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Abstract

A k-list-assignment for a graph G assigns to each vertex
v of G a list L(v) of admissible colors, where |L(v)| >
k. A graph is k-list-colorable (or k-choosable) if it
can be properly colored from the lists for every k-list-
assignment.

We prove the following conjecture posed by
Thomassen in 1994: “There are only finitely many list-
color-critical graphs with all lists of cardinality at least
5 on any fixed surface.” This generalizes the well-known
result of Thomassen on the usual graph coloring case.
We use this theorem and specific parts of its proof to
resolve the complexity status of the following problem
about k-list-coloring graphs on a fixed surface S, where
k is a fixed positive integer.

Input: A graph G embedded in the surface S.

Question: Is G k-choosable? If not, provide a
certificate (a list-color-critical subgraph and the corre-
sponding k-list-assignment).

The cases k = 3,4 are known to be NP-hard
(actually even IT5-complete), and the cases k = 1,2
are easy. Our main results imply that the problem
is tractable for every k > 5. In fact, together with
our recent algorithmic result, we are able to solve it in
linear time when k& > 5. Our proof yields even more: if
the input graph is k-list-colorable, then for any k-list-
assignment L, we can construct an L-coloring of G in
linear time. This generalizes the well-known linear-time
algorithms for planar graphs by Nishizeki and Chiba
(for 5-coloring), and Thomassen (for 5-list-coloring).

We also give a polynomial-time algorithm to resolve
the following question:

Input: A graph G in the surface S, and a k-list-
assignment L, where k£ > 5.
Question: Does G admit an L-coloring? If not,
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provide a certificate for this. If yes, then return an L-
coloring.

If the graph G is k-list-colorable, then our first
result gives a linear time solution. However, the second
problem is more general, since it provides a coloring (or
a small obstruction) for an arbitrary graph in S.

We also use our main theorem to prove another
conjecture that was proposed recently by Thomassen:
“For every fixed surface S, there exists a positive
constant ¢ such that every 5-list-colorable graph with n
vertices embedded on S, has at least ¢-2™ distinct 5-list-
colorings for every 5-list-assignment for G.” Thomassen
himself proved that this conjecture holds for usual 5-
colorings.

In addition to all these results, we also made partial
progress towards a conjecture of Albertson concerning
coloring extensions and a progress on similar questions
for triangle-free graphs and graphs of larger girth.

Keywords: List-Coloring, Critical Graphs, Sur-
face

1 List-coloring

Graph coloring is arguably the most popular subject in
graph theory. Also, it is one of the central problems in
combinatorial optimization, since it is one of the hardest
problems to approximate. An interesting variant of the
classical problem of properly coloring the vertices of
a graph with the minimum possible number of colors
arises when one imposes some restrictions on the colors
or the number of colors available to particular vertices.
This variant received a considerable amount of attention
by many researchers, and that led to several beautiful
conjectures and results. This notion, known as [ist-
coloring, was first introduced in the 1970s, in two papers
by Vizing [34] and independently by Erdés, Rubin and
Taylor [10].

Let G be a graph. A list-assignment is a function
L which assigns to every vertex v € V(G) a set L(v)
of natural numbers, which are called admissible colors
for that vertex. An L-coloring of G is an assignment
of admissible colors to all vertices of G, i.e., a function
¢: V(G) — N such that ¢(v) € L(v) for every v € V(G),
such that for every edge uv we have c(u) # c(v). If k is
an integer and |L(v)| > k for every v € V(G), then L
is a k-list-assignment. The graph is k-list-colorable (or
k-choosable) if it admits an L-coloring for every k-list-
assignment L. If L(v) = {1,2,...,k} for every v, then
every L-coloring is referred to as a k-coloring of G. If
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G admits an L-coloring (k-coloring), then we say that
G is L-colorable (k-colorable).

The smallest integer k such that G is k-choosable
is the list-chromatic number x;(G). Clearly, x(G) <
Xi(G), and there are many graphs for which x(G) <
Xi(G). A simple example is the complete bipartite graph
K54, which is not 2-choosable. Another well-known
example is the complete bipartite graph K3 3. In fact,
it is easy to show that for every k, there exist bipartite
graphs whose list-chromatic number is bigger than k.
Let G be a graph and let L be a list assignment for G.
We say that G is L-critical if G is not L-colorable but
every proper subgraph of G is. The graph G is k-list-
critical if there is a k-list-assignment L such that G is
L-critical.

The problem of computing or determining the list-
chromatic number of a given graph is notoriously dif-
ficult, even for small graphs with a simple structure.
One example is that the complete bipartite graph K5 g
is 3-choosable, but a proof given in [18] is lengthly and
nontrivial. It is shown in [13] that k-list-colorability
is I15-complete for every k > 3; see also Theorem 1.1.
Hence if the complexity classes NP and coN P are dif-
ferent, as is commonly believed, the problem is strictly
harder than the NP-complete problems.

Although there are many negative results as stated
above, there are some positive results, which are mainly
related to the Four Color Theorem. The most cel-
ebrated example is Thomassen’s result that planar
graphs are 5-choosable [27]. Its beautiful short proof
gives rise to a linear-time algorithm to 5-list-color pla-
nar graphs. In contrast with the Four Color Theorem,
there are planar graphs that are not 4-choosable [32].

