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Abstract

A cycle on a combinatorial surface is tight if it as
short as possible in its (free) homotopy class. We de-
scribe an algorithm to compute a single tight, non-
contractible, simple cycle on a given orientable com-
binatorial surface in O(n log n) time. The only method
previously known for this problem was to compute the
globally shortest non-contractible or non-separating cy-
cle in O(min{g3, n}n logn) time, where g is the genus
of the surface. As a consequence, we can compute the
shortest cycle freely homotopic to a chosen boundary
cycle in O(n log n) time and a tight octagonal decom-
position in O(gn log n) time.

1 Introduction

Cutting along curves is the basic tool for working with
topological surfaces. When the surface is equipped with
a metric, the surgery is typically made along shortest
non-trivial cycles, where non-trivial may mean non-
contractible or (surface) non-separating, depending on
the application. Here, we are interested in cycles with a
different metric property: a cycle is tight if it is shortest
in its free homotopy type. Note that a shortest non-
trivial cycle is going to be tight, but the converse does
not hold.

We are interested in the algorithmic aspects of
finding a tight, non-trivial cycle. Like most previous
algorithmical works concerning curves on surfaces [1, 2,
3, 4, 5, 6, 7, 8, 9, 14], we consider the combinatorial
surface model. A combinatorial surface M is an edge-
weighted multigraph G embedded on a surface, and
only paths arising from walks in G are considered.
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The length of a path is the sum of the weights of its
edges, counted with multiplicity. The complexity of a
combinatorial surface, denoted by n, is the sum of the
number of its vertices, edges, and faces.

The theory of graphs embedded on surfaces, a nat-
ural generalization of the theory of planar graphs, is a
very active research area. See the monograph [15] for
an introduction. Algorithmical aspects of topological
graph theory are also playing an important role in sev-
eral graph problems. See for example the recent linear-
time algorithm of Kawarabayashi and Reed [13] for test-
ing if a given graph has bounded crossing number.

The main result of this paper is an algorithm to
compute a tight, surface non-separating cycle on an
orientable combinatorial surface in O(n log n) time. The
best previous solution to the problem of finding a tight,
non-trivial cycle was to compute the globally shortest
non-trivial cycle, which can be done in O(n2 log n) time
with an algorithm by Erickson and Har-Peled [8] or in
O(g3n log n) time with an algorithm by Cabello and
Chambers [1]. (See [2, 14] for other relevant results.)

This new algorithm has the following implications:

• In the approach of Colin de Verdière and Erick-
son [4] for finding shortest curves homotopic to a
given one, the bottleneck of the preprocessing part
was to find a tight, non-trivial cycle. With our
result, we can speed up their preprocessing from
O(min{g3, n}n logn) to O(gn log n).

• We can compute the shortest cycle homotopic to a
given boundary component in O(n log n) time. The
previous best algorithm [4] used O(gn log n) time.

• In topological graph theory, several of the proofs
based on cutting along shortest non-trivial cycles
carry out if instead we cut along a tight, non-
trivial cycle. Thus, algorithmic counterparts of
several basic theorems can be improved with our
new result.

2 Background

Surfaces. We summarize some basic concepts of
topology. See [12, 16] for a comprehensive treatment.
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A (topological) surface (or 2-manifold) Σ is a com-
pact topological space where each point has a neigh-
bourhood homeomorphic to the plane or to a closed
halfplane. A boundary point in Σ is a point with the
property that no neighbourhood is homeomorphic to
the plane. The boundary of Σ is the union of all bound-
ary points, and it is known to consist of a finite num-
ber (possibly 0) of connected components, each com-
ponent homeomorphic to a circle. The surface is non-
orientable if it contains a subset homeomorphic to the
Möbius band, and orientable otherwise.

All surfaces considered in this paper are orientable,
and we will regularly not mention the adjective ’ori-
entable’. A (g, b)-surface is a sphere with a number
g ≥ 0 of handles attached to it, and a number b ≥ 0 of
open disks removed. Up to homeomorphism, any sur-
face is a (g, b)-surface for a unique pair g, b ≥ 0.

A path in Σ is a continuous mapping p : [0, 1] → Σ,
a cycle is a continuous mapping γ : S

1 → Σ, a loop with
basepoint x is a path such that x = p(0) = p(1), and
an arc is a path whose endpoints are on the boundary.
Curve is a generic term used for paths, cycles, arcs, and
loops. A curve is simple when the mapping is injective,
except for the common endpoint in the case of loops.

