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PRIMOŽ MORAVEC

Abstract. Tensor analogues of right 2-Engel elements in groups were
introduced by D. P. Biddle and L.-C. Kappe. We investigate the prop-
erties of right 2-Engel tensor elements and introduce the concept of 2⊗-
Engel margin. With the help of these results we describe the structure of
2⊗-Engel groups. In particular, we prove a tensor version of Levi’s the-
orem for 2-Engel groups and determine tensor squares of two-generator
2⊗-Engel p-groups.

1. Introduction

For any group G, the nonabelian tensor square G⊗G is a group generated
by the symbols g ⊗ h, subject to the relations

gg′ ⊗ h = (gg′ ⊗ hg′)(g′ ⊗ h) and g ⊗ hh′ = (g ⊗ h′)(gh′ ⊗ hh′),

where g, g′, h, h′ ∈ G and gh = h−1gh. The more general concept of non-
abelian tensor product of groups acting on each other in certain compatible
way was introduced by R. Brown and J.-L. Loday in [5], following the ideas
of R. K. Dennis [6]. This construction has its origins in algebraic K-theory
as well as in homotopy theory, yet it has become interesting from a purely
group-theoretical point of view since the paper of R. Brown, D. L. Johnson
and E. F. Robertson [4]. Since then, many authors have been concerned
with explicit computations of nonabelian tensor squares; see the paper of
L.-C. Kappe [9] for a comprehensive survey of these results.

The main topic of [3] is consideration of tensor analogues of the center
and centralizers in groups. More precisely, for a given group G the sub-
group Z⊗(G) consisting of all a ∈ G with a ⊗ x = 1⊗ for every x ∈ G

is called the tensor center. This concept was introduced by G. J. Ellis
[7]. Moreover, for a group G and a non-empty subset X, the subgroup
C⊗

G(X) = {a ∈ G : a ⊗ x = 1⊗ for all x ∈ X} is said to be the tensor an-
nihilator of X in G. Also, tensor analogues of right n-Engel elements have
been defined. Recall that the set of right n-Engel elements of a group G is
defined by Rn(G) = {a ∈ G : [a, nx] = 1 for all x ∈ G}. Here [a, nx] stands
for the commutator [· · · [[a, x], x], · · · ] with n copies of x. It is well-known
that R1(G) = Z(G) and that R2(G) is a subgroup of G [13]. In contrast
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with this, it was shown that for n ≥ 3 the set Rn(G) is not necessarily a
subgroup [14]. The set of right n⊗-Engel elements of a group G is then
defined as

R⊗
n (G) = {a ∈ G : [a, n−1x]⊗ x = 1⊗ for all x ∈ G}.

One of the results of [3] shows that R⊗
2 (G) is always a characteristic subgroup

of G containing Z(G) and contained in R2(G). It is also shown by an
example that these inclusions may be proper.

The purpose of this paper is to further investigate tensor analogues of 2-
Engel structure in groups. In the first part of the paper we determine some
further information about R⊗

2 (G) and provide some new characterizations of
this subgroup. In particular, we define the tensor analogue of 2-Engel margin
and show that there is a striking resemblance between the results about 2-
Engel margin and the results about its tensor analogue. We use these results
to obtain the structure of 2⊗-Engel groups. Here the group G is said to be
n⊗-Engel when [x, n−1y]⊗ y = 1⊗ for any x, y ∈ G. It is straightforward to
see that every 2⊗-Engel group is also 2-Engel. A well-known result of F. W.
Levi (see [15, pp. 45–46]) states that every 2-Engel group G is metabelian
and nilpotent of class ≤ 3 and the exponent of γ3(G) divides 3. Therefore it
is hardly surprising that the following result is obtained: If G is a 2⊗-Engel
group, then G ⊗ G is abelian, γ3(G) ≤ Z⊗(G) and ([x, y] ⊗ z)3 = 1⊗ for
every x, y, z ∈ G. As a consequence, we obtain several characterizations of
2⊗-Engel groups, once again indicating the strong correspondence between
2-Engel groups and 2⊗-Engel groups.