Let us point out that deciding about the choice
number of planar graphs is actually hard. In fact, the
following was proved by Gutner [13] (see also survey
33]).

THEOREM 1.1. The problems of deciding whether a
giwen planar graph is 4-choosable and of deciding
whether a given triangle-free planar graph is 3-choosable
are both I15-complete.

Leaving the plane to consider graphs on surfaces of
higher genus, the chromatic and list chromatic number
can increase. However, for graphs which obey certain
local planarity conditions, one can deduce similar prop-
erties as for planar ones. We say that a graph G embed-
ded in a surface S is locally planar if it does not contain
short non-contractible cycles. Quantitatively, we intro-
duce the edge-width of G as the length of a shortest
cycle which is non-contractible in S. We also define the
face-width of G as the minimum number of points of G
that some non-contractible closed curve in S intersects.
Thomassen proved in [28] that graphs embedded in S
with sufficiently large edge-width are 5-colorable. More
than 10 years ago, he asked if they are also 5-choosable.
This was answered recently in the affirmative in [6].
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THEOREM 1.2. (DEVOS, KAWARABAYASHI, MOHAR)
For every surface S there exists a constant w such that
every graph that can be embedded in S with edge-width
at least w is 5-choosable.

If G is a graph of girth at least w, then its edge-
width in every surface is at least w. For arbitrarily
large values of w, there exist graphs of girth w with
arbitrarily large chromatic number [9]. Therefore, the
constant w in Theorem 1.2 necessarily depends on the
surface.

The proof of Theorem 1.2 in [6] uses a result of
Robertson and Seymour, whose proof in [21] does not
yield an explicit bound on the value of w = w(S) needed
in the proof. However, there are more specific results
which show that one can take w = 2909 where g is the
Euler genus of S. See [19, Chapter 5] for more details.
Béhme et al. [4] proved that the best possible value of
w for the projective plane is 4. Apart from the planar
case, this is the only surface, for which the minimum
width forcing 5-choosability is known.

THEOREM 1.3. (BOHME, MOHAR, AND STIEBITZ [4])
A graph G embedded in the projective plane is 5-
choosable if and only if it does not contain Kg as a
subgraph.

From an algorithmic point of view, the following is
perhaps the most interesting question in this area.

CONJECTURE 1.1. For any fized surface S, there is a
polynomial-time algorithm to decide whether a given
graph embedded on S is 5-choosable.

In general it is hard to provide a certificate for k-
choosability since there are exponentionally many dis-
tinct k-list-assignments for which list-colorability has to
be established. The following conjecture of Thomassen
is therefore a key property neeeded for the resolution of
Conjecture 1.1.

CONJECTURE 1.2. (THOMASSEN [28]) For every fized
surface S, there are only finitely many 5-list-critical
graphs that can be embedded in S.

2 Owur Main Results

The main purpose of this paper is to prove both
Conjectures 1.1 and 1.2, and moreover, provide a linear-
time algorithm for deciding 5-choosability of graphs on
a fixed surface.

THEOREM 2.1. For every fized surface S, there are only
finitely many 5-list-critical graphs that can be embedded
in S.

This generalizes a well-known result on the usual
graph coloring case proved by Thomassen [28]. We use
Theorem 2.1 and the details from its proof to address
the complexity status of the following question on list-
coloring graphs on a fixed surface S.
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Input: A graph G in the surface S.
Question: Is G k-list-colorable? If so, give a k-list-
coloring for any prescribed k-list-assignment.

When k is 3 or 4, Theorem 1.1 shows that the
problem is NP-hard. Actually, it is II5-complete, as
proved by Gutner [13]. Since the problem is easy when
k < 2, the remaining cases are when k > 5.

Theorem 2.1 yields a positive answer to Conjecture
1.2. However, our next result yields much better time
complexity.

THEOREM 2.2. For each fized surface S and each k >
5, there is a linear-time algorithm to decide about k-list-
colorability of any graph G embeddable in S. In fact,
if G is not k-list-colorable, then the algorithm returns
a certificate (a list-color-critical subgraph) of constant
size. Moreover, if the answer is yes, then for any given
k-list-assignment L, the algorithm returns an L-coloring
of G in linear time.

This generalizes the well-known linear-time algo-
rithms for planar graphs by Nishizeki and Chiba [20] (for
5-coloring), and by Thomassen [27] (for 5-list-coloring).

We also use Theorem 2.1 to prove the following,
more general algorithmic result.

THEOREM 2.3. Given a graph G in a fived surface S,
and given a k-list-assignment L (with k > 5), there
is a polynomial-time algorithm to decide if G has an
L-coloring or not. If the answer is no, then the
algorithm gives a certificate of bounded size for this, and
if the answer is yes, the algorithm returns a desired L-
coloring.

If the graph G is k-list-colorable, then our first re-
sult gives a linear time solution. However, the algorithm
in Theorem 2.2 is more general, since it provides a col-
oring (or a small obstruction) for an arbitrary graph
embedded in S.

We also answer a question posed by Thomassen
[30, 31]. Namely:

THEOREM 2.4. For every fixed surface S, there exists a
positive constant ¢ such that every 5-list-colorable graph
with n vertices on S has at least ¢- 2™/ distinct 5-list-
colorings from any given 5-list-assignment.

We give an analogous result for k-list-colorings for
every integer k > 5.