Two paths p, q with p(0) = q(0) and p(1) = q(1)
are homotopic if there is a continuous function h :
[0, 1]2 → Σ such that p(·) = h(0, ·), q(·) = h(1, ·),
h(·, 0) = p(0), and h(·, 1) = p(1). Two cycles α, β
are (freely) homotopic if there is a continuous function
g : [0, 1] × S

1 :→ Σ such that α(·) = g(0, ·) and
β(·) = g(1, ·). Two arcs are homotopic if they are
homotopic as paths after contracting the boundary
components that contain its endpoints; the intuition is
that we allow the endpoints to freely move along the
same boundary component. Simple curves are typically
identified with their image because, up to reversal of
the parameterization, any two parameterizations with
the same image correspond to homotopic curves.

A cycle is contractible if it is homotopic to the
constant loop. Cutting along a simple contractible cycle
gives two connected components, and one of them is a
topological disk. A simple cycle α is non-separating
if cutting the surface along (the image of) α gives
rise to a unique connected component. Non-separating
cycles are non-contractible, while contractible cycles
are separating. Being contractible or separating is a
property invariant under homotopy of cycles.

We use the notation Σ α to denote the sur-
face obtained after cutting Σ along α. We denote
by Σ (α1, . . . , αk) the surface obtained inductively as
(Σ (α1, . . . , αk−1) αk.

Combinatorial surface. All our results will be
phrased in the combinatorial surface model. This model

is dual to the cross-metric surface model; see [4] for
a discussion. A combinatorial surface M is a surface
Σ(M) together with a multigraph G(M) embedded on
Σ so that each face of G is a topological disk. The
complexity of a combinatorial surface M is defined as
the sum of the number of vertices, edges, and faces
of G(M). The genus and the number of boundary
components of M are those of Σ(M).

In the combinatorial surface model, we only con-
sider curves that arise as paths in G(M). A curve is
said to be homotopically simple if there is an infinitesi-
mal continuous perturbation that makes it simple. All
curves considered in this paper are homotopically sim-
ple, and we will drop the adjective ’homotopically sim-
ple’ in most cases. The multiplicity of a curve α is the
maximum number of times that an edge appears in the
graph-walk that defines α.

We assume that the graph G(M) has edge-weights,
which gives a “metric” to the model. The length |α| of
a curve α is defined as the sum of the weights of the
edges in the graph-walk that defines α, counted with
multiplicity. A cycle or an arc is tight if it is shortest in
its homotopy class.

Families of curves. We say that two cycles α, β
include a bigon if there are simple subpaths pα ⊆ α and
pβ ⊆ β with common endpoints such that pα and pβ

bound a topological disk.
A tight system of disjoint arcs in a combinatorial

surface with boundary is a family of simple curves
α1, α2, . . . , αk such that

• no two distinct arcs αi, αj share an edge or cross;

• the arc αi is a tight arc in M (α1, . . . , αi−1).

If M is a surface of complexity n and α1, α2, . . . , αk is
a tight system of disjoint arcs, then the complexity of
M (α1, . . . , αk) is at most 2n because each edge gets
doubled at most once during the cutting.

In the cross-metric model, one can also consider
the concept of arrangements of families of curves. We
refer the reader to [4], where also the concept of tight
octagonal decomposition is introduced.

3 Toolbox
We next list results that will be used in our proofs and
algorithms.

Lemma 1. ([11]) Given two homotopic cycles α, β in
an orientable surface, if they have some common point,
then they include a bigon.

Lemma 2. ([8]) For any given basepoint x, we can find
in O(n log n) time a shortest non-separating loop with
basepoint x.
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Lemma 3. Let M be a surface with at least two bound-
ary components, let σ be one of its boundary compo-
nents, and let α1, . . . , αk be a tight system of disjoint
arcs where each αi does not have endpoints in σ. Then
every tight cycle homotopic to σ in M (α1, · · · , αk) is
also a tight cycle homotopic to σ in M.

Proof. The proof is by induction on k. There is nothing
to prove if k = 0. The induction step is the same as the
proof when k = 1, which we assume henceforth.

Let α be a tight cycle in M homotopic to σ. Then σ
and α bound a cylinder D in M. We choose α such that
D is smallest possible, i.e., no other tight cycle bounds a
cylinder which is contained in D. We will show that α1

is disjoint from the interior of D, which will then imply
that α is also a tight cycle in M′ = M α1 homotopic
to σ. To see this, suppose that α1 enters D. If α1 ∩ D
contains a simple arc α′

1 whose endpoints x, y are on α,
then α1 and α include a bigon. Because of tightness of
α and α1, both segments of this bigon have the same
length, and we can replace the segment of α with α′

1.
The new curve is homotopic to σ and contradicts the
minimality of D. This completes the proof.

The proof of the previous lemma also shows the
following.