Let G be a group-theoretic property. A group G is said to have a finite
covering by G-subgroups if G equals, as a set, to the union of finite family
of G-subgroups. The finite coverings of groups by their 2-Engel subgroups
were studied by L.-C. Kappe [10]. It is proved in that paper that a group G

has a finite covering by 2-Engel subgroups if and only if |G : R2(G)| < ∞.
The situation is similar in the context of 2⊗-Engel groups. We prove that a
group G can be covered by a finite family of 2⊗-Engel subgroups if and only
if |G : R⊗

2 (G)| < ∞. Another result of [10] in this direction is that G has a
finite covering by 2-Engel normal subgroups if and only if G is 3-Engel and
|G : R2(G)| < ∞. It is to be expected that there is a tensor analogue of this
result, but we leave it for future consideration. It is not difficult to see that
if G has a finite covering by 2⊗-Engel normal subgroups, then G is 3⊗-Engel
and |G : R⊗

2 (G)| < ∞. For the reverse conclusion one would probably need
the characterization of 3⊗-Engel groups by their normal closures analogous
to [12].

Since every 2⊗-Engel group has an abelian tensor square, there is a good
chance to compute tensor squares of 2⊗-Engel groups explicitly. We reduce
these computations to consideration of tensor squares of groups of class ≤ 2.
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With the help of this we compute tensor squares of two-generator 2⊗-Engel
p-groups, using the results of [1] and [11]. It is worth mentioning that there
is a minor error in the classification of two-generator p-groups of class 2
given by [1], so we give the correct result here. We also compute the kernel
of the commutator map κ : G ⊗ G → G′ given by g ⊗ h 7→ [g, h] for any
nonabelian two-generator 2⊗-Engel p-group G. The group ker κ is of interest
as it is isomorphic to the third homotopy group of the space SK(G, 1) [5].
Beside that, we compute the Schur multiplier of G.

2. Preliminary results

In this section we summarize without proofs some basic results regarding
computations in tensor squares and the results concerning 2-Engel groups
which will be used throughout the paper without any further reference. The
first lemma gives the right action version of [5, Proposition 3].

Lemma 1 ([5]). Let g, g′, h, h′ ∈ G. The following relations hold in G⊗G:

(a) (g−1 ⊗ h)g = (g ⊗ h)−1 = (g ⊗ h−1)h.
(b) (g′ ⊗ h′)g⊗h = (g′ ⊗ h′)[g,h].
(c) [g, h]⊗ g′ = (g ⊗ h)−1(g ⊗ h)g′.
(d) g′ ⊗ [g, h] = (g ⊗ h)−g′(g ⊗ h).
(e) [g, h]⊗ [g′, h′] = [g ⊗ h, g′ ⊗ h′].

Note here that G acts on G⊗G by (g⊗ h)g′ = gg′ ⊗ hg′ . The next result
is crucial in studying the analogy between commutators and tensors.

Proposition 1 ([4]). For a given group G there exists a homomorphism
κ : G ⊗ G → G′ such that κ : g ⊗ h 7→ [g, h]. Moreover, ker κ ≤ Z(G ⊗ G)
and G acts trivially on ker κ.

An element a of a group G is called a right 2-Engel element of G if
[a, x, x] = 1 for each x ∈ G. In a similar fashion, an element a is said to be
a left 2-Engel element of G if [x, a, a] = 1 for each x ∈ G. The sets of right
2-Engel elements and left 2-Engel elements of G are denoted by R2(G) and
L2(G), respectively. For the properties of right 2-Engel elements we refer to
[15, Theorem 7.13] and [16, Lemma 2.2, Theorem 2.3]. We list here some of
them, especially those which turn out to have tensor analogues.

Proposition 2 ([15], [16]). Let G be a group, a ∈ R2(G) and x, y, z ∈ G.

(a) a is also a left 2-Engel element and aG is abelian.
(b) [a, x]rs = [ar, xs] for all r, s ∈ Z.
(c) [a, x, y] = [a, y, x]−1.
(d) [a, [x, y]] = [a, x, y]2.
(e) a2 ∈ Z3(G).
(f) [a, [x, y], z] = 1.
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Here aG denotes the normal closure of a in G. This result is the main
ingredient of the proof of Levi’s theorem [15, pp. 45–46] that every 2-Engel
group G is nilpotent of class ≤ 3 and the exponent of γ3(G) divides 3. We
also list some characterizations of 2-Engel groups which will serve as a model
for 2⊗-Engel groups.

Proposition 3 ([15]). For a group G the following assertions are equivalent:

(a) G is a 2-Engel group.
(b) CG(x) is a normal subgroup of G for every x ∈ G.
(c) [x, [y, z]] = [x, y, z]2 for any x, y, z ∈ G.
(d) [x, z, y]−1 = [x, y, z] for any x, y, z ∈ G.
(e) xG is abelian for every x ∈ G.