Albertson [1] conjectured that for every surface S
there exists an integer ¢ = ¢(S) such that any graph G
embedded in S contains a set U of at most ¢ vertices
such that G — U is 4-colorable. Such a result does not
hold for list colorings since there exist planar graphs
that are not 4-choosable [32]. However, Theorem 2.1
implies such a result for 5-list-colorings. In fact, in [16],
it was shown that ¢ = ¢(S) < 1000g, where g is the
Euler genus of S. Our results yield the same result
(with worse upper bound on ¢(5)).
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The following question was asked by Albertson [2]
(see also Thomassen [28]):

Let G be a planar graph and W C V(G) such that
any two vertices in W have distance at least 100 from
each other. If L is a 5-list-assignment for G, can any
precoloring of W be extended to an L-coloring of G ¢

Albertson himself [2] answered this question for the
usual graph coloring case. In fact, his theorem says
that the distance 4 is enough instead of 100. However,
his proof uses the Four Color Theorem, and his proof
method breaks down for the list-coloring case.

We partially answer this question. Namely, when
|[W| < k, and the distance between any two vertices in
W is at least f(k) for some integer value f(k) depending
only on k, then the above question has a positive answer.
We also generalize this result to graphs on a fixed surface
with large edge-width. See Theorem 6.1.

Related Work. In early 1990’s, Thomassen formu-
lated the following program concerning study of graph
colorings on a fixed surface.

Question 1. Suppose G is embedded into the
surface S with large edge-width. What is the chromatic
number of G7 Is it 5-colorable? Is it even 4-colorable?

Question 2. Is there a polynomial-time algorithm
to decide, for a fixed integer k > 4 and a fixed surface 5,
whether a given graph G embedded in S is k-colorable?

Question 3. Given the surface S, is the number of
(k + 1)-color-critical graphs embeddable in S finite?

Let us first observe that positive answer to Question
3 for a fixed k would imply both Questions 1 and 2 in
the affirmative for the same k. To see this, simply test if
the input graph G has a subgraph isomorphic to one of
the finitely many (k + 1)-color-critical graphs. In fact,
this algorithm can be implemented to run in linear time
using the result that was proved later by Eppstein [11].
Furthermore, when the number of (k + 1)-color-critical
graphs is finite, we also have an explicit bound on the
maximum order of such graphs, which only depends
on the Euler genus of S, and hence we not only know
that the algorithm exists, but we can actually construct
it. Note also that the cases £ < 2 for Question 2 are
easy, while the case k = 3 has negative answer for all
questions, if P # N P, since it is NP-complete to test 3-
colorability of planar graphs. Therefore, Questions 1-3
make sense only when k > 4.

Question 1 was resolved by Thomassen [26] for k >
5, while the case k = 4 is negative, see [19]. Thomassen
[28] also answered Question 3 in the affirmative when
k > 5, while the case k = 4 is negative, see [19]. Thus
Question 2 is also answered in the affirmative when
k > 5. The only remaining case is k = 4 of Question
2. When S is the sphere, the result follows from the
Four Color Theorem, but the prospects for a general
solution are not at all bright, since we would need a far
generalization of the Four Color Theorem.
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In the late 1990’s, Thomassen also posed versions
of Questions 1-3 for triangle-free graphs and for graphs
of girth at least 5. In [29], he solved all questions for
graphs of girth at least 5. Recently, Dvordk, Krédl and
Thomas [8] have settled the second question for all k for
triangle-free graphs.

In the middle 1990’s, Thomassen has also proposed
to study Questions 1-3 for list-colorings. In [27] he
proved that every planar graph is 5-list-colorable, and
Voigt [32] has constructed a planar graph that is not
4-list-colorable. So, Questions 1 and 3 make sense only
when k > 5 or k < 2. Also by Theorem 1.1, the cases
k = 3,4 for Question 2 do not make sense, while the
cases k = 1,2 are easy by the result in [9]. Question 1
was answered in the affirmative recently, see Theorem
1.2. There is another direction for these problems.
Kawarabayashi and Thomassen [16] proved that every
graph on the surface S of Euler genus g has a vertex
set X of order at most 1000g such that G — X is 5-list-
colorable.

In this paper, together with the previous results, we
completely solve Questions 2 and 3 for list-coloring. In
the last section, we shall discuss Questions 1-3 for list-
colorings of triangle-free graphs and graphs of girth at
least 5.

An overview of our approach. All algorithmic ap-
plications will use Theorem 2.1. Its lengthy proof also
shows how the algorithms work. So we need to give
an overview for the proof of this theorem. In the next
section, we shall discuss the algorithmic applications to-
wards Theorems 2.2 and 2.3.

Let G be a graph embedded on a fixed surface .5,
whose Fuler genus is g. If G has edge-width at least
w(g), as in Theorem 1.2, then G is 5-list-colorable by
Theorem 1.2. Thus the edge-width of G is “small” when
G is not 5-list-colorable. To handle graphs of small
edge-width, we will cut the graph G and the surface S
along shortest non-contractible cycles. That simplifies
the surface, but duplicates some vertices, and we have to
make sure that the two copies of the same vertex receive
the same color. In other words, we have to extend
Theorem 1.2 to graphs that are partially precolored.
To formalize this approach, we introduce the following
definition. For i = 1,...,1, let C; C V(G) be a set
such that all vertices in C; lie on the boundary of some
face F;, where F1, ..., F} are pairwise distinct faces. We
call Cq,...,C; cuffs, since one can make them to lie
on distinct boundary components, after cutting holes in
Fy, ..., F;. We say that G is a cuffed graph with cuffs
Ci,...,Cy if G is embedded into S and the cuffs are
disjoint. We define the breadth of the cuffed graph G as
the sum |Cy| + -+ + |Cy].