Lemma 4. Let M be a surface with at least one bound-
ary component, let σ be one of its boundary components,
and let α be a simple tight cycle in M. Then every tight
cycle homotopic to σ in M α is also a tight cycle ho-
motopic to σ in M.

Lemma 5. Let M be a combinatorial surface of com-
plexity n, genus g, and exactly one boundary component
σ. We can find in O(n log n) time a tight system of dis-
joint arcs α1, . . . , α2g such that M (α1, . . . , α2g) is a
topological disk.

Proof. Contract σ to a point pσ, and construct a greedy
system of loops α1, . . . , α2g at pσ in O(n log n) time, as
explained by Erickson and Whittlesey [9]. Unmaking
the contraction, the curves α1, . . . , α2g become arcs in
M with endpoints at σ, and cutting along them the
surface becomes a topological disk. It follows from the
greediness of the construction that each αi is tight in
M (α1, . . . , αi−1); see [9]. An edge could appear in
several curves αi, but we assign it to the one with
smallest index i where it appears, and remove it from
the rest. This can be done in O(n) from the implicit
representation of the greedy system of loops provided
by Erickson and Whittlesey [9].

4 Finding one tight cycle
Let M be a combinatorial surface of complexity n.

Lemma 6. Suppose that M has b ≥ 2 boundary compo-
nents and let σ be one of its boundary cycles. We can
find in O(n log n) time a tight cycle homotopic to σ.

Proof. Assume first that b = 2, and let σ′ be the
boundary component distinct from σ. Glue a disk
over σ, and construct a tight system of disjoint arcs
α1, . . . , α2g as described in Lemma 5. Cutting the
surface M along α1, . . . , α2g leaves an annulus A whose
boundary components are σ and σ′. Note that A
has linear complexity because we cut M along a tight
system of disjoint arcs. Furthermore, it follows from
Lemma 3 that a tight cycle homotopic to σ in A is a
tight cycle homotopic to σ in M. Finally, the shortest
generating cycle in A can be computed in O(n log n)
time using the algorithm by Frederickson [10] because
A has linear complexity. This concludes the case when
b = 2.

The case when b > 2 can be reduced to b = 2
as follows. Let σ1, . . . , σb−1 be the boundary cycles
different from σ. We contract each σi to a point pi,
and find a shortest path tree T from p1. This can be
done in O(n log n) time. Let πi denote the shortest path
from p1 to pi contained in T . Each edge can appear
in several paths πi, but we proceed like in the proof
of Lemma 5: we assign each edge to the path pi with
smallest index that contains it, and delete it from the
rest. Let q2, . . . , qb−1 be the paths that are obtained.
The curves q2, . . . , qb−1, in the original surface M, form
a tight system of disjoint arcs. Therefore, a tight cycle
homotopic to σ in M′ = M (q2, . . . , qb−1) is a tight
cycle homotopic to σ in M because of Lemma 3. Note
that M′ has complexity O(n) because it is obtained
from M by cutting along a tight system of disjoint
arcs. Since M′ has two boundary components, the
result follows from the previous case.

Lemma 7. Let �x be a shortest non-separating loop
based at x, and let γ1 be a tight cycle homotopic to �x

in M �x. Then the cycle γ1 is tight in M as well.

Proof. We will show that in M there is a cycle γ that is
homotopic to �x, it is tight, and does not cross �x. Since
γ does not cross �x, then γ is also homotopic to one of
the copies of �x in M �x, and it is tight. Therefore
|γ1| = |γ|, so γ1 is tight in M.

Let γ be a shortest cycle that is homotopic to �x

(in M) and crosses �x as few times as possible. We
want to show that γ and �x do not cross. Assume for
contradiction that γ and �x cross. Then, by Lemma 1,
they include a bigon. Let πγ ⊆ γ and π�x be the
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Figure 1: Figure for Lemma 7. The grey region represents a bigon between �x and γ. Left: the case x ∈ π�x .
Right: the case x ∈ πγ .

two subpaths that enclose the bigon; πγ and π�x are
homotopic paths; see Figure 1. Let qγ be the subpath
γ\πγ and let q�x be the subpath �x\π�x . We distinguish
two cases:

π�x contains x. Let δ be the cycle πγ concatenated
with q�x . Note that δ crosses �x twice less than
γ does. Since πγ and π�x are homotopic, δ is
homotopic to �x. Since π�x concatenated with qγ is
a non-separating cycle through x, it holds that

|�x| = |π�x | + |q�x | ≤ |π�x | + |qγ |,

which implies |q�x | ≤ |qγ |. We conclude that

|δ| = |πγ | + |q�x | ≤ |πγ | + |qγ | = |γ|,

and since δ crosses �x twice less than γ, we get a
contradiction.