3. Right 2⊗-Engel elements of groups

The main object of this section is the study of tensor analogues of right
(left) 2-Engel elements of a given group. More precisely, for an arbitrary
group G we define the sets of right (left) 2⊗-Engel elements of G by R⊗

2 (G) =
{a ∈ G : [a, x] ⊗ x = 1⊗ for all x ∈ G} and L⊗

2 (G) = {a ∈ G : [x, a] ⊗
a = 1⊗ for all x ∈ G}, respectively. At the beginning we formulate some
elementary properties of these two sets.

Lemma 2. Let G be any group. We have:

(a) R⊗
2 (G) ⊆ R2(G), L⊗

2 (G) ⊆ L2(G).
(b) Every right 2⊗-Engel element of G also belongs to L⊗

2 (G).
(c) L⊗

2 (G) = {a ∈ G : ax ⊗ ay = a⊗ a for all x, y ∈ G}.

Proof. Let κ : G ⊗ G → G′ be the commutator map. Let a ∈ R⊗
2 (G)

and x ∈ G. Then we get 1 = κ([a, x] ⊗ x) = [a, x, x], hence a ∈ R2(G).
The inclusion L⊗

2 (G) ⊆ L2(G) is proved in a similar way, therefore (a)
is proved. To prove (b), pick a ∈ R⊗

2 (G) and x ∈ G. Then we have
1⊗ = [a, ax] ⊗ ax = [a, x] ⊗ ax = ([a, x] ⊗ a)x = ([x, a] ⊗ a)−[a,x]x, hence
[x, a] ⊗ a = 1⊗ and therefore a ∈ L⊗

2 (G). So we are left with the proof
of (c). Let S = {a ∈ G : ax ⊗ ay = a ⊗ a for all x, y ∈ G}. For a ∈ S

and x ∈ G we have [a, x] ⊗ a = a−1ax ⊗ a = (a−1 ⊗ a)ax
(ax ⊗ a) = 1⊗,

hence a ∈ L⊗
2 (G). Conversely, let a ∈ L⊗

2 (G) and x, y ∈ G. Then we obtain
ax ⊗ ay = (axy−1 ⊗ a)y = (a[a, xy−1]⊗ a)y = (a⊗ a)[a,xy−1]y([a, xy−1]⊗ a)y.
Since G acts trivially on kerκ, we have (a ⊗ a)[a,xy−1]y = a ⊗ a, whereas
[a, xy−1]⊗ a = 1⊗ by (b). This proves the assertion. �

The following theorem is already proved in [3]:

Theorem 1 ([3]). For any group G, the set of all right 2⊗-Engel elements
of G is a characteristic subgroup of G.
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The computations with tensors involving right 2⊗-Engel elements are fa-
cilitated by the following result which has roots in corresponding rules for
computation with 2-Engel elements [15, Theorem 7.13]. Before formulating
the result, note that

Z⊗
n (G) = {a ∈ G : [a, x1, . . . , xn−1]⊗ xn = 1⊗ for all x1, . . . , xn ∈ G}

is a characteristic subgroup of G contained in the n-th center Zn(G). This
subgroup is called the n-th tensor center of G [3].

Proposition 4. Let G be a group, x, y, z ∈ G and a ∈ R⊗
2 (G).

(a) [a, x]⊗ y = ([a, y]⊗ x)−1.
(b) [a, x] ∈ C⊗

G(xG).
(c) [a, x]n ⊗ y = ([a, x]⊗ y)n for any n ∈ Z.
(d) a⊗ xn = (a⊗ x)n for any n ∈ Z.
(e) [a, x]⊗ [y, z] = 1⊗.
(f) [x, y]⊗ a = ([x, a]⊗ y)2 and a⊗ [x, y] = ([a, x]⊗ y)2.
(g) a2 ∈ Z⊗

3 (G).

Proof. The identities (a) and (b) are already proved in [3, Lemma 5.1 and
Lemma 5.2]. To prove (c), it suffices to assume that n > 0. Now observe
that [a, x]n⊗y = ([a, x]⊗y)([a, x]n−1⊗y), hence (c) follows by an induction
on n.

