

Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 7 (2014) 337–340

Unramified Brauer groups and isoclinism

Primož Moravec

Department of Mathematics, University of Ljubljana Jadranska 21, 1000 Ljubljana, Slovenia

Received 4 October 2012, accepted 9 April 2013, published online 1 June 2013

Abstract

We show that the Bogomolov multipliers of isoclinic groups are isomorphic.

Keywords: Unramified Brauer group, Bogomolov multiplier, isoclinism.

Math. Subj. Class.: 20F12, 20F35, 13A50

1 Introduction

Let G be a finite group and V a faithful representation of G over an algebraically closed field k of characteristic zero. Suppose that the action of G upon V is generically free. A relaxed version of Noether's problem [11] asks as to whether the fixed field $k(V)^G$ is purely transcendental over k, i.e., whether the quotient space V/G is rational. A question related to the above mentioned is whether V/G is $stably\ rational$, that is, whether there exist independent variables x_1,\ldots,x_r such that $k(V)^G(x_1,\ldots,x_r)$ becomes a pure transcendental extension of k. This problem has close connection with Lüroth's problem [12] and the inverse Galois problem [14, 13]. By the so-called no-name lemma, stable rationality of V/G does not depend upon the choice of V, but only on the group G, cf. [4, Theorem 3.3 and Corollary 3.4]. Saltman [13] found examples of groups G of order p^9 such that V/G is not stably rational over k. His main method was application of the unramified cohomology group $H^2_{nr}(k(V)^G, \mathbb{Q}/\mathbb{Z})$ as an obstruction. A version of this invariant had been used before by Artin and Mumford [1] who constructed unirational varieties over k that were not rational. Bogomolov [2] proved that $H^2_{nr}(k(V)^G, \mathbb{Q}/\mathbb{Z})$ is canonically isomorphic to

$$B_0(G) = \bigcap_{\substack{A \le G, \\ A \text{ abelian}}} \ker \operatorname{res}_A^G,$$

where $\operatorname{res}_A^G: \operatorname{H}^2(G,\mathbb{Q}/\mathbb{Z}) \to \operatorname{H}^2(A,\mathbb{Q}/\mathbb{Z})$ is the usual cohomological restriction map. Following Kunyavskiĭ [7], we say that $\operatorname{B}_0(G)$ is the *Bogomolov multiplier* of G.

E-mail address: primoz.moravec@fmf.uni-lj.si (Primož Moravec)

We recently proved [9] that $B_0(G)$ is naturally isomorphic to $\operatorname{Hom}(\tilde{B}_0(G),\mathbb{Q}/\mathbb{Z})$, where $\tilde{B}_0(G)$ is the kernel of the commutator map $G \curlywedge G \to [G,G]$, and $G \curlywedge G$ is a quotient of the *non-abelian exterior square* of G (see Section 2 for further details). This description of $B_0(G)$ is purely combinatorial, and allows for efficient computations of $B_0(G)$, and a Hopf formula for $B_0(G)$. We also note here that the group $\tilde{B}_0(G)$ can be defined for any (possibly infinite) group G.

Recently, Hoshi, Kang, and Kunyavskiĭ [6] classified all groups of order p^5 with non-trivial Bogomolov multiplier; the question was dealt with independently in [10]. It turns out that the only examples of such groups appear within the same isoclinism family, where isoclinism is the notion defined by P. Hall in his seminal paper [5]. The following question was posed in [6]:

Question 1.1 ([6]). Let G_1 and G_2 be isoclinic p-groups. Is it true that the fields $k(V)^{G_1}$ and $k(V)^{G_2}$ are stably isomorphic, or at least, that $B_0(G_1)$ is isomorphic to $B_0(G_2)$?

The purpose of this note is to answer the second part of the above question in the affirmative:

Theorem 1.2. Let G_1 and G_2 be isoclinic groups. Then $\tilde{B}_0(G_1) \cong \tilde{B}_0(G_2)$. In particular, if G_1 and G_2 are finite, then $B_0(G_1)$ is isomorphic to $B_0(G_2)$.