π�x does not contain x. Let δ be the cycle π�x con-
catenated with qγ . Note that δ crosses �x twice less
than γ does. Since πγ and π�x are homotopic, δ
is homotopic to γ and �x. Since q�x concatenated
with πγ is a non-separating cycle through x, it holds
that

|�x| = |q�x | + |π�x | ≤ |q�x | + |πγ |,
which implies |π�x | ≤ |πγ |. We conclude that

|δ| = |π�x | + |qγ | ≤ |πγ | + |qγ | ≤ |γ|,

and since δ crosses �x twice less than γ, we get a
contradiction.

Theorem 1. Let M be an orientable combinatorial
surface of complexity n. We can find in O(n log n) time
a tight cycle that is (homotopically) simple and surface
non-separating.

Proof. Choose a point x ∈ M, and construct a shortest
non-separating loop �x with basepoint x. Since M is
an orientable surface, M′ = M �x has two boundary

components �′x and �′′x arising from �x. We find γ′, a
tight cycle homotopic to �′x in M �x, and γ′′, a tight
cycle homotopic to �′′x in M �x, and return the shorter
cycle among γ′, γ′′. This finishes the description of the
algorithm.

The cycle γmin returned by the algorithm is tight
because of Lemma 7. Since the cycle γmin is homotopic
to the simple, non-separating loop �x in M, it follows
that γmin is also non-separating and simple. As for the
running time, note that �x can be found in O(n log n)
time because of Lemma 2, and the cycles γ′, γ′′ can also
be obtained in O(n log n) time using Lemma 6 because
M �x has at least two boundary components.

5 Consequences and conclusions

Theorem 2. Let M be an orientable combinatorial
surface of complexity n, and let σ be a given boundary
cycle in M. We can find in O(n log n) time a tight cycle
that is homotopic to σ.

Proof. If M has more than two boundary components,
the result follows from Lemma 6. If σ is the only bound-
ary component, we compute a tight non-separating, sim-
ple cycle γ using Theorem 1, and then find a tight cycle
σ̃ homotopic to σ in M γ. Finally, we return the cycle
σ̃. This finishes the description of the algorithm.

The algorithm is correct because the returned cycle
σ̃ is homotopic to σ and is tight because of Lemma 4.
As for the running time, γ is obtained in O(n log n) time
because of Theorem 1, and σ̃ is obtained in O(n log n)
time using Lemma 6 because M γ has precisely three
boundary components.

We can find a tight octagonal decomposition of
a surface M without boundary in O(gn log n) time,
improving the previous O(n2 log n) time bound by Colin
de Verdière and Erickson [4]. This also improves the
preprocessing time in their results.

Theorem 3. Let M be an orientable cross-metric sur-
face with complexity n, genus g ≥ 2, and no boundary.
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We can construct a tight octagonal decomposition of M
in O(gn log n) time.

Proof. Consider the construction described in Theo-
rem 4.1 of [4]. Their first step is to find a tight cycle
in M, which they implement finding a globally shortest
non-separating cycle in O(n2 log n) time. (Finding this
cycle can be done in O(g3n log n) time using the more
recent result of Cabello and Chambers [1].) Using The-
orem 1, we can now perform this first step in O(n log n)
time. After this, the rest of their construction takes
O(gn log n) time, and the result follows.

Theorem 4. Let M be an orientable combinatorial
surface with complexity n, genus g ≥ 2, and no bound-
ary. Let p be a path on M, represented as a walk in
G(M) with complexity k. We can compute a shortest
path p′ homotopic to p with complexity k′ in O(gn log n+
gk + gnk̄) time, where k̄ = min{k, k′}.
For a cycle γ, we can do the same in O(gn log n + gk +
gnk̄ log(nk̄)) time.

Proof. The preprocessing time for constructing a
tight octagonal decomposition has gone down from
O(n2 log n) to O(gn log n) because of the previous re-
sult. The result follows then from the algorithms in [4].
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