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1. Introduction

The q-state Potts model [1]–[3] is certainly one of the simplest and most studied models
in statistical mechanics. However, despite many efforts over more than 50 years, its exact
solution (even in two dimensions) is still unknown. The ferromagnetic regime is the
best understood case: there are exact (albeit not always rigorously proved) results for the
location of the critical temperature, the order of the transition, etc. The antiferromagnetic
regime is less understood, partly because universality is not expected to hold in general (in
contrast with the ferromagnetic regime case); in particular, critical behaviour may depend
on the lattice structure of the model. One interesting feature of this antiferromagnetic
regime is that it exhibits non-zero ground-state entropy (without frustration) for large
enough values of q on a given lattice. This provides an exception to the third law of
thermodynamics [5, 6]. In addition, a zero-temperature phase transition may occur for
certain values of q and certain lattices: e.g., the models with q = 2, 4 on the triangular
lattice, and q = 3 on the square and kagomé lattices; cf [4] and references therein.

In addition to its intrinsic theoretical interest, the antiferromagnetic three-state
Potts model on the kagomé lattice also plays an important role in condensed-matter
physics. Several experimental systems are proposed to be modelled by antiferromagnetic
n-component O(n) spin models on the kagomé lattice [7]–[10, and references therein]. For
both the XY (n = 2) and Heisenberg (n = 3) models, there are theoretical arguments
showing that, in the zero-temperature limit, their ground states can be described by the
three-state antiferromagnetic Potts model. Furthermore, Huse and Rutenberg [8] showed
that exactly at zero temperature, the latter model has an SOS (or height) representation,
and it is critical.

The standard q-state Potts model can be defined on any finite undirected graph
G = (V,E) with vertex set V and edge set E. On each vertex i ∈ V of the graph G,
we place a spin σ(i) ∈ {1, 2, . . . , q}, where q ≥ 2 is an integer. The spins interact via a
Hamiltonian

H({σ}) = −J
∑

e=ij∈E

δσ(i),σ(j), (1)

doi:10.1088/1742-5468/2010/05/P05016 2

http://dx.doi.org/10.1088/1742-5468/2010/05/P05016


J.S
tat.M

ech.
(2010)

P
05016

On the non-ergodicity of the WSK algorithm

where the sum is over all edges e ∈ E, J ∈ R is the coupling constant, and δa,b is the
Kronecker delta. The Boltzmann weight of a configuration is then e−βH , where β ≥ 0 is
the inverse temperature. The partition function is the sum, taken over all configurations,
of their Boltzmann weights:

ZPotts
G (q, βJ) =

∑

σ: V →{1,2,...,q}
e−βH({σ}). (2)

A coupling J is called ferromagnetic if J ≥ 0, as it is then favoured for adjacent
spins to take the same value; and antiferromagnetic if −∞ ≤ J ≤ 0, as it is then
favoured for adjacent spins to take different values. The zero-temperature (β → +∞)
limit of the antiferromagnetic (J < 0) Potts model has an interpretation as a colouring
problem: the limit limβ→+∞ ZPotts

G (q,−β|J |) = PG(q) is the chromatic polynomial, which
gives the number of proper q-colourings of G. A proper q-colouring of G is a map
σ:V → {1, 2, . . . , q} such that σ(i) �= σ(j) for all pairs of adjacent vertices ij ∈ E.
In other words, a proper q-colouring of a graph G is a colouring of the vertices of G such
that any pair of nearest-neighbour vertices are not coloured alike.

For many statistical mechanics systems for which an exact solution is not known,
(Markov chain) Monte Carlo simulations [11, 12] have become a very valuable tool
for extracting physical information. One popular Monte Carlo algorithm for the
antiferromagnetic q-state Potts model is the Wang–Swendsen–Kotecký (WSK) non-local
cluster dynamics [13, 14]. Even though at any positive temperature the WSK algorithm
satisfies all the necessary conditions in order to work, exactly at zero temperature, one
condition (i.e., ergodicity) may not hold, and therefore, the algorithm can no longer be
used! A Monte Carlo algorithm is ergodic (or irreducible) if it can eventually get from
each state (or configuration) to every other state. While this condition is easy to check for
the WSK algorithm at any positive temperature, it becomes a highly non-trivial question
at zero temperature for non-bipartite graphs.

It is interesting to note that at zero temperature, the basic moves of the WSK
dynamics correspond to the so-called Kempe changes, introduced by Kempe in his
unsuccessful proof of the four-colour theorem [15, section 7.3.1] (see also [16] and check [17]
for additional references). This zero-temperature algorithm (disguised under the name of
the ‘path-flipping’ algorithm) has already been used by several authors [8, 9]. In particular,
Huse and Rutenberg [8] noted (see their footnote 13) that for fully periodic boundary
conditions this algorithm is not ergodic; but we are not aware of any (rigorous) proof of
this claim in the literature.

It is also worth noticing that for q-state Potts antiferromagnets without frustration
(e.g., q ≥ 3 for the kagomé lattice), single-spin flips are a (proper) subset of the
set of Kempe moves. Therefore, the non-ergodicity of the latter dynamics implies
the non-ergodicity of single-flip algorithms (which include the well-known Metropolis
algorithm [12]). For positive temperature, the WSK algorithm (on any graph) always
includes single-site moves as a special case.

Although the Potts model can be defined on any graph G, in statistical mechanics one
is mainly interested in ‘large’ regular graphs with fully periodic boundary conditions (i.e.,
embedded on a torus). Boundary conditions of this type are usually chosen to minimize
finite-size-scaling effects [18]. Therefore, we will focus on the commonest set-up in actual
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Monte Carlo simulations: finite symmetric subsets of the kagomé lattice wrapped on a
torus.