Before we proceed, note first that (a) implies that the elements of the
form b⊗ z, where b ∈ aG and z ∈ G, commute with each other. Expanding
a⊗ xy and xy ⊗ a using the tensor product rules, we have

(1) a⊗ xy = (a⊗ x)(a⊗ y)([a, x]⊗ y)

and

(2) xy ⊗ a = (x⊗ a)(y ⊗ a)([x, a]⊗ y).

The first equation yields

a⊗ [x, y] = a⊗ (yx)−1(xy) = (a⊗ xy)(a⊗ yx)−1([a, (yx)−1]⊗ xy)

by [3, Lemma 5.1]. Since xy is a conjugate of yx, we have [a, (yx)−1]⊗xy =
1⊗ by (b), hence a ⊗ [x, y] = ([a, x] ⊗ y)2. Similarly we prove a ⊗ [x, y] =
([a, x]⊗ y)2. It is also clear that the equation (1) also implies (d).

It remains to prove that [a, x]⊗ [y, z] = 1⊗ and a2 ∈ Z⊗
3 (G). Expanding

the identity [a, x]⊗ yz = ([a, yz]⊗ x)−1, we obtain ([a, x]⊗ z)([a, x]⊗ y)z =
([a, z]⊗x)−[a,y]z([a, y]⊗[z−1, x−1]x)−z. Since [a, z, x]⊗[az, yz] = 1⊗, it follows
that [a, y]z acts trivially on [a, z]⊗x. Thus we obtain, after cancellation and
relabeling, 1⊗ = [a, y]⊗ [x, z] = ([a, [x, z]]⊗ y)−1 = ([a, x, z]2 ⊗ y)−1, hence
[a2, x, y]⊗ z = 1⊗. �

The immediate consequence of Proposition 4 is the following characteri-
zation of R⊗

2 (G).
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Corollary 1. For any group G we have R⊗
2 (G) = {a ∈ G : [a, x] ∈

C⊗
G(xG) for all x ∈ G}.

It is known that a ∈ R2(G) implies that aG is abelian. The following
corollary gives the corresponding result for right 2⊗-Engel elements.

Corollary 2. Let a ∈ R⊗
2 (G). Then the normal closure (a ⊗ x)G⊗G is an

abelian group for any x ∈ G.

Proof. Let a ∈ R⊗
2 (G) and τ ∈ G⊗G. As usual, denote with κ the commuta-

tor map G⊗G → G′. Then we have [(a⊗x), (a⊗x)τ ] = [a⊗x, (a⊗x)κ(τ)] =
[a, x] ⊗ [aκ(τ), xκ(τ)] = 1⊗ by Proposition 4. It follows by conjugation that
every two elements of (a⊗ x)G⊗G commute, as required. �

Let φ(x1, . . . , xn) be any word in the variables x1, . . . , xn. For a group G

the associated marginal subgroup φ∗(G) (also called the φ-margin of G) con-
sists of all a ∈ G such that φ(g1, . . . , agi, . . . , gn) = φ(g1, . . . , gi, . . . , gn) for
every gi ∈ G and 1 ≤ i ≤ n. It is clear that φ∗(G) is always a characteristic
subgroup of G. Margins were first introduced by P. Hall [8]. In particular,
marginal subgroups for the 2-Engel word φ(x, y) = [x, y, y] were studied by
T. K. Teague [16]. Let E1(G) = {a ∈ G : [ax, y, y] = [x, y, y] for all x, y ∈
G} = R2(G) and E2(G) = {a ∈ G : [x, ay, ay] = [x, y, y] for all x, y ∈ G}.
Then the 2-Engel margin of G is E(G) = E1(G) ∩ E2(G). Now, the tensor
analogues of these subgroups can be defined as

E⊗
1 (G) = {a ∈ G : [ax, y]⊗ y = [x, y]⊗ y for all x, y ∈ G},

E⊗
2 (G) = {a ∈ G : [x, ay]⊗ ay = [x, y]⊗ y for all x, y ∈ G},

and let E⊗(G) = E⊗
1 (G) ∩ E⊗

2 (G). It is not difficult to see that these sets
are characteristic subgroups of G. Using Proposition 4, we also conclude
that E⊗

1 (G) = R⊗
2 (G).

In [16, Theorem 2.4] it is proved that E(G) = {a ∈ G : [x, a, y][x, y, a] =
1 for all x, y ∈ G}. The following result is therefore hardly surprising:

Theorem 2. For any group G we have

E⊗(G) = {a ∈ G : ([x, a]⊗ y)([x, y]⊗ a) = 1⊗ for all x, y ∈ G}.

