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Abstract
Let n be a positive integer, let d1, . . . , dn be a sequence of positive

integers, and let q = 1
2

∑n
i=1 di. It is shown that there exists a con-

nected graph G of order n, whose degree sequence is d1, . . . , dn and
such that G admits a 2-cell embedding in every closed surface whose
Euler characteristic is at least n − q + 1, if and only if q is an integer
and q ≥ n − 1. Moreover, the graph G is loopless if and only if di ≤ q
for i = 1, . . . , n. This, in particular, answers a question of Arkadiy
Skopenkov.

1 Introduction

The following problem was communicated to me by Arkadiy Skopenkov.

Problem 1.1 Let g ≥ 0 be an integer and let d1, . . . , dn ≥ 1 be a non-
increasing sequence of integers. Is there a dissection of the orientable (re-
spectively, non-orientable) surface of genus g into n 2-cells such that the ith
cell has size di for i = 1, . . . , n?

It turned out later that this problem is not exactly what Skopenkov was
asked by his colleagues Elena Kudrjavtseva and Igor Shnurnikov. Never-
theless, Problem 1.1 is important in the study of integrable Hamiltonian
systems and Morse functions [4], see [1, 2].
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Let G be a graph of order n whose vertices have degrees d1, . . . , dn. If
G has loops, then each loop contributes 2 towards the degree of the corre-
sponding vertex. The sequence d1, . . . , dn is called the degree sequence of G.
It is clear that Problem 1.1 is equivalent to the following one (by considering
the geometric dual graph of a 2-cell dissection):

Problem 1.2 Let g ≥ 0 be an integer and let d1, . . . , dn be a sequence of
positive integers. Is there a graph G of order n, which admits a 2-cell embed-
ding in the orientable (resp. non-orientable) surface of genus g, and whose
degree sequence is d1, . . . , dn?

The solution to Problem 1.2 and hence also to Problem 1.1 turns out
to be rather straightforward. The purpose of this note to first present this
solution, and then discuss some further, less trivial extensions.

The easy part, solution to Problems 1.1 and 1.2, is presented in Section 2.
In fact, we give a stronger result that realizations for all surfaces admissible
for the given degree parameters d1, . . . , dn can be achieved using the same
graph. An extension, where we impose an additional requirement that the
graphs should be free of loops, is given in Section 3. This requirement, when
imposed dually on 2-cell decomposition with given cell lengths, gives a non-
singularity property – every edge appears on the boundary of two distinct
2-cells. Again, the main result, Theorem 3.2, actually shows more. We prove
that the same (loopless) graph can be used for all surfaces admissible by the
given degree sequence d1, . . . , dn.

2 2-cell embeddings with prescribed face lengths

First we give a simple answer to Problem 1.2.

Theorem 2.1 Let n ≥ 2 be an integer, let d1, . . . , dn be a sequence of posi-
tive integers, and let D =

∑n
i=1 di. Then there exists a connected (possibly

non-simple) graph with degree sequence d1, . . . , dn if and only if D is even
and D ≥ 2n − 2.

Proof. If G is a connected graph with degrees d1, . . . , dn, then D =
2|E(G)| ≥ 2(n − 1). This shows that conditions are necessary. To prove
sufficiency, assume that d1 ≥ · · · ≥ dn ≥ 1. First, we claim that for every
k = 1, . . . , n − 1, we have

∑k
i=1 di ≥ 2k − 1. This is clear if dk ≥ 2. On the

other hand, if dk = 1, then dj = 1 for j ≥ k, and so
∑k

i=1 di ≥ D− (n−k) ≥
2n − 2 − n + k ≥ 2k − 2.
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The rest of the proof proceeds by induction on n. The proof is trivial for
n = 2. So, we may assume that n ≥ 3, and hence d1 ≥ 2. Let us now replace
the sequence d1, . . . , dn with a sequence of length n−1, which is either equal
to d1−1, d2, d3, . . . , dn−1 or to d1−1, d2−1, d3, . . . , dn−1, whichever of them
has even sum. By the above observation, the new degree sequence has even
sum D′ ≥ D−dn−2. If dn = 1, then D′ ≥ D−3 ≥ 2(n−1)−3 and since D′

is even, we see that D′ ≥ 2(n − 1)− 2. If dn ≥ 2, then d3 ≥ · · · ≥ dn−1 ≥ 2,
so D′ ≥ 2(n−1)−2 again. By the induction hypothesis there is a connected
graph G′ with the corresponding degree sequence. Let v1, . . . , vn−1 be the
vertices of G′. Now, add a new vertex vn and join it to v1 (and to v2 if
the degree of v2 in G′ is d2 − 1). In this graph, all vertices have degree as
expected, except that the degree of vn is just 1 or 2. However, by adding
appropriate number of loops incident with vn, we obtain a graph with degree
sequence d1, . . . , dn.