The ergodicity of the WSK algorithm for the zero-temperature q-state Potts
antiferromagnet on the kagomé lattice embedded on a torus is only an open question
for q = 3, 4. For q = 2 (the Ising model) it is trivially non-ergodic, as each WSK move is
equivalent to a global spin flip. It is interesting to remark that there is an analytic solution
for the Ising model on the kagomé lattice [19]; this solution shows that there is no phase
transition in the whole antiferromagnetic regime, including zero temperature, where the
system displays frustration. On the contrary, for q ≥ 5 the algorithm is ergodic (see
section 2 for more details). Among the two unknown cases, q = 3 is the most interesting
one, because the system is expected to be critical at zero temperature [8].

The main result of this paper is to provide a proof of the non-ergodicity of the
zero-temperature WSK algorithm for the three-state Potts antiferromagnet on symmetric
subsets of the kagomé lattice with fully periodic boundary conditions. We find that
the ground-state configuration space (i.e., the set of all proper 3-colourings of the given
kagomé graph) can be split into at least two ‘ergodicity classes’ (or Kempe equivalence
classes), such that one class is unreachable using Kempe moves from the other one, and
vice versa. This also means that single-flip dynamics is also non-ergodic for such systems.
In this case, each ground-state configuration constitutes an ergodicity class. Therefore,
these zero-temperature Monte Carlo algorithms simply do not work, and new algorithms
satisfying all the required properties should be sought in order to simulate such systems.
Furthermore, no reasonable algorithm is known at present to our knowledge, which is
ergodic at zero temperature. It is an interesting open problem to find one.

Our basic strategy in this paper goes as follows. We start with the observation that
the kagomé lattice is the medial of the triangular lattice4. In particular, for the reasons
explained above, we are interested in the kagomé graphs T ′(3L, 3L) which are the medials
of the regular triangulations T (3L, 3L) of the torus (roughly speaking, these triangulations
are subsets of the triangular lattice of linear size (3L)× (3L) with fully periodic boundary
conditions). We then show that any proper 3-colouring φ of the kagomé lattice T ′(3L, 3L)
can be viewed as a particular proper 4-colouring f of the ‘doubled’ triangulation T (6L, 6L),
and that any WSK transition made on φ corresponds to a sequence of WSK moves
performed on f in T (6L, 6L). We call the colourings f of T (6L, 6L) that are obtained from
3-colourings of the kagomé lattice special colourings of T (6L, 6L). This correspondence
enables us to use the results of [20] about the non-ergodicity of the zero-temperature WSK
algorithm for the four-state Potts antiferromagnet on the triangulations T (3L, 3L) with
L ≥ 2.

Proper 4-colourings of a triangulation embedded on a torus are rather special, as they
can be regarded as maps from a sphere to the torus (using the tetrahedral representation of
the spin). This basic observation allowed us to borrow concepts from algebraic topology;
in particular, the degree deg(f) of a proper 4-colouring f . This approach was pioneered
by Fisk [21]–[23], who also showed that deg(f) on any 3-colourable triangulation of the
torus is always a multiple of 6 (the triangulations T (3L, 3L) are indeed 3-colourable). We
then showed that deg(f) (mod 12) is an invariant under a Kempe move. Therefore, if
we are able to find two 4-colourings f and g with degrees deg(f) (mod 12) = 0 and

4 See section 3 for a precise definition of the medial graph M(G) of a graph G.
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deg(g) (mod 12) = 6, then there are at least two Kempe equivalence classes, and
therefore the zero-temperature WSK algorithm is not ergodic. For all triangulations
T (3L, 3L) with L ≥ 2 we were able to find such two 4-colourings [20].

In this paper, we apply these results to the subset of special 4-colourings of T (6L, 6L):
for any L ≥ 1, we find that there are two special 4-colourings f and g with degrees
congruent with 0 and 6 modulo 12, respectively. Therefore, we cannot get f from g
(or vice versa) using Kempe moves, even in the larger configuration space of all proper
4-colourings of T (6L, 6L). The same is true if we restrict ourselves to the smaller set
of special proper 4-colourings of T (6L, 6L), which corresponds to the set of proper 3-
colourings of T ′(3L, 3L). Therefore, the non-ergodicity of the Kempe dynamics for these
kagomé graphs follows.

As explained above, our approach, based on algebraic topology, can only be applied
to proper 4-colourings of the triangulations T (3L, 3L), or to proper 3-colourings of the
kagomé graphs T ′(3L, 3L) (by exploiting that T ′ is the medial of T ). Unfortunately,
it cannot be extended to study the ergodicity of the WSK algorithm for the four-state
kagomé-lattice antiferromagnet. It is curious that our methods work for the two models
that have a height representation and are critical at zero temperature [8]. It would be
interesting to translate our findings into the height language [10]. This may lead to an
improved (and we hope) ergodic algorithm.

Finally, one might consider simulating the three-state Potts antiferromagnet using the
WSK algorithm at a small but positive temperature. In this case, the algorithm is indeed
ergodic and satisfies all the required properties for working well. However, the only way we
can reach from one ergodicity class to another is through a non-zero-energy configuration
(or non-proper 3-colouring). But these configurations are exponentially suppressed in this
limit: we have to pay a penalty of e−β|J | for each pair of neighbouring vertices coloured
alike. Therefore, it is unlikely for small enough temperatures that the system visit more
than one class. Furthermore, it would be very interesting to consider, in addition to the
standard observables, new observables specifically designed to ‘feel’ the non-ergodicity of
the algorithm, and to study numerically how their autocorrelation times behave as we
approach to zero temperature.