We will show that if G is a cuffed graph of breadth
f(1) with the cuffs Ci,...,C}, the edge-width is suffi-
ciently large, and in addition, the cuffs Cy,...,C; are
pairwise “far apart”, then any precoloring of C1U- - -UC
extends to an L-coloring of G (if the lists have size at
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least 5), unless there is a local obstruction for such a
coloring extension. To clarify what “far apart” means,
we need the metric developed by Robertson and Sey-
mour [23, 24] in the Graph Minors Project. Roughly
speaking, if S is not sphere and the face-width is large,
then the metric is as follows: for two points a,b on the
surface, the distance between a and b is small if there is
a contractible closed curve J that contains both a and
b in its (closed) interior and intersects the graph only in
a small number of points. If S is the sphere, then this
metric is close to the usual “face-distance”, except that
we also consider contractible curves J with a,b in the
different component of S — J into account.

If some pair of the cuffs are not “far apart”, then
we just take a shortest curve J (certifying for them to
be close), cut along J, and either merge the two cuffs
or simplify the problem by either reducing the genus or
the number of cuffs. If the face-width is small, then we
can simplify the surface. In both cases, we can simplify
the cuffed graph. Since Euler genus is fixed, therefore,
if we simplify the cuffed graph as much as possible, then
the resulting graph G’ is a cuffed graph of breadth f(I)
with the cuffs C1,...,Cy, where I’ is bounded in terms
of [ and g, and the edge-width is sufficiently large (or
the resulting graph is planar). In addition, the cuffs
C1,...,Cp are pairwise far apart.

In summary, the proof proceeds as follows:

1. First we simplify the cuffed graph as much as
possible, keeping the breadth and the number of
cuffs bounded.

2. Then we prove the resulting cuffed graph has an L-
coloring that extends the given precoloring of the
cuffs C1,...,Cyp, unless there is a local obstruction
from the very beginning.

In the next section, we provide detailed statement of
both results. In both cases, the proofs are algorithmic.

Using a recent result by the authors [14], we can
actually implement all the steps in linear time. This
will be discussed in Section 4. In Section 5, we prove
Theorem 2.4 using Theorem 2.1 and its proof. In
Section 6, we relate our proof to Albertson’s conjecture.

3 Statements of the Main Results

As discussed in the previous subsection, we shall now
provide two results that correspond to each step in the
previous subsection. For notation not defined here, we
refer the reader to the Appendix.

THEOREM 3.1. For any non-negative integer g and pos-
itive integers q, c, there exist natural numbers f(g,c¢,q),
l(g,c) and (g, c) satisfying the following. Suppose that
G is a graph embedded on a surface S of Fuler genus
g, and H is a subgraph of G with at most q vertices
and having at most ¢ connected components. Then there
is a subgraph H' of G with at most f(g,c,q) vertices
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such that H C H' and such that for every precolor-
ing co : V(H) — N and every 5-list-assignment L for
G — V(H), one of the following holds:

(1) co cannot be extended to an L-coloring of H'.

(2) ¢o extends to an L-coloring of H', and in addition,
every vertex v in G — H' is either joined to at
most two colors in its list or v is a verter of degree
5 such that two of its neighbors receive the same
color under the L-coloring of H'. Furthermore, the
following properties are satisfied:

(a) In G — H', there are disjoint cuffs C1,...,C,
(with 1 < I(g,c)) such that all vertices in
G — H' that are joined to a vertex of H' are
in one of the cuffs Cq,...,C].

Any two cuffs among Cq, . .
at least (g, c).

If the induced embedding of G — H' is into a
surface of positive Euler genus, then the edge-
width of G — H' is at least r(g,c).

If the induced embedding of G — H' 1is into
a surface of positive Euler genus, then there
is mo contractible cycle C' of order at most
r(g,c) with int(C") containing at least one of
the cuffs C1,...,C; (except when two cuffs C;
and C; induce a cylinder; in this case, we
allow such a cycle C' in the cylinder).

If the induced embedding of G — H' 1is into
the sphere S, then there is mo contractible
cycle C" of order at most r(g,c) such that one
component of S — C’ contains exactly one of
the cuffs Cv,...,C;. There is one exception
to this condition, when one of the components
is a cylynder with two two cuffs C; and Cj;
in this case, we allow such a cycle C' that
separates the two cuffs.

If the induced embedding of G — H' is into a
surface of positive Fuler genus, then there is
no path P of length at most r(g, ¢) joining two
vertices of one of the cuffs, say C;, such that
the path P together with the cuff C; contains
a non-contractible cycle.

(b)
(c)

., C1 have distance

(d)

(¢)

()

Note that the quantifiers in Theorem 3.1 give the
strongest possible version — the same graph H’ serves
for all precolorings of H and for all 5-list-assignments
of G —V(H).

The second result is the following. Again, for
notation not defined here, we refer the reader to the
appendix. We say that G is of type (g, 1, w,t) with w > ¢
if G satisfies the following:

1. G is embedded in a surface of Euler genus g¢.

2. G is a cuffed graph with the cuffs Cy,...,C).
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3. The face-width of this embedding of G is at least
w (if g > 0).