A more general construction works as follows. Suppose that d1 ≥ · · · ≥
dk ≥ 2 (k ≤ n) and that dj = 1 for j > k. Then we start with the cycle
Ck = v1v2 . . . vk of order k and add at each vertex vi (1 ≤ i ≤ k) di − 2
half-edges. Next, attach to n − k of so obtained half-edges a new vertex of
degree 1, and split all remaining half-edges into pairs (their number is easily
seen to be even). Finally, for each such pair, replace the two half-edges by
an edge (possibly a loop) joining corresponding vertices. This construction
will succeed if D =

∑n
i=1 di ≥ 2n. However, if D = 2n − 2, we can do the

same except that we start with the k-vertex path Pk instead of Ck.
If S is a surface of Euler characteristic χ(S), then h = 2 − χ(S) is a

non-negative integer called the Euler genus of S. In order to describe 2-cell
embeddings, we shall use combinatorial description by means of a rotation
system together with a signature as explained in [3].

Theorem 2.2 Problems 1.1 and 1.2 have affirmative answer if and only if
q = 1

2

∑n
i=1 di is an integer which is greater or equal to n − 1 + h, where h

is the Euler genus of the surface in question.

Proof. Suppose that a graph G is 2-cell embedded in a surface of Euler
genus h. If G has n vertices, q edges and f faces, then by Euler’s formula,
h = q −n− f + 2, and hence 1 ≤ f = q − n + 2− h. So the condition of the
theorem is necessary.

To prove sufficiency, observe that when q = 1
2D ≥ n−1+h, the conditions

of Theorem 2.1 are satisfied, so there exists a connected graph G0 with degree
sequence d1, . . . , dn. Let T be a spanning tree of G0. Let us form a graph
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G′ with half-edges by taking the tree T , and adding to the ith vertex vi of
T , di − degT (vi) half-edges.

Now choose and fix any rotation system of G′. Since G′ is a tree with
half-edges, this rotation system determines a 2-cell embedding of G′ into
the 2-sphere, which has precisely one facial walk. The total number of half-
edges is even, 2r = D − 2n + 2, and let us enumerate them as h1, . . . , h2r

in the order as they appear on the facial walk. Now we form a new graph
G1 by grouping the half-edges in pairs, and replacing each so determined
pair with an edge joining the corresponding vertices and keeping existing
local rotations. To determine the pairs, we are using the following three
operations:

• Pair up hi with hi+2 and pair up hi+1 with hi+3. This operation is
called adding a handle. It preserves the number of facial walks and
hence increases Euler genus by two. Moreover, it does not change the
orientability of the corresponding 2-cell embedding.

• Pair up hi with hi+1. This operation, which is called capping , increases
the number of facial walks by one, and hence preserves the Euler genus.

• Pair up hi with hi+1 and give negative signature to the new edge thus
formed. This operation, called adding a crosscap, keeps the number
of facial walks unchanged, but changes orientability from orientable to
non-orientable if it was not already non-orientable before. Here, the
Euler genus increases by one.

Now it is clear that we can either add g = h/2 handles or add g crosscaps
in order to get the desired surface. After that we cap all the remaining edges.
This construction gives the desired graph and its 2-cell embedding into the
corresponding surface.

Actually, for every degree sequence d1, . . . , dn, for which q is an integer
greater or equal to n−1, there is a graph G with this degree sequence which
has 2-cell embeddings in all surfaces whose Euler genus is at most q−n+1.
This can be proved using Lemma 3.1 from the next section and just making
sure, when pairing up the half-edges as in the proof of Theorem 2.2 that
the connected components formed by the edges in the complement of the
spanning tree T contain even number of edges with the possible exception
of the component containing the edge added at the end.

4



3 Loopless realizations

The graphs constructed in the previous section may have multiple edges and
loops. We may ask when it is possible to get simple graphs. However, this
problem may be much more difficult and may not admit a simple answer.
Troubles appear at both sides of the spectrum, when the genus is small and
when it is large. For the small genus example, let us take d1 = d2 = · · · =
d12 = 5, and let all other values di be equal to 6. Then it is known that
there are examples of genus 0 if and only if n �= 13. However, it is not clear
why 13 is exceptional.

For an example with large genus, let di be either n − 1 or n − 2 for
i = 1, . . . , n. Then determining the maximum g, for which there exists a
solution with a simple graph, amounts to computing the genus of complete
graphs from which we remove a perfect matching. This by itself is not
straightforward.