The paper is organized as follows. In section 2 we introduce our basic definitions, and
review what is known in the literature about the problem of the ergodicity of the Kempe
dynamics. In section 3 we consider edge-colourings and relate them first to 3-colourings
of the kagomé graph and then to special colourings of triangulations T (6L, 6M). In
section 4 we prove our main result about the non-ergodicity for symmetric kagomé graphs
T ′(3L, 3L).

2. The basic set-up

Let G = (V,E) be a finite undirected graph with vertex set V and edge set E. Then for
each graph G there exists a polynomial PG with integer coefficients such that, for each
q ∈ Z+, the number of proper q-colourings of G is precisely PG(q). This polynomial PG

is called the chromatic polynomial of G. The set of all proper q-colourings of G will be
denoted as Cq = Cq(G) (thus, |Cq(G)| = PG(q)).

It is far from obvious that ZPotts
G (q, βJ) (cf (2)), which is defined separately for each

positive integer q, is in fact the restriction to q ∈ Z+ of a polynomial in q. But this is in
fact the case, and indeed we have:

doi:10.1088/1742-5468/2010/05/P05016 5
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Figure 1. The triangulation T (6, 2, 2) = Δ2 × ∂Δ3 of the torus. Each vertex x
of T (6, 2, 2) is labelled with two integers ij, where i (resp., j) corresponds to the
associated vertex in Δ2 (resp., ∂Δ3). The vertices of Δ2 are labelled {0, 1, 2},
while the vertices of ∂Δ3 are labelled {1, 2, 3, 4}. The triangulation T (6, 2, 2) has
12 vertices, and those in the figure with the same label should be identified.

Theorem 2.1 (The Fortuin–Kasteleyn [24, 25] representation of the Potts model).
For every integer q ≥ 1, we have

ZPotts
G (q, v) =

∑

A⊆E

qk(A) v|A|, (3)

where v = eβJ −1, and k(A) denotes the number of connected components in the spanning
subgraph (V,A).

The foregoing considerations motivate defining the Tutte polynomial of the graph G:

ZG(q, v) =
∑

A⊆E

qk(A) v|A|, (4)

where q and v are commuting indeterminates. This polynomial is equivalent to the
standard Tutte polynomial TG(x, y) after a simple change of variables. If we set v = −1,
we obtain the chromatic polynomial PG(q) = ZG(q,−1). In particular, q and v can be
taken as complex variables. See [26] for a recent survey.

As explained in section 1, we will focus on kagomé lattices that are related to certain
regular triangulations embedded on the torus. The class of regular triangulations of the
torus with degree six is characterized by the following theorem:

Theorem 2.2 [27]. Let T be a triangulation of the torus such that all vertices have degree
6. Then T is one of triangulations T (r, s, t) which are obtained from the (r+1)×(s+1) grid
by adding diagonals in the squares of the grid as shown in figure 1, and then identifying
opposite sides to get a triangulation of the torus. In T (r, s, t) the top and bottom rows
have r edges, the left and right sides s edges. The left and right side are identified as
usual; but the top and the bottom row are identified after (cyclically) shifting the top row
by t edges to the right.

In figure 1 we have displayed the triangulation T (6, 2, 2) of the torus. We will
represent these triangulations as embedded on a rectangular grid with three kinds of edges:
horizontal, vertical, and diagonal. The 3-colourability of the triangulations T (r, s, t) is
given by the following result [20]:

doi:10.1088/1742-5468/2010/05/P05016 6
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Proposition 2.3. The triangulation T (r, s, t) is 3-colourable if and only if r ≡ 0
(mod 3) and s− t ≡ 0 (mod 3).

In Monte Carlo simulations, it is usual to consider toroidal boundary conditions with
no shifting, so t = 0. Then, the 3-colourability condition reduces to the standard result
r, s ≡ 0 (mod 3). In general, we will consider the following triangulations of the torus
T (3L, 3M, 0) = T (3L, 3M) with L,M ≥ 1. The unique 3-colouring c0 of T (3L, 3M) can
be described as

c0(x, y) = mod(x+ y − 2, 3) + 1, 1 ≤ x ≤ 3L, 1 ≤ y ≤ 3M, (5)

where we have explicitly used the above-described embedding of the triangulation
T (3L, 3M) in a square grid.

Finally, in most Monte Carlo simulations one usually considers tori of aspect ratio 1:
i.e., T (3L, 3L). This is the class of triangulations that we are most interested in from the
point of view of statistical mechanics.

2.1. Kempe changes

Given a graph G = (V,E) and q ∈ N, we can define the following dynamics on Cq: choose
uniformly at random two distinct colours a, b ∈ {1, 2, . . . , q}, and let Gab be the induced
subgraph of G consisting of vertices x ∈ V for which σ(x) ∈ {a, b}. Then, independently
for each connected component of Gab, with probability 1/2 either interchange the
colours a and b on it, or leave the component unchanged. This dynamics is the zero-
temperature limit of the Wang–Swendsen–Kotecký (WSK) cluster dynamics [13, 14] for
the antiferromagnetic q-state Potts model. This zero-temperature Markov chain leaves
invariant the uniform measure over proper q-colourings; but its irreducibility cannot be
taken for granted.

The basic moves of the WSK dynamics correspond to Kempe changes (orK-changes).
In each K-change, we interchange the colours a, b on a given connected component (or
K-component) of the induced subgraph Gab.

Two q-colourings c1, c2 ∈ Cq(G) related by a series of K-changes are Kempe equivalent

(or Kq-equivalent). This (equivalence) relation is denoted as c1
q∼ c2. The equivalence

classes Cq(G)/
q∼ are called the Kempe classes (or Kq-classes). The number of Kq-classes

of G is denoted by κ(G, q). Then, if κ(G, q) > 1, the zero-temperature WSK dynamics is
not ergodic on G for q colours.