4. d(C;,C;) > t for any 4,j with ¢ # j, where d is
the Robertson-Seymour metric (as defined in the
appendix).

PROPOSITION 3.1. For any non-negative integers g and
1, there are integers w(g,l) and t(g,l), where w(g,l) >
t(g,1), satisfying the following. Suppose G is of type
(9,1, w(g,1),t(g,1)). Suppose furthermore that each ver-
tex in any of the cuffs C; (1 <14 <1) has a list with at
least three available colors, and every vertexr not on the
cuffs has a list with at least 5 available colors. Then G
has an L-coloring.

We now clarify how Theorem 3.1 and Proposition
3.1 imply Theorem 2.1.

Suppose that G is a 5-list-critical graph on the
surface S, and has at least f(g — 1,2,2w(g)) vertices,
where the function f comes from Theorem 3.1, and w(g)
comes from Theorem 1.2. If the edge-width of G is at
least w(g), then by Theorem 1.2, G is 5-list-colorable, a
contradiction. Therefore, the edge-width of G is small.
We take a shortest non-contractible cycle C, and cut
the graph G and the surface S along C' (cf. [19]). In the
resulting graph G’, the cycle C' corresponds to a cycle
C" with 2|C| vertices (if C is one-sided) or to two cycles,
which we call ¢’ and C” (if C'is two-sided). Then the
resulting graph G’ has smaller Euler genus, and there
are one or two cuffs C’, C” obtained from C, containing
together 2|C| vertices. So this procedure simplifies the
surface on the expense of adding cuffs.

For each L-coloring of C', we apply Theorem 3.1 to
G’ and H = C'"UC” (if C is two-sided) or H = C’
(if C is one-sided). Since G is 5-list-critical and has
at least f(g—1,2,2w(g)) vertices, Theorem 3.1 implies
that there is a subgraph H’ of G’ such that any coloring
co of H extends to an L-coloring of H’, and H' satisfies
the second conclusion of Theorem 3.1. In particular, in
G — H', each vertex in any of the cuffs Cy,...,C; has a
list with at least three available colors. We now prove
that G— H' satisfies the assumptions in Proposition 3.1.
We fist observe that G—H' may consist of more than two
components. In this case, we shall apply Proposition
3.1 to each component. So, hereafter, we assume that
G — H' is connected. Note that the conditions (a)—
(f) imply that d(C;,C;) > t(g,1) for any two distinct
cuffs. The only thing we need to verify is the face-width
condition.

If G — H’ is planar, then clearly G — H' gives rise
to the assumption in Proposition 3.1.

Suppose G — H’ is embedded into a surface of
positive Euler genus g. We only need to verify the
face-width condition in Proposition 3.1. Right now, the
edge-width of G — H' is at least r(g, c). By applying a
method developed in [6], we can ensure that this is also
possible.

Since Proposition 3.1 implies that there is an L-
coloring in G — H' (and hence G is 5-list-colorable, a

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.



contradiction), Theorem 3.1 and Proposition 3.1 imply
that G has at most f(g — 1,2,w(g)) vertices. Thus,
Theorem 2.1 follows.

4 Algorithmic results: Linear time algorithms
and another polynomial-time algorithm

We first prove the following result, using Theorem 2.1.

THEOREM 4.1. For k > 5, there is a linear-time algo-
rithm for the following problem.

Input: A graph G in the surface S.

Question: Is G k-list-colorable? If not, provide a
certificate for this. If yes, then given a k-list-assignment
L, return an L-coloring of G.

Proof. For simplicity, we only consider the case
k = 5, since this case is the hardest. Some more details
for the other cases, when k > 6, will be presented
towards the end of the paper.

We first apply Theorem 2.1 to give a linear-time
algorithm to answer the decision problem. By Theorem
2.1, there are at most f(g) list-critical graphs with all
lists of cardinality 5 on the surface S of Euler genus
g. For each such list-color-critical graph H, we test
if G contains a subgraph isomorphic to H. We can
implement this task to run in linear time using a result
of Eppstein [11]. If G contains one of them, then we
output this subgraph, and the answer is clearly that G
is not 5-list-colorable.

Suppose now that G contains none of them. Then G
is 5-list-colorable. Given a 5-list-assignment L, we want
to list-color the graph G in linear time in order to fulfill
our second task. By Theorem 3.1 (with ¢ = ¢ = 0),
there is a subgraph H' of G that satisfies the second
conclusion, i.e, there is an L-coloring ¢/ of H’ that
satisfies (a)—(f) of Theorem 3.1. Our algorithm proceeds
by finding this subgraph H’ and the coloring ¢’ of H’.

In order to get H', we need the following subroutine
that is provided in [14].

THEOREM 4.2. Suppose G is embedded into a fized
surface S. For any fized k, there is a linear-time
algorithm to decide if the face-width is at least k. If the
face-width is at most k, then the algorithm finds a non-
contractible curve intersecting G in at most k points.

Our algorithm repeatedly applies Theorem 4.2, and
an algorithm to find a shortest path between two points
in G. In our proof of Theorem 3.1, we only need to find
a path of length at most r(g, ¢) between two points, and
a non-contractible cycle of length at most 7(g, ¢) in the
surface. So these processes can be done in linear time
by repeatedly applying Theorem 4.2.

