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Abstract

For any integer n 6= 0, 1, a group is said to be n-Bell if it satisfies
the law [xn, y] = [x, yn]. In this paper we prove that every finitely
generated locally graded n-Bell group embeds into the direct prod-
uct of a finite n-Bell group and a torsion-free nilpotent group of class
≤ 2. We prove that n-Bell groups which are not locally graded always
have infinite simple sections of finite exponent. Additionally, we ob-
tain similar results for varieties of n-Levi groups and n-abelian groups
defined by the laws [xn, y] = [x, y]n and (xy)n = xnyn, respectively.
We give characterizations of these groups in the locally graded case.
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1 Introduction

Let n be an integer. Following [9], we say that a group G is n-Bell if it
satisfies the identity [xn, y] = [x, yn] for all x, y ∈ G. H. E. Bell studied the
identity [xn, y] = [x, yn] in rings, see e.g. [3], [4] and [5]. The study of n-Bell
groups has also been a subject of several papers, see for instance [6], [7] and
[8].

For a group G we denote the set of all right 2-Engel elements of G by
R2(G), i.e., R2(G) = {a ∈ G : [a, x, x] = 1 for all x ∈ G}. W. P. Kappe
showed in [10] that this set is always a characteristic subgroup of G. We say
that a group G is n-Kappe if the factor group G/R2(G) has finite exponent
dividing n. It has been proved in [7, Theorem A] that every n-Bell group is
n(n−1)-Kappe. Conversely, in [8] it is proved that every n-Kappe group is n2-
Bell. These two results are in a certain sense best possible. In [8] the authors
construct an n-Bell group which is not k-Kappe for any 1 < k < n(n − 1).
On the other hand, given a prime p, the group G = F/F

′′
γ3(F )pγp+2(F ),

where F is a noncyclic free group, is p-Kappe, yet it is not k-Bell for any
1 < k < p2; see [12].

Following [8], we say that a group G is a Bell group if it is n-Bell for some
integer n 6= 0, 1. Similarly, a group G is said to be a Kappe group if it is
n-Kappe for some nonzero integer n. By the above mentioned results these
two classes of groups coincide.

This paper is a further investigation of Bell groups and certain subclasses
of groups. From Adjan’s examples of torsion-free center-by-finite-exponent
groups [1] it becomes apparent that locally graded groups seem to provide
the appropriate class in which the Bell property should be discussed. Here
a group G is said to be locally graded if every nontrivial finitely generated
subgroup of G has a nontrivial finite image. The class of locally graded groups
includes all locally finite groups, as well as all locally soluble and all residually
finite groups. Several papers have been concerned with locally graded groups;
see, for instance, [11] and [14]. In particular, H. Smith proved in [14] that
if G is a locally graded group then G/Zi(G) is locally graded, for all i ≥ 0.
Besides, well known results due to Zel’manov [16, 17] show that a locally
graded group of finite exponent is locally finite. These results are important
ingredients of the characterization of locally graded Bell groups as exactly
those groups G for which the factor group G/Z2(G) is locally finite of finite
exponent [8]. We go a step further and prove that every finitely generated
locally graded n-Bell group embeds into a direct product of a finite n-Bell
group and a torsion-free nilpotent group of class two. This, together with
a classification of finite n-Bell groups in [7, Theorem D], gives the complete
picture of these groups.
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We also study some subclasses of Bell groups. A group G is said to be
n-Levi if [xn, y] = [x, y]n for all x, y ∈ G. The class of n-Levi groups has been
introduced by L.-C. Kappe in [9]. Clearly, every n-Levi group is n-Bell. A
group G is said to be a Levi group if it is n-Levi for some n 6= 0, 1. We prove
that in the locally graded case the classes of Bell groups and Levi groups
coincide. This is no longer true in general, as it is shown by examples due to
Adjan [1].

A group G is n-abelian if it satisfies the identity (xy)n = xnyn. Equiva-
lently, G is n-abelian if the map x 7→ xn is an endomorphism of G. If G is
n-abelian, then the equality [x, y]n = (x−1xy)n = x−n(xn)y = [xn, y] implies
that G is also n-Levi. In [2], n-abelian groups were classified in terms of direct
products. In the same manner as above we define a group to be an Alperin
group if it is n-abelian for some n 6= 0, 1. We prove that a locally graded
group G is an Alperin group if and only if G/Z(G) has finite exponent.