In this paper, we will consider two q-colourings related by a global colour permutation
to be the same. In other words, a q-colouring is actually an equivalence class of standard
q-colourings modulo global colour permutations. Thus, the number of (equivalence classes
of) proper q-colourings is given by PG(q)/q!. This convention will simplify the notation
in the sequel.

2.2. The number of Kempe classes

In this section we will briefly review what is known in the literature about the number of
Kempe equivalence classes for several families of graphs. The first result implies that the
WSK dynamics is ergodic on any bipartite graph5:

5 All the cited authors have discovered this theorem independently.
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Proposition 2.4 ([28, 29] and [17]). Let G be a bipartite graph and q ≥ 2 an integer.
Then, κ(G, q) = 1.

It is worth noting that Lubin and Sokal [30] showed that the WSK dynamics with
three colours is not ergodic on any square lattice grid of size 3M×3N (withM,N relatively
prime) wrapped on a torus. These graphs are indeed non-bipartite.

The result of the second type deals with graphs of bounded maximum degree Δ, and
shows that κ(G, q) = 1 whenever q is large enough:

Proposition 2.5 ([31] and [17]). Let Δ be the maximum degree of a graph G and let
q ≥ Δ + 1 be an integer. Then κ(G, q) = 1. If G is connected and contains a vertex of
degree <Δ, then also κ(G,Δ) = 1.

This result implies that for any kagomé lattice T ′ with Δ = 4, κ(T ′, q) = 1 for any
q ≥ Δ + 1 = 5. Notice that the cases q = 2, 3, 4 are not covered by the above proposition.

Finally, if we consider planar graphs the situation is better understood. One of the
authors proved:

Theorem 2.6 ([17], theorem 4.4). Let G be a 3-colourable planar graph. Then
κ(G, 4) = 1.

Corollary 2.7 ([17], corollary 4.5). Let G be a planar graph and q > χ(G). Then
κ(G, q) = 1.

These results imply that WSK for q ≥ 4 is ergodic on any 3-colourable planar graph.
But we cannot use these results, as none of our graphs is planar.

The main theorem for triangulations appears in [23] and involves the notion of the
degree of a 4-colouring, whose definition is deferred to the next section.

Theorem 2.8 [23]. Suppose that T is a triangulation of the sphere, projective plane, or
torus. If T has a 3-colouring, then all 4-colourings with degree divisible by 12 are Kempe
equivalent.

In a previous paper [20], we proved a series of results that are of great importance in
the present work. The first theorem ensures the existence of a Kempe invariant for the
class of 3-colourable triangulations of a closed orientable surface.

Theorem 2.9. Let T be a 3-colourable triangulation of a closed orientable surface. If f
and g are two 4-colourings of T related by a Kempe change on a region R, then

deg(g) ≡ deg(f) (mod 12). (6)

Note that the class of 3-colourable triangulations of a closed orientable surface
contains and is wider than the class T (3L, 3M) that we are interested in. This theorem
and Fisk’s theorem 2.8, imply the following corollary:

Corollary 2.10. Let T be a 3-colourable triangulation of the torus. Then κ(T, 4) > 1 if
and only if there exists a 4-colouring f with deg(f) ≡ 6 (mod 12).

doi:10.1088/1742-5468/2010/05/P05016 8
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For symmetric triangulations T (3L, 3L) we were able to prove the following result:

Theorem 2.11. For any triangulation T (3L, 3L) with L ≥ 2 there exists a 4-colouring
f with deg(f) ≡ 6 (mod 12). Hence, κ(T (3L, 3L), 4) > 1. In other words, the WSK
dynamics for 4-colourings on T (3L, 3L) is non-ergodic.

For non-symmetric triangulations T (3L, 3M) our results can be summarized in the
following theorem:

Theorem 2.12. For any triangulation T (3L, 3M) with any L ≥ 3 and M ≥ L, there
exists a 4-colouring f with deg(f) ≡ 6 (mod 12). Consequently, the WSK dynamics for
4-colourings of T (3L, 3M) is non-ergodic.

For triangulations T (6, 3M) with M ≥ 2, we could only prove the non-ergodicity of
the WSK dynamics for q = 4 when M = 2p with odd p, while this dynamics is ergodic
at least for the triangulation T (6, 9). Finally, we also proved that the WSK dynamics for
q = 4 is always ergodic on any triangulation of the type T (3, 3M) with M ≥ 1.

3. Edge-colourings of triangulations of the torus

Four-colourings of triangulations of the two-dimensional sphere are in a bijective
correspondence with three other kinds of colourings: edge-colourings, Heawood colourings,
and local colourings. When treated on the torus (or on any orientable surface of positive
genus), these notions are no longer equivalent to each other, but there is a nice hierarchy
among them as shown by Fisk [23]. Under this hierarchy, every 4-colouring induces
an edge-colouring, every edge-colouring induces a Heawood colouring, every Heawood
colouring induces a local colouring, and all these correspondences are 1–1. However, none
of these implications can be reversed.

An edge-colouring6 is a partition of the edges of a triangulation T into three classes,
so that each triangular face of T has one edge in each class. This is equivalent to a
proper 3-colouring on the medial graph T ′ = M(T ) of the triangulation T . (The precise
definition of the medial graph is given below.) In particular, if T = T (3L, 3M), then
T ′ = T ′(3L, 3M) is a kagomé graph embedded on a torus. In figure 2 we show the
particular case of T ′(4, 3).

As mentioned above, there is a hierarchy among these types of colouring; see [23,
Proposition 25]. The simplest case of this hierarchy is the following one.