After applying the two operations introduced above
at most 4g times, we can clearly get the subgraph H’
that has at most f(g) vertices, where f(g) is appropriate
constant. Since H’ has at most f(g) vertices, we can
provide all possible L-colorings for H' in constant time
(by brute force enumeration). It follows from Theorem
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3.1 that there is at least one L-coloring ¢’ that satisfies
(a)—(f) of Theorem 3.1.

As discussed in the previous section, G — H’ satisfies
the assumptions in Proposition 3.1. We now apply
Proposition 3.1 to get an L-coloring of the whole graph
G that extends some precoloring c¢g of H'. To do so,
we need the following subroutine, Theorem 4.3, to get a
minor W (as described in Theorem 4.3) rooted at the
vertices obtained from the cuffs by contracting each of

them into a single vertex. This result is also provided
in [14].

THEOREM 4.3. For any non-negative integers g,k,
there are constants f(g,k), t(g,k) and w(g, k) satisfy-
ing the following. Suppose G is embedded into a surface
S of Euler genus g with face-width at least w(g, k). Let
{v1,..., vk} be vertices in G such that d(v;,v;) > t(g, k)
if i # j, where d is the Robertson-Seymour metric.
Then for any fized cuffed graph W' embedded in S and
having at most f(k,g) wvertices, there is a linear-time
algorithm to find a rooted minor W' in G with roots
{v1,...,v} and isomorphic to W’'.

The whole argument in the proof of Proposition 3.1
can be translated into a linear-time algorithm once we
get the rooted minor, since we can reduce to problems
on planar graphs, and this case was done by Thomassen
[27, 30]. These problems can be solved in linear time.
This completes the proof of Theorem 4.1. O

We also prove the following theorem, using Theorem
2.1. As pointed out in the introduction, the following
theorem solves a more general problem than Theorem
4.1, on the expense of losing linear time complexity.

THEOREM 4.4. Let S be a surface. For every k > 5,
there is a polynomial-time algorithm for the following
problem.

Input: A graph G embedded in S and a k-list-
assignment L.

Task: Is G L-colorable? If not, provide a certificate
for this (an L-critical subgraph of constant size). If yes,
then return an L-coloring of G.

Proof. For simplicity, we only consider the case
k = 5, since other cases are easier. (We shall discuss
the cases k > 6 towards the end of the paper.)

We first apply Theorem 2.1 to obtain a polynomial-
time algorithm to answer the decision problem. By
Theorem 2.1, there are at most f(g) list-critical graphs
with all lists of cardinality 5 on the surface S.

The following lemma, whose proof easily follows
from Theorem 2.1, is useful for the proof.

LEMMA 4.1. For every surface S of Fuler genus g and
any k > 5, every list-color-critical graph G with all
lists of cardinality k on S has at most t(g,k) (non-
isomorphic) descriptions of k-list-assignments for which
G is not k-list-colorable, where t(g,k) is appropriate
integer value depending on g and k only.
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For each list-color-critical graph H, we first figure
out which 5-assignments have no valid coloring for
the subgraph H. By Lemma 4.1, there are at most
t(g, k) descriptions of 5-list-assignments for which H is
not 5-list-colorable. Therefore, we can provide all 5-
assignments that have no valid coloring for it.

For an input graph G and an input 5-list-assignment
L, we test if G contains a list-color-critical graph H
with a 5-list-assignment that has no L-coloring. If it
does, then this is certainly a good certificate for non-
colorability of G, and we output this subgraph with its
5-list-assignment.

Suppose now that G is L-colorable, and we have to
find an L-coloring. It follows from Theorem 3.1 (with
g = ¢ = 0) that there is a subgraph H’ of G that satisfies
the second conclusion, i.e., there is an L-coloring ¢y of
H' that satisfies (a)—(f) of Theorem 3.1. Our algorithm
follows the proof of Theorem 3.1 to find this subgraph
H' and its coloring ¢/. Then we use Proposition 3.1 to
extend the coloring of ¢’ to the whole graph G.

The rest of the proof is exactly the same as that of
Theorem 4.1, so we omit the details. ([

5 Exponentially many 5-list-colorings

We now describe a proof of Theorem 2.4. Our proof uses
similar ideas as that of Thomassen [31]. Suppose G is
5-list-colorable and embedded into a surface of Euler
genus g. It follows from Theorem 3.1 (with ¢ = ¢ = 0)
that there is a subgraph H' of G satisfying (a)—(f) of
Theorem 3.1. Moreover, since H' has at most f(g,0,0)
vertices, it follows that the number of vertices in one of
the cuffs C1, ..., C; that have only three available colors
is at most f(g,0,0).

When we prove Proposition 3.1, we find a subgraph
@ of G which contains all the cuffs (', ..., C;, such that
G — @ can be embedded into a disk. In addition, each
vertex of G — @ that has a neighbor in @ is in the outer
face boundary of G — ). Moreover, we prove that there
is a valid coloring of @) such that every vertex in the
outer face boundary of G — @ has a list with at least
three available colors. By taking r(g,0) in Theorem 3.1
and w(g, !) in Proposition 3.1 large enough, we can prove
that |Q] < |G|/101. All arguments needed to get such
a conclusion are given in [5]. It follows that there are
at most 2|G|/101 vertices in the outer face boundary of
G — @ that have only three available colors.