Proof. Let S = {a ∈ G : ([x, a] ⊗ y)([x, y] ⊗ a) = 1⊗ for all x, y ∈ G},
let a ∈ S and x, y ∈ G. It is clear that a ∈ R⊗

2 (G) = E⊗
1 (G). Using

Proposition 4, we have [x, ay] ⊗ ay = [x, y][x, a]y ⊗ ay = ([x, y][x, a]y ⊗
y)([x, y][x, a]y ⊗ a)y = ([x, y] ⊗ y)[x,a]y([x, a] ⊗ y)y([x, y] ⊗ a)[x,a]yy([x, a]y ⊗
a)y = ([x, y]⊗ y)[x,a]y([x, a]y ⊗ a)y. Observe that ([x, a]y ⊗ a)y = (a−xyay ⊗
a)y = (a⊗ a)−1(a⊗ a) = 1⊗ by Lemma 2, hence we only have to prove that
[x, a]y acts trivially on [x, y] ⊗ y. To see this, we first note that y[x,a]y =
[y, [x, a]]y, hence ([x, y]⊗ y)[x,a]y = [x, y]⊗ [y, [x, a]]y. As [x, a] ∈ R⊗

2 (G), we
get [[x, a], y]⊗ [x, y] = ([[x, a], [x, y]]⊗ y)−1 = 1⊗ by Proposition 4, thus the
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inclusion S ⊆ E⊗(G) is proved. Conversely, every a ∈ E⊗(G) also belongs
to R⊗

2 (G). Reversing the above arguments, we obtain a ∈ S, as required. �

Let us mention an important consequence of this theorem.

Corollary 3. Let G be a group, x, y ∈ G and a ∈ E⊗(G). Then ([a, x] ⊗
y)3 = [a3, x]⊗ y = 1⊗.

Proof. For a ∈ E⊗(G) we get 1⊗ = ([x, y]⊗ a)([x, a]⊗ y) = ([x, a]⊗ y)3 by
Proposition 4, hence also [a3, x]⊗ y = 1⊗. �

It is proved in [16] that Z2(G) ≤ E(G) ≤ Z3(G) for any group G. Similar
arguments show the following.

Proposition 5. For any group G we have Z⊗
2 (G) ≤ E⊗(G) ≤ Z⊗

3 (G).

Proof. It is clear that Z⊗
2 (G) ≤ E⊗(G). Now, if a ∈ E⊗(G), then a3 ∈

Z⊗
2 (G) ≤ Z⊗

3 (G). On the other hand, we have a2 ∈ Z⊗
3 (G) by Proposition

4, hence a ∈ Z⊗
3 (G). �

4. 2⊗-Engel groups

A group G is said to be 2⊗-Engel when [x, y]⊗ y = 1⊗ for any x, y ∈ G.
It is worth noting that G is 2⊗-Engel precisely when R⊗

2 (G) = G, which
is equivalent to L⊗

2 (G) = G and is also equivalent to E⊗(G) = G. Using
the commutator map argument, it becomes clear that every 2⊗-Engel group
is also 2-Engel. The structure of 2⊗-Engel groups is described in the next
result which corresponds to the well-known Levi’s theorem about 2-Engel
groups [15, pp. 45–46]:

Theorem 3. Let G be a 2⊗-Engel group. Then we have:

(a) G⊗G is abelian group.
(b) γ3(G) ≤ Z⊗(G).
(c) ([x, y]⊗ z)3 = 1⊗ for any x, y, z ∈ G.

Proof. It follows directly from Proposition 4 that G⊗G is abelian. From the
same proposition we obtain ([x, y, z]⊗ v)2 = [x, y, z]2 ⊗ v = [x, [y, z]]⊗ v =
([x, v]⊗ [y, z])−1 = 1⊗. Furthermore, since E⊗(G) = G, we get (b) and (c)
by Corollary 3. �

In contrast with this result, there exists a 2-Engel group G such that
cl (G⊗G) = 2 [2]. The following is a tensor analogue of Proposition 3:

Corollary 4. The following statements for a group G are equivalent:

(a) G is 2⊗-Engel.
(b) [x, y]⊗ z = ([x, z]⊗ y)−1 for any x, y, z ∈ G.
(c) x⊗ [y, z] = ([x, y]⊗ z)2 for any x, y, z ∈ G.
(d) xy ⊗ xz = x⊗ x for any x, y, z ∈ G.
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Additionally, if G is a 2⊗-Engel group, then C⊗
G(g) / G for any g ∈ G.

