior as Paley graphs, but
provide slightly weaker estimates for τk. Nevertheless, these are interesting
examples, and we shall provide some more details.

The largest eigenvalue of random graphs G(n, 1/2) is almost surely close
to n

2 , and all other eigenvalues almost surely have absolute value O(
√

n).
This was proved by Füredi and Komlós [5]. Wigner’s paper [15] gives
the density of the eigenvalue distibution of random graphs (see also [1]).
Wigner’s semicircle law shows that the number of eigenvalues that are
greater than t

√
2n is approximately equal to

kn(t) =
2n
π

∫ 1

t

√
1 − x2 dx =

n

2π
(2t
√

1 − t2 − 2 arcsin(t) + π)

and the sum of these eigenvalues is approximately

sn(t) =
2n3/2

π

∫ 1

t
x
√

1 − x2 dx =
2n3/2

3π
(1 − t2)3/2.

By using the value t0 = 0.293435 (for which experiments show to give almost
best possible bound), we obtain the following lower bound for k = kn(t0):

τk ≥ sn(t0)
n

(1 + o(1)) > 0.32985
√

k (1 + o(1)).

There is a strongly regular graph with parameters (276,135,78,54), known
also as the Conway-Goethals-Seidel graph. This graph is described in [7,
p. 263]. For k = 24 it gives

τk > 0.4643397(
√

k + 1).

Parameters k τk(G)/
(√

k + 1
)

(736,364,204,156) 47 0.4766713
(800,376,204,152) 48 0.4742562
(931,450,241,195) 76 0.4725182
(540,266,148,114) 46 0.4702009
(784,348,182,132) 49 0.4687500

Table 1: Some strongly regular graphs give extremal behavior for τk.

Among small strongly regular graphs, there are even better candidates.
Some feasible parameters (taken from the list calculated by Gordon Royle
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[12]) give constants quite close to 1
2 . Some of them are collected in Table 1.

The table shows the parameters of the selected strongly regular graph, the
corresponding value of k, and the value of τk(G)/(

√
k + 1) for this graph.

Acknowledgement: The author is indebted to Andries Brouwer, Willem
Haemers, and Jack Koolen for some correspondence concerning Taylor graphs.
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