In [31], Thomassen proved the following theorem.

THEOREM 5.1. Let G be a planar near-triangulation
with the outer face boundary C. Let n be the number
of vertices of G. Suppose that every vertex in G—C has
a list with five available colors, and that every vertex
in C has a list with at least three available colors. Let
r be the number of vertices of C' with precisely three
available colors. Then G has at least 27/9~"/3 distinct
L-colorings.

Since we fix the coloring of @, which has at most
|G|/101 vertices, and there are at most 2|G|/101 vertices
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in the outer face boundary of G — @ that have only three
available colors, it follows from Theorem 5.1 that G
has at least 29/C1/101=2G1/303 distinct L-colorings. This
proves Theorem 2.4.

6 List-coloring extension

We now apply Proposition 3.1 to give a partial answer to
Albertson’s problem. In fact, we can prove the following
stronger theorem.

THEOREM 6.1. For any non-negative integers g, 1, there
are integers w'(g,1) and t'(g,l) satisfying the following.
Suppose G is embedded into a surface of Euler genus g
with face-width at least w'(g,1), and let L be a 5-list-
assignment for G. Let eq, ..., e; be edges of G such that
for any two edges e;,e; (with i # j), d(e;,e;) > t'(g,1),
where d is the Robertson-Seymour metric. Then for any
precoloring co of the endvertices of e1, ..., ey, there is an
L-coloring of G that extends the precoloring cg.

Proof. Set w(g,l) = w'(g,1) + 21 and #(g,l) =
t'(g,1) + 2 in Proposition 3.1. The graph G' = G —
{e1,...,e} clearly satisfies the assumptions in Propo-
sition 3.1. Moreover, each vertex in one of the cuffs
Cy,...,Cp in G’ has a list with three available colors.
Thus Theorem 6.1 follows from Proposition 3.1. O

7 Concluding remarks

It is not hard to see that Euler’s formula and an
application of a theorem of Gallai implies that there
are only finitely many list-color-critical graphs with all
lists of cardinality 6 on a fixed surface, see [15].

Similarly to the 5-choosability of arbitrary planar
graphs, it can be shown easily that planar graphs of
girth at least 4 are 4-choosable, and those of girth at
least 6 are 3-choosable. Thomassen [29] strengthened
the latter fact by showing that all planar graphs of girth
5 are 3-choosable. These results can be generalized to
the setting of locally planar graphs. In fact, we can
prove the following stronger results.

THEOREM 7.1. 1. There are only finitely many k-list-
critical triangle-free graphs on a fixed surface for
k > 4. Consequently, there is a polynomial-time
algorithm to decide, for any triangle-free graph on
a fixed surface, whether or not it is k-list-colorable
for k > 4.

2. There are only finitely many k-list-critical graphs of
girth at least 6 on a fixed surface S for k > 3. Also,
there is a polynomial-time algorithm to decide, for
any graph of girth at least 6 on S, whether or not
it is k-list-colorable for k > 3.

We shall only sketch the proof of Theorem 7.1 since
it only needs Euler’s formula and an application of a
theorem of Gallai.

Assuming that the graph G is critical for 4-list or
3-list-colorings (respectively), the list coloring version of
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Gallai’s theorem (see [17]) tells us that every block of
the subgraph of G induced by vertices of degree 4 or 3
(respectively) is either a clique or an odd cycle. This
already yields a contradiction if G is large since girth is
at least 4 or 6, respectively, and the Euler formula tells
us that there are n — Oy(1) vertices of degree 4 or 3,
respectively, where n is the number of vertices of G.
This theorem implies the following.

COROLLARY 7.1. 1. There is a polynomial-time algo-
rithm to approximate the list-chromatic number of
any triangle-free graph on a fized surface, with the
error of the approximation never exceeding one.

2. There is a polynomial-time algorithm to determine
the list-chromatic number x;(G) of an arbitrary
graph G of girth at least 6 on any fized surface.

The first corollary is essentially best possible in a
sense since it is IT5-complete to decide whether or not
a given triangle-free planar graph is 3-list-colorable, see
[33].

Thomassen [29] proved that for each surface S,
there are only finitely many 4-critical graphs of girth
at least 5 that can be embedded in S. This implies that
graphs of large edge-width on S having girth at least
5 are 3-colorable and raises the following question: “Is
it true that graphs of girth 5 and with sufficiently large
edge-width on a fized surface are 3-choosable?”

Appendix
Definitions and Preliminaries

Basic notation. For notation not defined here, we
refer to the book [19]. But for the sake of completeness,
let us repeat some important definitions.

A surface is a compact connected 2-manifold with-
out boundary. We assume familiarity with basic notions
of surface topology, like genus and Euler’s formula. We
define the Euler genus of a surface S as 2 — x(S), where
x(S) is the Euler characteristic of S. An arc in S is sub-
set of S homeomorphic to [0,1]. An O-arc is a subset
of S homeomorphic to a circle.

A graph G is embedded in a topological space X if
the vertices of G are distinct elements of X and every
edge of G is simple arc connecting the two vertices in
X which it joins in G, such that its interior is disjoint
from other edges and vertices. Embedding of a graph G
in the topological space X is an isomorphism of G with
a graph G’ embedded in X. In this case, G’ is said to
be a representation of G in X. If there is an embedding
of G into X, we say that G can be embedded into X .