The proof relies on the theory developed in [9]. We note here that we have recently become aware of a paper by Bogomolov and Böhning [3] who fully answer the above question using different techniques. We point out that our approach here is purely combinatorial and does not require cohomological machinery.

2 Proof of Theorem 1.2

We first recall the definition of $G \downarrow G$ from [9]. For $x,y \in G$ we write $xy = xyx^{-1}$ and $[x,y] = xyx^{-1}y^{-1}$. Let G be any group. We form the group $G \downarrow G$, generated by the symbols $g \downarrow h$, where $g,h \in G$, subject to the following relations:

$$gg' \wedge h = ({}^{g}g' \wedge {}^{g}h)(g \wedge h),$$

$$g \wedge hh' = (g \wedge h)({}^{h}g \wedge {}^{h}h'),$$

$$x \wedge y = 1,$$

for all $g,g',h,h'\in G$, and all $x,y\in G$ with [x,y]=1. The group $G\curlywedge G$ is a quotient of the non-abelian exterior square $G\land G$ of G defined by Miller [8]. There is a surjective homomorphism $\kappa:G\curlywedge G\to [G,G]$ defined by $\kappa(x\curlywedge y)=[x,y]$ for all $x,y\in G$. Denote $\tilde{\mathrm{B}}_0(G)=\ker\kappa$. By [9] we have the following:

Theorem 2.1 ([9]). Let G be a finite group. Then $B_0(G)$ is naturally isomorphic to $\operatorname{Hom}(\tilde{B}_0(G), \mathbb{Q}/\mathbb{Z})$, and thus $B_0(G) \cong \tilde{B}_0(G)$.

Let L be a group. A function $\phi: G \times G \to L$ is called a $\tilde{\mathbb{B}}_0$ -pairing if for all $g, g', h, h' \in G$, and for all $x, y \in G$ with [x, y] = 1,

$$\phi(gg',h) = \phi({}^gg',{}^gh)\phi(g,h),$$

$$\phi(g,hh') = \phi(g,h)\phi({}^hg,{}^hh'),$$

$$\phi(x,y) = 1.$$

Clearly a \tilde{B}_0 -pairing ϕ determines a unique homomorphism of groups $\phi^*: G \curlywedge G \to L$ such that $\phi^*(g \curlywedge h) = \phi(g,h)$ for all $g,h \in G$.

We now turn to the proof of Theorem 1.2. Let G_1 and G_2 be isoclinic groups, and denote $Z_1=Z(G_1),\ Z_2=Z(G_2)$. By definition [5], there exist isomorphisms $\alpha:G_1/Z_1\to G_2/Z_2$ and $\beta:[G_1,G_1]\to [G_2,G_2]$ such that whenever $\alpha(a_1Z_1)=a_2Z_2$ and $\alpha(b_1Z_1)=b_2Z_2$, then $\beta([a_1,b_1])=[a_2,b_2]$ for $a_1,b_1\in G_1$. Define a map $\phi:G_1\times G_1\to G_2$ by $\phi(a_1,b_1)=a_2$ by, where a_i,b_i are as above. To see that this is well defined, suppose that $\alpha(a_1Z_1)=a_2Z_2=\bar{a}_2Z_2$ and $\alpha(b_1Z_1)=b_2Z_2=\bar{b}_2Z_2$. Then we can write $\bar{a}_2=a_2z$ and $\bar{b}_2=b_2w$ for some $w,z\in Z_2$. By the definition of G_2 by G_2 we have that G_2 by G_2 by G_2 by G_2 by G_2 by G_2 by the definition of G_2 by G_2 by G_2 by G_2 by G_2 by G_2 by G_2 by the definition of G_2 by G_2 by