Therefore it makes sense to address the question about loopless exam-
ples. In this case we will be able to say more. Given a degree sequence
d1, . . . , dn satisfying the necessary conditions of Theorem 2.1, there is an
obvious obstruction for having a loopless graph with the given degree se-
quence. Namely, if

d1 >

n∑

i=2

di (1)

then any graph with degree sequence d1, . . . , dn will have loops at the vertex
with degree d1. It is interesting that this kind of a problem is the only
obstruction for having a loopless realization, as we shall se in Theorem 3.2.

A graph G is said to be universally embeddable if it admits 2-cell embed-
dings in all closed surfaces whose Euler characteristic is at least |V (G)| −
|E(G)|+1. Note that, by Euler’s formula, G cannot have 2-cell embeddings
in surfaces whose Euler characteristic is smaller than |V (G)| − |E(G)| + 1.
The graph G is said to be upper embeddable if it has a 2-cell embedding in
an orientable surface S with at most two faces. Note that the Euler charac-
teristic of S is either |V (G)| − |E(G)|+ 1 or |V (G)| − |E(G)|+ 2, whichever
of these two numbers is even.

The proof of the following lemma just places together several known
ingredients from topological graph theory. Let us recall that a graph is
planar if it has an embedding in the 2-sphere.

Lemma 3.1 A graph G is universally embeddable if and only if G is a
connected planar graph which contains a spanning tree T such that G−E(T )
has at most one connected component with an odd number of edges.
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Proof. If G is a graph with an embedding in a surface of Euler characteristic
c, then G admits 2-cell embeddings in all non-orientable surfaces whose Euler
characteristic is between c+1 and |V (G)|−|E(G)|+1, see [3, Theorem 4.5.1].
It is also known that orientable 2-cell embeddings satisfy the “interpolation
property”: If G has orientable embeddings of genera g1 and g2, then it has
one for every genus g between g1 and g2, see [3, Theorem 4.5.3]. This shows
that G is universally embeddable if and only if it is connected and planar
(has a genus 0 embedding) and is upper embeddable. Finally, Xuong [5] (see
also [3, Theorem 4.5.4]) has proved that G is upper embeddable if and only
if it has a spanning tree T such that G − E(T ) has at most one connected
component with an odd number of edges. This completes the proof.

Theorem 3.2 Let n ≥ 2 be an integer, let d1, . . . , dn be a sequence of pos-
itive integers, and let q = 1

2

∑n
i=1 di. Then the following statements are

equivalent:

(a) There exists a connected loopless graph with degree sequence d1, . . . , dn.

(b) There exists a universally embeddable connected loopless graph with
degree sequence d1, . . . , dn.

(c) q is an integer, q ≥ n − 1, and di ≤ q for i = 1, . . . , n.

Figure 1: A prism and its spanning tree

Proof. Clearly, (b) ⇒ (a) and (a) ⇒ (c). To prove that (c) ⇒ (b), we
shall first construct a loopless graph G with the given degree sequence, and
then find its spanning tree T for which the condition of Lemma 3.1 will be
verified. In particular, we have to verify that all constructed graphs are
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planar. Fortunately, this will always be either evident by construction or
obvious by applying induction. Therefore, we shall leave this property to
be verified by the reader. As a consequence we shall conclude that G is
universally embeddable.

We shall need a sligthly stronger statement in order to be able to apply
the induction hypothesis in all cases. We will prove that in the case when
di ≥ 4 for every i = 1, . . . , n, the constructed graph G has a spanning tree
T such that G − E(T ) is a spanning connected subgraph of G. We shall
assume that di are non-increasing, d1 ≥ d2 ≥ · · · ≥ dn.

The proof is by induction on n. If n = 2, then d1 = d2 and we take the
2-vertex graph with d1 edges in parallel joining the two vertices. Clearly,
Lemma 3.1 shows that this graph is universally embeddable.

Suppose now that n ≥ 3. We will distinguish several possibilities. Let
us first consider the case when all degrees are equal, i.e. dn = d1 ≥ 2. Let
δ = �1

2d1�. If d1 is even, then we get a realization G isomorphic to the cycle
of length n with all its edges having multiplicity δ. If d1 is odd, then n is
even, and we take vertices v1, . . . , vn and join vi and vi+1 (1 ≤ i ≤ n, indices
modulo n) with δ parallel edges if i is odd, and with δ + 1 parallel edges
if i is even. It is clear by Lemma 3.1 that G is universally embeddable if
d1 �= 3 or when d1 = 3 and n = 4. Moreover, if dn ≥ 4, then a spanning
hamiltonian path has a connected complement.

If d1 = dn = 3, then we take for G the n
2 -prism instead. See Figure 1

for the 12-prism. Let T be the spanning tree of G consisting of all edges
which are drawn thicker in Figure 1. The cotree edges E(G) \ E(T ) form
a connected subgraph (together with some isolated vertices), so Lemma 3.1
implies that G is universally embeddable.