Proposition 3.1. Let T be a triangulation of a surface. Every 4-colouring of T induces
an edge-colouring of T , and this correspondence is 1–1.

Remarks.

(1) The reverse implication is false. Most triangulations have edge-colourings that are not
induced by any 4-colouring. However, the two notions are equivalent for triangulations
of the sphere.

6 The usual definition of edge-colourings is by colouring the edges in such a way that edges incident to the same
vertex receive distinct colours. In our definition, this actually works for the dual graph of the triangulation.
Another interpretation is to view edge-colourings as vertex 3-colourings of the medial graph M(G), which we shall
do in the sequel.
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Figure 2. Kagomé lattice T ′(4, 3): the vertex set is given by the white circles
(◦) and the edge set is given by the thick lines. This graph is the medial graph
of the triangulation T (4, 3), with vertex set given by the solid black dots (•) and
edge set given by the thin grey lines.

(2) It is usually assumed that the zero-temperature triangular-lattice four-state Potts
antiferromagnet is equivalent to the zero-temperature kagomé-lattice three-state Potts
antiferromagnet. This is not true on any surface other than the sphere, as there might
be edge-colourings not induced by 4-colourings. See an example below.

Let us explain how to obtain the edge-colouring induced by a given 4-colouring of
a triangulation T . We will illustrate the general ideas with an example displayed in
figure 3: in (a) we plot a particular 4-colouring f with deg(f) = 0 of T = T (3, 3). The
edge-colouring g induced by f is depicted in figure 3(b). It is obtained as follows. For
each edge of T , we assign to the edge colour 1 if its end vertices are coloured 12 or 34; the
edge will get colour 2 if its end vertices are coloured 13 or 24; and the edge gets colour 3
if its end vertices are coloured 14 or 23. The three vertices on any triangular face t ∈ T
are coloured differently with f ; thus the stated procedure colours the edges of t with three
distinct colours.

We define a Kempe region for an edge-colouring [23] in a similar fashion as for 4-
colourings. This is a region R of the triangulation T whose boundary has all edges of
the same colour c. Then we can exchange the two colours different from c on all edges
in R. Two edge-colourings are K-equivalent if one can be obtained from the other by a
sequence of exchanges on Kempe regions.

Proposition 3.2. If two 4-colourings of a triangulation G are K-equivalent, then their
induced edge-colourings are also K-equivalent.

Proof. Since the K-equivalence of 4-colourings of G is generated by K-exchanges on the
regions of the triangulation, it suffices to prove that aK-exchange for a 4-colouring f made
on a region R corresponds to the exchange performed on the same region for the induced
edge-colouring ψ. Indeed, since R is a Kempe region for f , all edges on the boundary
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Figure 3. (a) A 4-colouring f of T (3, 3) with deg(f) = 0. (b) The edge-colouring
induced by f .

of R have their vertices coloured by the same pair of colours, say a, b. This implies that
these edges have the same colour c under the edge-colouring ψ. Now, exchanging the two
colours different from a, b on the vertices in the region R has an effect on the induced
edge-colouring that is precisely the same as that of the exchange of edge colours different
from c on the edges in R. This completes the proof. ��

It is natural to ask whether the converse of proposition 3.2 may hold. Unfortunately,
the answer is negative. Furthermore, an edge-colouring ψ induced by a 4-colouring f may
be K-equivalent to an edge-colouring that is not induced by any 4-colouring. Figure 4
shows an example of such a case.

Although there are at least as many edge-colourings as there are 4-colourings, the
number of K-equivalence classes of 4-colourings might be bigger or might be smaller than
the number of equivalence classes of edge-colourings.

Our analysis can be simplified by introducing the medial graph T ′ = M(T ) = (V ′, E ′)
of a triangulation T .

Let us first define the medial graph G′ of a graph G (not necessarily a triangulation)
embedded on a surface S. It is convenient to first define the dual graph G∗ = (V ∗, E∗) of
G, which is also embedded on S. This dual graph is built in the standard way as follows:
to each face f in G, there corresponds a dual vertex f ∗ ∈ V ∗; and for every edge e ∈ E,
we draw a dual edge e∗ ∈ E∗. If the original edge e lies on the intersection of two faces
f and h (possibly f = h), then the corresponding dual edge e∗ joins the dual vertices
f ∗, h∗ ∈ V ∗. We can draw G and G∗ on S in such a way that each edge e ∈ E intersects
its corresponding dual edge e∗ ∈ E∗ exactly once. (See figure 5 for an example on the
sphere.)

Then, the medial graph G′ = (V ′, E ′) of G = (V,E) is constructed as follows: to each
unique intersection between an edge e ∈ E and its dual edge e∗ ∈ E∗, there corresponds a
vertex of the medial graph v′ ∈ V ′. (See figure 5 where the vertices of the medial graph are
depicted as open white circles.) It is clear that the medial graph G′ is also embedded on
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Figure 4. Example showing that the converse of proposition 3.2 cannot be
true. In panel (a) we show a 4-colouring of the triangulation T (4, 4) and its
associated edge-colouring. The shaded triangles form a Kempe region for this
edge-colouring. In panel (b), we display the new edge-colouring after the Kempe
change. The exchange yields an edge-colouring that is not induced by any 4-
colouring. This example can be generalized to any triangulation T (2n, 2m), with
n,m ≥ 2.

S, and that G′ is a regular graph of degree 4. Finally, the role played in this construction
by G and its dual G∗ is symmetric; therefore, the medial graph of G coincides with the
medial of its dual (G∗)′ = G′.