Proof. By Proposition 4, (a), (b) and (c) are equivalent. The equivalence
between (a) and (d) is established in Lemma 2, (c). Now let G be a 2⊗-
Engel group, let g, y ∈ G and let x ∈ C⊗

G(g) ≤ CG(g). Then we have
xy⊗ g = x[x, y]⊗ g = [x, y]⊗ g = ([x, g]⊗y)−1 = 1⊗, thus xy ∈ C⊗

G(g). This
proves the corollary. �

It is evident that the condition “C⊗
G(g) / G for any g ∈ G” may fail to

imply that G is 2⊗-Engel, as C⊗
G(g) does not necessarily contain g.

Turning our attention to finite coverings by 2⊗-Engel subgroups, we men-
tion here a related result of L.-C. Kappe [10] which states that a group G

has a finite covering by 2-Engel subgroups if and only if |G : R2(G)| < ∞.
Our proof of the tensor analogue follows the lines of Kappe’s proof.

Theorem 4. A group G has a finite covering by 2⊗-Engel subgroups if and
only if |G : R⊗

2 (G)| < ∞.

Proof. Suppose that G =
n⋃

i=1
Hi, where Hi are 2⊗-Engel subgroups of G. The

standard reduction step, due to B. H. Neumann (see [10]), shows that we
may assume that |G : Hi| < ∞ for every i. Hence the subgroup D =

⋂n
i=1 Hi

has a finite index in G. It is clear that D ≤ R⊗
2 (G), hence |G : R⊗

2 (G)| < ∞.
Assume now |G : R⊗

2 (G)| < ∞. Let {g1, . . . , gn} be a transversal of R⊗
2 (G)

in G and let Hi = 〈gi〉R⊗
2 (G). We have G =

n⋃
i=1

Hi, hence it suffices to prove

that each Hi is 2⊗-Engel. Let y = gia and x = gjb be arbitrary elements
of 〈g〉R⊗

2 (G), where i, j ∈ Z and a, b ∈ R⊗
2 (G). Since R⊗

2 (G) = E⊗
1 (G),

we obtain, using Proposition 4, [x, y] ⊗ y = [gj , gia] ⊗ gia = [gj , a] ⊗ gia =
([gj , a]⊗ a)([gj , a]⊗ gi)a = (([g, a]⊗ g)a)ij = 1⊗, as required. �

Remark. Suppose that a group G has a finite covering by 2⊗-Engel normal
subgroups N1, . . . , Nn. Again we may assume that |G : Ni| < ∞ and by
Theorem 4 we also have |G : R⊗

2 (G)| < ∞. Since for every x ∈ G we have
xG ≤ Ni for some i, we conclude that every normal closure of an element of
G is 2⊗-Engel. In particular, we have 1⊗ = [x−y, x]⊗ x = ([y, x, x]⊗ x)x−1

,
hence G is 3⊗-Engel. In view of [10] it is likely that a 3⊗-Engel group G with
|G : R⊗

2 (G)| < ∞ has a finite normal covering by 2⊗-Engel subgroups, but
we have not been able to (dis)prove this, since there are no known tensor
analogues of results regarding 3-Engel groups [12].

5. Tensor squares of 2⊗-Engel groups

We have proved in the previous section that 2⊗-Engel groups have abelian
tensor squares. Moreover, if G is a 2⊗-Engel group, then γ3(G) ≤ Z⊗(G)
by Theorem 3. Using a result of G. J. Ellis [7], we see that G ⊗ G ∼=
G/γ3(G)⊗G/γ3(G), hence the calculations of tensor squares reduce to the
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calculations of tensor squares of class 2 groups (of course, the situation be-
comes even better when G is abelian).

Let G be a nonabelian two-generator 2⊗-Engel p-group. The group G/γ3(G)
is a two-generator 2⊗-Engel p-group of class 2. From [1] and [11] we obtain
the complete classification of two-generator p-groups of class 2, hence we
only have to check which of these groups are 2⊗-Engel. The following lemma
provides a useful criterion for this task:

Lemma 3. Let G be a two-generator group of class two. Then G is 2⊗-Engel
if and only if G⊗G ∼= Gab ⊗Gab.