Let G be a graph that is embedded in a surface S.
To simplify notation we do not distinguish between a
vertex of G and the point of S used in the embedding to
represent the vertex, and we do not distinguish between
an edge and the arc on the surface representing it. We
also consider G as the union of the points corresponding
to its vertices and edges.

A region or face of G in S is a connected component
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of S\ (E(G) UV(G)). Every region is an open set.
We use the notation F'(G) for the set of regions of G.
The embedding is said to be a 2-cell embedding if every
region is homeomorphic to a disc. In that case, the
boundary of every region r can be represented by a
closed walk in the graph, called a facial walk of r.

If C is a contractible cycle in a graph on a surface,
then int(C) denotes the set of vertices and edges inside
the disk bounded by C (but not on C). If S is the
sphere, the disk bounded by C is not uniquely defined.
In this case, we fix a point in S\ G and ask that the
disk does not contain that point.

If G is a graph and A is a set of vertices of G,
then G(A) is the subgraph of G induced by A, that
is, its vertex set is A and its edge set consists of all
edges in G joining two vertices of A. The edge-width of
an embedded graph G is the length of a shortest non-
contractible cycle, and the face-width is the smallest
possible cardinality of the intersection of G with a non-
contractible curve on the surface. A shortest path in a
graph is also called a geodesic.

If G is a 2-connected plane graph such that every
facial cycles, except for possibly one, is a triangle, then
G is a near-triangulation.

L-critical graphs. Let G be a graph and let L be a
list-assignment for G. We say that G is L-critical if G is
not L-colorable but every proper subgraph of G is. The
graph G is k-list-critical if there is a k-list-assignment
L such that G is L-critical.

If a vertex v in a colored (or partially colored) graph
G is joined to vertices vy, . . ., v, of colors ¢(v1), . . ., c(v,)
respectively, then we shall also say that v is joined to
the colors {c(v1),...,c(v.)}.

Robertson-Seymour metric and cuffed graphs on
a surface. In our proofs we use the notion of a radial
graph. Informally, the radial graph of a graph G that is
2-cell embedded in a surface is the bipartite graph Rg
obtained by selecting a point in each region r € F(G)
and connecting it to every vertex of G encountered on
the facial walk of r. Note that we get multiple edges
between r and a vertex v if v appears more than once
on the facial walk of .

Let A(R¢) be the set of vertices, edges, and regions
(collectively, atoms) in the radial graph Rg. According
to Section 9 of [23] (see also [24]), the existence of a
respectful tangle of order 6 makes it possible to define
a metric d on A(Rg) as follows:

1. If @ = b, then d(a,b) = 0.

2. If a # b, and a and b are interior to a contractible
closed walk of the radial graph Rg of length < 260,
then d(a,b) is half the minimum length of such a
walk (here by interior we mean the direction in
which the walk can be contracted).

3. Otherwise, d(a,b) = 6.
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We use these metrics very often in our proofs. We call
it the Robertson-Seymour metric.

If Hy, Hy are two disjoint subgraphs in a graph
G, then the Robertson-Seymour distance d(Hy,Hs)
between them is the minimum value of d(a,b), where
a is a vertex of Hy and b € V(Hj).

Let H be a graph which is 2-cell embedded in a
surface .S of Euler genus g. Suppose we specify [ vertices
v1,...,v;. We say that H' can be obtained from H with
rooted vertices vy, . . ., vy if the graph H' can be obtained
from H by subdividing ! edges once (let v{,...,v; be the
vertices of degree 2 obtained from this subdividing) and
add edges eq, ..., e; such that the endpoints of e; are v}
and v;, can be 2-cell embedded into the same surface S.
So every vertex of H' has degree 3, except for vy, ..., vy,
each of which has degree exactly 1. Let W’ be a wall
of height 100 and width 100 around H’. Note that a
wall of height 100 and width 100 is around each rooted
vertex.

We are now ready to state the rooted version of
Robertson and Seymour’s theorem that for any fixed
graph W embedded in S, every graph that is embedded
in S with large enough face-width contains W as a
surface minor.

THEOREM 7.2. ([21]) Let S be a surface of Euler genus
g > 0, and let W be a cubic graph that is embedded
in S. Then for any nonnegative integers I, there are
functions w(g,l) and t(1) (with w(g,l) > t(1)) satisfying
the following. Suppose G is of type (g,l,w(g,l),t(l)).
Let G’ be the graph obtained from G by contracting each
cuffs C; into a single point v;. Then G’ contains a
subgraph Wy which is isomorphic to a subdivision of
W' obtained from W with rooted vertices vy, . ..,v;, and
whose induced embedding is combinatorially the same as
the embedding of W'.

Metric on planar graphs. If the surface S is the
sphere, there are some complications which require
slightly different approach and different notion of the
metric d.

The main problem with the sphere case is the lack
of unique “interior”. This does not allow us to define
a unique respectful tangle, and hence we cannot define
the Robertson-Seymour metric. We now look at the
case when a given graph is planar. In this case, we only
look at a cuffed graph G, with cuffs C1,...,C;.

Suppose the surface S is sphere. Then d(C;, C;)
(i # j) would be the minimum of the following two
values.

1. The length of the shortest I-arc between C; and
Cj.

2. The length of the shortest O-arc J such that C;
and C; are in different components of S — J.

This metric allows us to give the sphere case of
Theorem 7.2, see [21].
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