Edge-colourings of a triangulation T = (V,E) embedded on a surface S can be
regarded as 3-colourings of the vertices of the corresponding medial graph T ′ = M(T ),
which is also embedded on S. In T ′ there are faces of two types: triangular faces inside
any triangular face of T , and faces with di sides containing every vertex i ∈ V of degree
di. (See figure 6 for an example of a triangulation embedded on the sphere.) Notice that
the medial graph T ′ of a triangulation T is not a triangulation of S (with an exception
when T = K4). A Kempe change on an edge-colouring of T has precisely the same effect
as a standard Kempe change on T ′.

The medial graph T ′ = (V ′, E ′) can be regarded as a particular subgraph of another
triangulation T ′′ = (V ′′, E ′′) on the same surface that is obtained by adding back the
original vertices of T , and also adding the edges joining each v ∈ V with the vertices in V ′

corresponding to the edges of T incident with v. The vertices of T ′′ are simply V ′′ = V ∪V ′.
The edges of T ′′ are given by E ′′ = E ′ ∪ Ẽ. The second edge set Ẽ is constructed as
follows: to each original edge ab ∈ E, the medial graph T ′ assigns a new vertex x. Then,

the contribution of the edge ab ∈ E to Ẽ consists of two edges ax and xb. Notice that
the degree in T ′′ of the vertices i in V (resp., V ′) is di (resp., 6). The triangulation T ′′

can be constructed directly from T by inserting a new vertex in the middle of each edge
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Figure 5. Graph G = (V,E) embedded on the sphere. The vertices of V are
depicted as solid black circles, and the edges of E as solid thick lines. The dual
graph G∗ = (V ∗, E∗) is represented as follows: the vertex set is depicted as solid
grey circles, and the edge set as solid thick grey lines. Finally, the medial graph
G′ = (V ′, E′) is given by a vertex set drawn as open white circles, and by the
edge set depicted as dashed thin (red) lines.

of T and then inserting three edges joining the added vertices in each triangular face.
Consequently, each face of T is subdivided into four triangles in T ′′. Clearly, the resulting
triangulation T ′′ triangulates the same surface S. (See figure 6.)

Any 3-colouring of the medial graph T ′ can be regarded as a very particular 4-
colouring of T ′′, in which every original vertex i ∈ V (of degree di) is coloured 4, and
the vertices in V ′ (of degree 6 in T ′′) are coloured 1, 2, 3 in such a way that the resulting
4-colouring is proper. The Kempe changes on T ′ can be viewed as a subset of the full set
of possible Kempe changes that we can perform on T ′′: In particular, we can only choose
the induced subgraphs T ′′

ab with a, b ∈ {1, 2, 3}.
We can regard the edge-colourings of a triangulation T as constrained colourings

on T ′′; and we can use all the technology that we have for standard 4-colourings of
triangulations (in particular, the notion of the colouring degree) [20].

These observations hold for every triangulation T . In this paper, we are focusing on
the triangulations T = T (3L, 3M) of the torus. For these particular triangulations, the
corresponding medial graphs T ′ = M(T ) = T ′(3L, 3M) are kagomé graphs embedded on
a torus. It is easy to see that the graph T ′′ is isomorphic to the triangulation T (6L, 6M)
in this case. (See figures 3 and 7 for an explicit example with L = M = 1.)
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Figure 6. Triangulation T = (V,E) of the sphere. The vertices of V are depicted
as solid black circles, and the edges of E as solid thick lines. Its medial graph
T ′ = (V ′, E′) is represented as follows: the vertices are depicted as open white
circles, and the edges as dashed thin lines. The triangulation T ′′ = (V ′′, E′′) is
constructed as follows: the vertices in V ′′ are those of V and V ′ (i.e., all circles,
open or solid in the picture). The edges in E′′ are all edges in the picture (dashed
and solid); notice that each edge in E now corresponds to two edges in E′′. For
simplicity, we have not depicted T ∗, the dual graph of T .

Given the triangulation T = T (3L, 3M), the set of proper 4-colourings on T ′′ =
T (6L, 6M) is denoted as C4(T

′′); the set of constrained proper 4-colourings of T with all
vertices in V coloured 4 and those in V ′ coloured 1, 2, 3 will be denoted C̃4(T

′′). The
colourings in C̃4(T

′′) will be referred to as the special 4-colourings of T ′′.
Let us summarize the above-described correspondence in the following proposition:

Proposition 3.3. Let us consider a triangulation T embedded on a surface S. Then,
there is a bijective correspondence between the 3-edge-colourings of T and the 3-colourings
of the vertices of its medial graph T ′ = M(T ). Furthermore, if T = T (3L, 3M), then T ′

is a subgraph of T ′′ = T (6L, 6M) and there is a bijection between the 3-colourings of the
vertices of the medial graph T ′ = M(T ) and the special 4-colourings of T ′′. Under these
two correspondences, K-equivalence is preserved.
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Figure 7. Different colourings of the triangulation T (3, 3) and their
interpretation. (a) The representation of the edge-colouring g given in figure 3(b)
as a 3-colouring h of the medial graph T ′(3, 3), which is a kagomé graph embedded
on a torus. (b) The representation of the 3-colouring h on T ′(3, 3) as a 4-colouring
of T ′′(3, 3) = T (6, 6). (Notice that this panel is obtained from figure 3(b) by
periodically shifting the latter one step to the left, and by placing a spin coloured
4 on every intersection of the edges in figure 3(b).)

The main lemma that we need is the following:

Lemma 3.4. Let us consider the set of edge-colourings of the triangulation T (3L, 3M).
If the set of special 4-colourings of T (6L, 6M) contains an element f with deg(f) ≡ 6
(mod 12), then there are at least two Kempe equivalence classes for edge-colourings of
T (3L, 3M). In other words, there are at least two Kempe equivalence classes for the
vertex 3-colourings of the medial graph T ′(3L, 3M).