Proof. Let G = 〈a, b〉 be a group of class two and let x, y ∈ G. Then
x = aibj [a, b]k and y = ai′bj′ [a, b]k

′
for some i, i′, j, j′, k, k′ ∈ Z. By means

of linear expansion we obtain [x, y] = [a, b]ij
′−i′j , hence [x, y] ⊗ y = (a ⊗

[a, b])j′−ii′j′+i′2j(b ⊗ [a, b])−i′−ij′2+i′jj′ . Therefore G is 2⊗-Engel if and only
if a ⊗ [a, b] = b ⊗ [a, b] = 1⊗, which is equivalent to x ⊗ [y, z] = 1⊗ for
all x, y, z ∈ G. By [9, Theorem 3], G is 2⊗-Engel if and only if G ⊗ G ∼=
Gab ⊗Gab. �

The recipe for computing tensor squares of two-generator 2⊗-Engel p-
groups therefore consists of looking for those two-generator p-groups G of
class two which satisfy the condition G⊗G ∼= Gab ⊗Gab. Note also that if
Gab ∼= Za1 × · · · × Zar , then Gab ⊗ Gab is isomorphic to the direct product
of all Zgcd(ai,aj), where i, j = 1, . . . , r.

First assume p is odd. Then we have the following cases [1]:
(Case 1.) G ∼= (〈c〉 × 〈a〉) o 〈b〉, where [a, b] = c, [a, c] = [b, c] = 1, |a| = pα,
|b| = pβ , |c| = pγ and α ≥ β ≥ γ ≥ 1. Here we have G⊗G ∼= Zpα×Z3

pβ×Z2
pγ ,

hence G⊗G 6∼= Gab ⊗Gab.
(Case 2.) G ∼= 〈a〉o 〈b〉, where [a, b] = apα−γ

, |a| = pα, |b| = pβ , |[a, b]| = pγ

and β ≥ γ ≥ 1, α ≥ 2γ; by a closer inspection of the proof of [1, Theorem 2.4]
it becomes clear that the extra condition α ≥ β given there is irrelevant. By
[1, Theorem 4.2] we have G⊗G ∼= 〈a⊗a〉×〈b⊗b〉×〈(b⊗a)(a⊗b)〉×〈b⊗a〉,
where |a ⊗ a| = pα−γ , |b ⊗ b| = pβ, |(b ⊗ a)(a ⊗ b)| = pmin{α−γ,β} and
|b⊗a| = n, where n = gcd(pα,

∑pβ−1
k=0 (pα−pα−γ +1)k). Applying [1, Lemma

4.1], we immediately obtain n = pmin{α,β}, hence G ⊗ G is isomorphic to
Zpβ × Zpα−γ × Zpmin{α,β} × Zpmin{α−γ,β} . Since Gab ∼= Zpα−γ × Zpβ , we get
Gab ⊗ Gab ∼= Zpβ × Zpα−γ × Z2

pmin{α−γ,β} . This yields that G is 2⊗-Engel if
and only if min{α− γ, β} = min{α, β} which is equivalent to α ≥ β + γ.
(Case 3.) G ∼= (〈c〉×〈a〉)o〈b〉, where [a, b] = apα−γ

c, [c, b] = a−p2(α−γ)
c−pα−γ

,
|a| = pα, |b| = pβ , |[a, b]| = pγ , |c| = pσ, α ≥ β ≥ γ > σ ≥ 1 and
α + σ ≥ 2γ. Let δ = min{α − γ, β} and τ = min{α − γ, σ}. Then we have
G⊗G ∼= Zpα−γ × Z3

pδ × Z2
pτ , hence it is not isomorphic to Gab ⊗Gab.

For p = 2 the situation is more complicated [11]:
(Case 4.) G ∼= (〈c〉 × 〈a〉) o 〈b〉, where [a, b] = c, [a, c] = [b, c] = 1, |a| = 2α,
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|b| = 2β, |c| = 2γ and α ≥ β ≥ γ ≥ 1. Here we have

G⊗G ∼=
{

Z2α × Z3
2β × Z2

2γ , : β > γ,
Z2α × Z2

2γ × Z2γ+1 × Z2γ−1 × Z2min{α−1,γ} : β = γ.