Suppose that $a_1,b_1\in G_1$ commute, and let $a_2,b_2\in G_2$ be as above. By definition, $[a_2,b_2]=\beta([a_1,b_1])=1$, hence $a_2\curlywedge b_2=1$. This, and the relations of $G_2\curlywedge G_2$, ensure that ϕ is a $\tilde{\mathrm{B}}_0$ -pairing. Thus ϕ induces a homomorphism $\gamma:G_1\curlywedge G_1\to G_2\curlywedge G_2$ such that $\gamma(a_1\curlywedge b_1)=a_2\curlywedge b_2$ for all $a_1,b_1\in G_1$. By symmetry there exists a homomorphism $\delta:G_2\curlywedge G_2\to G_1\curlywedge G_1$ defined via α^{-1} . It is straightforward to see that δ is the inverse of γ , hence γ is an isomorphism.

Let $\kappa_1:G_1 \curlywedge G_1 \to [G_1,G_1]$ and $\kappa_2:G_2 \curlywedge G_2 \to [G_2,G_2]$ be the commutator maps. Since $\beta \kappa_1(a_1 \curlywedge b_1) = \beta([a_1,b_1]) = [a_2,b_2] = \kappa_2 \gamma(a_1 \curlywedge b_1)$, we have the following commutative diagram with exact rows:

$$0 \longrightarrow \tilde{\mathbf{B}}_{0}(G_{1}) \longrightarrow G_{1} \curlywedge G_{1} \xrightarrow{\kappa_{1}} [G_{1}, G_{1}] \longrightarrow 0.$$

$$\uparrow \qquad \qquad \qquad \downarrow \qquad$$

Here $\tilde{\gamma}$ is the restriction of γ to $\tilde{B}_0(G_1)$. Since β and γ are isomorphisms, so is $\tilde{\gamma}$. This concludes the proof.

References

- [1] M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, *Proc. London. Math. Soc.* **25** (1972), 75–95.
- [2] F. A. Bogomolov, The Brauer group of quotient spaces by linear group actions, *Izv. Akad. Nauk SSSR Ser. Mat.* **51** (1987), 485–516.
- [3] F. Bogomolov and C. Böhning, Isoclinism and stable cohomology of wreath products, arXiv:1204.4747v1.
- [4] J.-L. Colliot-Thélène and J.-J. Sansuc, The rationality problem for fields of invariants under linear algebraic groups (with special regards to the rationality problem), in: V. Mehta (ed.), Proceedings of the International Colloquium on Algebraic groups and Homogeneous Spaces (Mumbai 2004), TIFR, Mumbai, Narosa Publishing House (2007), 113–186.
- [5] P. Hall, The classification of prime-power groups, J. Reine Angew. Math. 182 (1940), 130–141.
- [6] A. Hoshi, M. Kang and B. E. Kunyavskiĭ, Noether problem and unramified Brauer groups, ArXiv:1202.5812v1, 2012.
- [7] B. E. Kunyavskiĭ, The Bogomolov multiplier of finite simple groups, Cohomological and geometric approaches to rationality problems, 209–217, Progr. Math., 282, Birkhäuser Boston, Inc., Boston, MA, 2010.

- [8] C. Miller, The second homology of a group, Proc. Amer. Math. Soc. 3 (1952), 588–595.
- [9] P. Moravec, Unramified groups of finite and infinite groups, *Amer. J. Math.*, to appear, arXiv:1203.3190v1.
- [10] P. Moravec, Groups of order p^5 and their unramified Brauer groups, *J. Algebra*, to appear, arXiv:1203.3289v1.
- [11] E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1916), 221–229.
- [12] I. R. Šafarevič, The Lüroth problem, Proc. Steklov Inst. Math. 183 (1991), 241–246.
- [13] D. J. Saltman, Noether's problem over an algebraically closed field, *Invent. Math.* 77 (1984), 71–84.
- [14] R. G. Swan, Noether's problem in Galois theory, in 'Emmy Noether in Bryn Mawr', Springer-Verlag, Berlin, 1983.