Proof. First of all, let us prove that there is an element h ∈ C̃4(T (6L, 6M)) with
deg(h) = 0. This colouring will belong to one Kempe equivalence class for edge-colourings
of T (3L, 3M). This 4-colouring can be constructed as follows: we start with the standard
3-colouring of T ′′ = T (6L, 6M), which always exists as both dimensions are multiples of 3.
Next, we change the colour of every vertex in T ′′ coming from the original triangulation
T = T (3L, 3M) (viewed as a special vertex in T ′′) into the colour 4. Recolouring of
each such vertex is a Kempe change on T ′′, so this gives a special colouring h that is K-
equivalent to the 3-colouring of T ′′. Since the degree of the 3-colouring is 0 and changing
the colour of a single vertex preserves the degree of the colouring, we conclude that
deg(h) = 0.

Suppose now that there is another proper 4-colouring f of T (6L, 6M) belonging
to C̃4(T (6L, 6M)) and such that deg(f) ≡ 6 (mod 12). Theorem 3.5 of [20] ensures
that the 4-colourings h and f are not K-equivalent on the larger configuration space
C4(T (6L, 6M)). Thus, this conclusion holds if we restrict to the smaller space
C̃4(T (6L, 6M)) ⊆ C4(T (6L, 6M)) of special 4-colourings. ��
doi:10.1088/1742-5468/2010/05/P05016 15
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Remark. The proper 3-colouring h described in the above proof for T ′(3L, 3L)
corresponds to the so-called ‘

√
3 ×√

3’ ordered state in the physics literature [8].

4. The main result

The goal of this section is to prove the following theorem:

Theorem 4.1. Let T = T (3L, 3L) be a triangulation of the torus with L ∈ N. Then
there are at least two Kempe equivalence classes of edge 3-colourings of T . In other
words, the WSK dynamics for the three-state Potts antiferromagnet at zero temperature
on the kagomé graph M(T ) = T ′(3L, 3L) with L ∈ N is not ergodic.

Proof. The basic strategy is similar to that of the proof of theorem 3.5 of [20]: we will
explicitly construct a 4-colouring of T ′′(3L, 3L) = T (6L, 6L) with the desired properties,
and then, we apply lemma 3.4. To avoid ambiguities in the computation of the degree,
we orient T (6L, 6L) and ∂Δ3 in such a way that the boundaries of all triangular faces
are always followed clockwise. The contribution of a triangular face t of T (6L, 6L) to the
degree of a given colouring f is +1 (resp., −1) if the colouring is 123 (resp., 132) if we
move clockwise around the boundary of t. In our figures, those faces with orientation
preserved (resp., reversed) by f are depicted in light (resp., dark) grey. We split the proof
into two cases, depending on the parity of L.

The simpler case is when L is odd, i.e., 3L = 6k − 3 for an integer k ≥ 1. We
only need to prove that there exists a special 4-colouring f ∈ C̃4(T ) of the triangulation
T = T ′′(6k−3, 6k−3) = T (12k−6, 12k−6) with deg(f) ≡ 6 (mod 12). This 4-colouring
is just the standard non-singular 4-colouring cns. In particular, for a generic triangulation
T (3L, 3M), this non-singular 4-colouring cns is given by

cns(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if x, y ≡ 1 mod 2

4 if x ≡ 1 and y ≡ 0 mod 2

2 if x ≡ 0 and y ≡ 1 mod 2

3 if x, y ≡ 0 mod 2

, 1 ≤ x ≤ 3L, 1 ≤ y ≤ 3M. (7)

Its existence for every triangulation T (12k − 6, 12k − 6) with k ∈ N is given by
proposition 3.2 of [20]. In addition, cns for T = T (12k − 6, 12k − 6) has all vertices
of V (6k− 3, 6k− 3) (and only these) coloured 4; therefore, it belongs to the restricted set
C̃4(T ). Finally, its degree is given by deg(cns) = 2(6k − 3)2 ≡ 6 (mod 12).

Remark. The proper 3-colouring on T ′(6k − 3, 6k − 3) associated with the special 4-
colouring cns on T (12k − 6, 12k − 6) corresponds to the so-called ‘Q = 0’ state in the
physics literature [7].

Case 2: L = 2k. The above proof does not work for the triangulations T (6k, 6k), as the
non-singular 4-colouring of T ′′(6k, 6k) = T (12k, 12k) := T has degree ≡ 0 (mod 12).
We will describe the required 4-colouring of T by a construction made in four steps. The
idea is to build the target 4-colouring by using counter-diagonals of the triangular lattice:
these counter-diagonals are orthogonal to the inclined edges of the triangulation when
embedded on a square grid, and will be denoted as Dj, j = 1, 2, . . . , 12k. In figure 8
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Figure 8. Notation used in the proof of theorem 4.1. Given a triangulation
T (M,M) (here we depict the case M = 6), we label each vertex using Cartesian
coordinates (x, y), 1 ≤ x, y ≤ M . The arrows (pointing north-west) show the
counter-diagonals Dj with j = 1, . . . ,M .

we show the triangulation T (6, 6), along with its six counter-diagonals Dj. As we have
embedded the triangulation into a square grid, we will use Cartesian coordinates (x, y),
1 ≤ x, y ≤ 3L, for labelling the vertices.

Let us consider the triangulation T = T (12k, 12k) with k ∈ N. (We will illustrate the
main steps with the case k = 1.) Our construction consists of four steps:

Step 0. To simplify the notation, let us first colour 4 those vertices in the vertex set
V ′ = V (T (6k, 6k)) ⊂ V (T ). In our standard representation of the triangulation T as a
square grid with diagonal edges, we see that the vertex located at (x, y), 1 ≤ x, y ≤ 12k,
belongs to V ′ if and only if x ≡ 1 (mod 2) and y ≡ 0 (mod 2).