It follows from here that G⊗G 6∼= Gab ⊗Gab.
(Case 5.) G ∼= 〈a〉o 〈b〉, where [a, b] = a2α−γ |a| = 2α, |b| = 2β, |[a, b]| = 2γ

and α, β, γ ∈ N, α ≥ 2γ, β ≥ γ and α+β > 3. In this particular case, G⊗G

is isomorphic to Z2β×Z2α−γ+1 ×Z2min{α−γ,β}×Z2min{α,β} . It is straightforward
to verify that G⊗G 6∼= Gab ⊗Gab.
(Case 6.) G ∼= (〈c〉×〈a〉)o〈b〉, where [a, b] = a2α−γc, [c, b] = a−22(α−γ)

c−2α−γ
,

|a| = 2α, |b| = 2β, |[a, b]| = 2γ , |c| = 2σ with α, β, γ, σ ∈ N, α + σ ≥ 2γ and
β ≥ γ > σ. Let ρ = min{α− γ + σ, β}. Then we have

G⊗G ∼=
{

Z3
2γ × Z2γ+1 × Z2

2γ−1 : α = γ + 1 , β = γ,
Z2α−γ+σ+1 × Z2β × Z2min{α,β} × Z2ρ × Z2

2σ : α ≥ γ + 2 or β ≥ γ + 1.

It is clear that G⊗G is not isomorphic to Gab ⊗Gab.
We summarize our conclusions in the following theorem:

Theorem 5. Let G be a nonabelian two-generator 2⊗-Engel p-group. Then
p 6= 2 and G/γ3(G) ∼= 〈a〉 o 〈b〉, where [a, b] = apα−γ

, |a| = pα, |b| = pβ,
|[a, b]| = pγ with α ≥ β ≥ γ ≥ 1, α ≥ 2γ and α ≥ β + γ. We have
G⊗G ∼= 〈a⊗ a〉 × 〈b⊗ b〉 × 〈(b⊗ a)(a⊗ b)〉 × 〈b⊗ a〉 ∼= Z3

pβ × Zpα−γ .

Our considerations also show the following.

Corollary 5. Every 2⊗-Engel 2-group is abelian.

More generally, if G is a 2⊗-Engel group without elements of order 3,
then G′ ≤ Z⊗(G) by Theorem 3. This, together with the result of Ellis [7],
implies G⊗G ∼= Gab ⊗Gab.

Let G be a group. From a topological point of view, the third homotopy
group π3SK(G, 1) of the suspension of K(G, 1) is of some interest. A combi-
natorial description of πnSK(G, 1) has been given by J. Wu [17]. Observing
the formula π3SK(G, 1) ∼= ker κ [5], one can use a different approach when
G⊗G is explicitly computed. Applying Theorem 5, we describe π3SK(G, 1)
for any nonabelian two-generator 2⊗-Engel p-group G. We also determine
the Schur multiplier H2(G) of G.

Corollary 6. Let G be a nonabelian two-generator 2⊗-Engel p-group, let
κ : G⊗G → G′ be the commutator map and let a, b, α, β, γ be as in Theorem
5. Then π3SK(G, 1) ∼= ker κ ∼= 〈a⊗a〉×〈b⊗b〉×〈(b⊗a)(a⊗b)〉×〈(b⊗a)pγ 〉 ∼=
Z2

pβ × Zpα−γ × Zpβ−γ and H2(G) ∼= Zpβ−γ .

Proof. As κ(a⊗a) = κ(b⊗b) = κ((b⊗a)(a⊗b)) = κ((b⊗a)pγ
) = 1, Theorem 5

gives ker κ ∼= 〈a⊗a〉×〈b⊗b〉×〈(b⊗a)(a⊗b)〉×〈(b⊗a)pγ 〉 ∼= Z2
pβ×Zpα−γ×Zpβ−γ ,

as required. To compute the Schur multiplier of G, note for instance that
the exactness of rows and columns in commutative diagram (1) in [4] implies
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H2(G) ∼= ker κ/∆(G), where ∆(G) = 〈x⊗ x : x ∈ G〉. Now, every x ∈ 〈a, b〉
can be written in the form x = ambn[a, b]k, where m,n, k ∈ Z. Expanding
x⊗ x linearly, we obtain x⊗ x = (a⊗ a)m2

(b⊗ b)n2
((b⊗ a)(a⊗ b))mn. This

yields ∆(G) ∼= 〈a⊗ a〉 × 〈b⊗ b〉 × 〈(b⊗ a)(a⊗ b)〉 ∼= Z2
pβ × Zpα−γ , hence the

result. �
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