If d1 = q, then G is a “star” graph in which the vertex v1 is joined to
vi (for i = 2, . . . , n) with di parallel edges. By Lemma 3.1, this graph is
universally embeddable. For the rest of the proof we may therefore assume
that dn < d1 and d1 ≤ q − 1.

If dn = 1, then we consider the degree sequence d1−1, d2, . . . , dn−1. This
sequence satisfies the necessary conditions, and by the induction hypothesis
there is a loopless realization G′. By adding a new vertex and joining it to
the vertex of degree d1 − 1 in G′, we obtain a loopless realization G of the
original degree sequence. Clearly, G is universally embeddable if and only
G′ is (which we may assume by the induction hypothesis).

If dn = 2, then the sequence d1, . . . , dn−1 satisfies the conditions of the
theorem (since d1 ≤ q − 1). Let G′ be its loopless realization and let T ′ be
the corresponding spanning tree with at most one odd cotree component.
By subdividing an edge of T ′, we get a loopless relization G for the original
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degree sequence. Its spanning tree corresponding to T ′ shows that G is
universally embeddable.

Suppose now that dn ≥ 3. The case when n = 3 is easy, so assume that
n ≥ 4. We consider the sequence d1 − dn, d2, . . . , dn−1. The assumptions
made so far show that we can apply the induction hypothesis to get a real-
ization G′. Let T ′ be its spanning tree confirming upper embeddability of
G′. We add the new vertex vn and join it to v1 by dn edges. The resulting
graph G is clearly planar and realizes the original degree sequence. Let T be
the spanning tree of G obtained by adding one of the edges joining v1 and
vn to the spanning tree T ′. Let us first argue about the case when dn = 3.
In this case we see that one cotree component of G′ − E(T ′) has gained
two more edges in G − E(T ). So, the induction hypothesis and Lemma 3.1
show that G is universally embeddable. Suppose next that dn ≥ 4 and that
d1 − dn ≥ 4. In this case, all degrees in G′ are at least 4, and we now apply
the stronger induction hypothesis, namely that G′ − E(T ′) is a connected
spanning subgraph of G′. Clearly, the same also holds for the spanning tree
T of G, so we have proved the theorem also in this case.

For the rest of the proof we may assume that d1 > dn ≥ 4 and that
d1−dn ≤ 3. Let δ = �1

2dn� ≥ 2, and let G0 be the graph which is isomorphic
to the cycle Cn with each edge repeated δ times. Let δi = di − 2δ. Clearly,
δi ∈ {0, 1, 2, 3, 4}. In order to realize the degree sequence d1, . . . , dn, we will
add edges to G0 in such a way that vi is incident with precisely δi new edges.
We start adding edges so that the vertices vi with smaller indices i become
saturated first. That is, we first add δ2 ≤ δ1 edges joining v1 and v2. If
δ1 > δ2, then we add additional edges to v1 joining it with v3, etc. Once v1

is saturated, we take the first unsaturated vertex and continue the process.
What we end up is a graph relizing the original sequence (if all necessary
edges have been added), or we are left with precisely one unsaturated vertex
vk. Observe that 1 ≤ k < n since δn ≤ 1 and the “unsaturated degree” t
is even, so t is either 2 or 4. If k �= 1, then let us remove t/2 edges joining
v1 and vn and add t/2 edges from vk to v1 and t/2 edges from vk to vn. If
k = 1, do the same but remove t/2 edges joining v2 and v3.

Let T be the hamilton path v1v2 . . . vn (if k �= 1) or v3 . . . vnv1v2 (if
k = 1). It is clear that G − E(T ) is connected. This proves universal
embeddability of G and the claimed stronger property for constructed graphs
with minimum degree at least 4. Now the proof is complete.

A 2-cell embedding in a surface is said to be non-singular if every edge
appears on the boundary of two distinct 2-cells. Clearly, the dissection is
non-singular if and only if the dual graph is loopless.
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Corollary 3.3 Let d1, . . . , dn be positive integers and let q = 1
2

∑n
i=1 di.

Then the following statements are equivalent:

(a) Some surface has a non-singular decomposition into n 2-cells whose
lengths are d1, . . . , dn, respectively.

(b) Every surface S, whose Euler genus is at most q − n + 1, has a non-
singular decomposition DS into 2-cells F1, . . . , Fn, whose lengths are
d1, . . . , dn, respectively. Moreover, there exist non-negative integers
aij, 1 ≤ i < j ≤ n, such that for every such decomposition DS, the
2-cells Fi and Fj have precisely aij sides in common.

(c) q is an integer, q ≥ n − 1, and di ≤ q for i = 1, . . . , n.
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