Step 1. On the counter-diagonal D1 we colour 2 the 6k vertices not already coloured 4. On
D2, we colour 1 the vertices with x-coordinates either equal to x = 1 or 6k+1 ≤ x ≤ 12k.
The other 6k − 1 vertices on D2 are coloured 3. On D(12k), we colour all vertices 1 or
3 in such a way that the resulting colouring is proper (for each vertex there is a unique
choice).

We colour all vertices on D3 and D(12k − 1) using colour 2, except those vertices
belonging to V ′. Finally, we colour all vertices on D4 and D(12k − 2) using colours 1
and 3 (again, for each vertex the choice is unique). The resulting colouring is depicted
in figure 9. Currently, the partial degree of f is deg f |R = 6, where we define the partial
degree as the contribution of all triangles already coloured 123 (contribution +1) or 132
(contribution −1) towards the degree of the targeted colouring f .
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Figure 9. The 4-colouring of T (12, 12) after the first step of the algorithm given
by the proof of case 2 of theorem 4.1. All vertices belonging to the set V ′ are
already coloured 4.

Step 2. There are 12k − 7 counter-diagonals to be coloured, and in this step we will
sequentially colour all of them but five. (Observe that there is nothing to do if k = 1.)
This will be done by performing the following procedure: Suppose that we have already
coloured counter-diagonals Dj and D(12k− j + 2) (j ≥ 4) using colours 1 and 3. We first
colour D(j + 1) and D(12k − j + 1) using colour 2 for all vertices not belonging to V ′.
We then colour D(j + 2) and D(12k − j) using colours 1 and 3. In these cases, for each
vertex we have only one choice. This step is repeated 3(k − 1) times: we add 12(k − 1)
counter-diagonals, and there are only five counter-diagonals not coloured yet. Indeed, the
last coloured counter-diagonals use colours 1 and 3, as at the end of step 1.

Each of these 3(k − 1) steps adds a 4 to the degree of the colouring. Namely, all
new triangles coloured 123 or 132 are located along the counter-diagonals D(j + 1) and
D(12k − j − 1). Triangles coloured 123 and 132 come in pairs, annihilating each other’s
contribution, except at the vertex coloured 2 where colour 3 is changed to 1 on the
next counter-diagonal. There we get two triangles, each contributing +1, on each of the
counter-diagonals D(j + 1) and D(12k − j − 1). Thus, the partial degree of the colouring
is deg f |R = 6 + 12(k − 1).

Step 3. The last coloured counter-diagonals are D(6k − 2) and D(6k + 4).

On D(6k − 1), there is a single vertex not in V ′ whose colour can only be 2 since it
has neighbours of colours 1, 3, and 4. This vertex is located at x = 9k− 1 (resp., x = 3k)
if k is odd (resp., even). We then colour the vertex v0 = (x0, y0) on D(6k − 1) located
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Figure 10. The 4-colouring of T (12, 12) after step 3 of the algorithm given by
the proof of case 2 of theorem 4.1.

at x0 = 3k − 1 (resp., x0 = 9k) using colour 1 (resp., 3) if k is odd (resp., even). The
remaining vertices on D(6k − 1) are coloured 2.

On D(6k) we find that there are two vertices that are neighbours of v0 and should be
coloured 2. These vertices are located at (x0, y0 + 1) and (x0 + 1, y0) (valid for every k).
The other vertices on D(6k) are coloured 1 or 3; the choice is unique for each vertex. As
shown in figure 10, the contribution to the degree of these new triangular faces is 2; thus,
the partial degree of f is deg f |R = 8 + 12(k − 1).

Step 4. On D(6k+1) the vertices at (x0 +2, y0) and (x0, y0 +2) (where the special vertex
v0 = (x0, y0) was defined in the previous step) should be coloured 1 and 3, respectively.
The other vertices are coloured 1 or 3 (the choice among these two possible colours is
again unique for each vertex).

On D(6k+ 3), we find that the vertex at x = x0 + 2 should be coloured 2. The other
vertices on this counter-diagonal and not belonging to V ′ are coloured 1 or 3; the choice
among these two colours is again unique.

Finally, every vertex on D(6k+2) has its colour fixed by the neighbours. All of them
are coloured 2 except two vertices: the vertex at x = x0 + 2 is coloured 3, and the vertex
at x = x0 + 1 is coloured 1. The sought colouring is depicted in figure 11. In this case,
the increment in the degree is −2. Therefore, the degree of the final 4-colouring is

deg f = 6 + 12(k − 1) ≡ 6 (mod 12) (8)

This colouring f of T (12k, 12k) is proper, belongs to the restricted set C̃4(T (12k, 12k))
and its degree is congruent to 6 modulo 12, as claimed. ��
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Figure 11. The 4-colouring of T (12, 12) after step 4 of the algorithm given by
the proof of case 2 of theorem 4.1

The following corollary follows trivially:

Corollary 4.2. The single-site dynamics for the three-state Potts antiferromagnet at zero
temperature on the kagomé graph T ′(3L, 3L) with L ∈ N is not ergodic.

Proof. It follows from the fact that single-site moves are a subset of the Kempe moves. In
fact, each proper 3-colouring of the kagomé graph T ′(3L, 3L) is an ergodicity class in the
single-site dynamics. This is a consequence of each vertex belonging to two neighbouring
triangular faces. Therefore, in every proper 3-colouring, every vertex has two neighbouring
vertices coloured with either of two possible other colours, and no change is possible.
Therefore, each proper 3-colouring is frozen in the single-site dynamics, and constitutes
an ergodicity class. ��
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