When groups in question are not locally graded, one can obtain some
nasty examples, such as Tarski monsters or the above mentioned groups of
Adjan. We show that every Bell group which is not locally graded contains
an infinite simple section of finite exponent. A slightly stronger result is
obtained for Levi groups. We also prove that every Alperin group which is
not locally graded contains an infinite finitely generated subgroup of finite
exponent.

2 Results

Our first result shows that, when studying locally graded n-Bell groups, only
finite n-Bell groups are interesting.

Theorem 1. Let G be a finitely generated locally graded n-Bell group. Then
G can be embedded into the direct product of a finite n-Bell group and a
finitely generated torsion-free nilpotent group of class ≤ 2.

Proof. Suppose G is a finitely generated locally graded n-Bell group. Since
the group G/Z2(G) is locally graded and periodic by [8, Theorem 3.9], it is
finite by [8, Theorem 4.1]. This shows that G is polycyclic-by-finite. From [8,
Corollary 4.2] it follows that the elements in G of finite order form a locally
finite subgroup T . Furthermore, we may assume G is infinite, hence Z2(G)
is also infinite. By Hirsch’s Theorem [13, Part 2, p. 139], Z2(G) contains a
torsion-free characteristic subgroup N of finite index. From this we conclude
that N is a normal torsion-free subgroup of finite index in G. As N ∩T = 1,
we have the natural embedding g 7→ (gN, gT ) of G into G/N × G/T . The



4

group G/N is finite n-Bell, whereas G/T is torsion-free nilpotent of class ≤ 2
by [8, Corollary 4.6].

Recall that a group G is said to be n-Engel if [x, ny] = 1 for all x and y
in G.

Corollary 1. Let G be a finitely generated locally graded n-Bell group. Let
π1, π2 be the sets of primes dividing n and n − 1, respectively. Then G is
isomorphic to a subgroup of the direct product A×B ×C ×D, where A is a
finite n-Kappe π1-group, B is a finite (n − 1)-Kappe π2-group, C is a finite
2-Engel group of order coprime to n(n− 1) and D is a torsion-free nilpotent
group of class ≤ 2.

Proof. This follows at once from Theorem 1 and [7, Theorem D].

As the classes of Bell groups and Kappe groups coincide, we can use the
same argument as in the proof of Theorem 1 to improve Corollary 2 in [12].

Proposition 1. Let G be a finitely generated, locally graded n-Kappe group.
Then G can be embedded into the direct product of a finite n-Kappe group
and a torsion-free nilpotent group of class ≤ 2.

In particular, we have:

Corollary 2. Let p be a prime and let G be a finitely generated, locally graded
pn-Kappe group. Then G is isomorphic to a subgroup of the direct product of
a finite pn-Kappe p-group and a 2-Engel group.

Proof. Suppose G is a finitely generated, locally graded pn-Kappe group. By
Proposition 1, G can be embedded into A×B, where A is a finite pn-Kappe
group and B is torsion-free nilpotent of class ≤ 2. Since A/R2(A) is of
exponent dividing pn, it is nilpotent. Let c be its nilpotency class. Then A
is a (c + 2)-Engel group. Since A is finite it follows that A is nilpotent by
a result of Zorn (see e.g. [13, Part 2, p. 52]). Thus A is the direct product
of its Sylow subgroups. But if p′ is a prime different from p and P is the
p′-Sylow subgroup of A, then P = R2(P ), hence P is 2-Engel. This concludes
the proof.

We turn our attention to Levi groups. They form a subclass of the class
of Bell groups. Yet it turns out that these two classes coincide if we put some
additional finiteness conditions on the groups. More precisely, we have:
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Proposition 2. The following conditions for a group G are equivalent:
(a) G is a locally graded Bell group;
(b) G is a locally graded Levi group;
(c) G/Z2(G) is locally finite of finite exponent.

Moreover, every locally graded n-Bell group is also m-Levi for some integer
m 6= 0, 1 depending only on n.

Before proving this result, we state here two lemmas that are immediate
consequences of well-known results. The first lemma follows from the proof
of [13, Part 1, Lemma 4.22].

Lemma 1. Let G be a group, and let H, K, M , N be normal subgroups of G,
with M ≤ H, N ≤ K, [H, N ] = 1 = [K, M ] and [H, H∩K] = 1 = [K, H∩K].
Then [H, K] is a homomorphic image of H/H ′M ⊗K/K ′N .

Lemma 2. Let G be a group with |G : Z2(G)| finite of order at most n. Then
γ3(G) has finite order depending only on n.

Proof. J. Wiegold [15] proved that if |G : Z(G)| = n, then |G′| ≤ n(logp n−1)/2,
where p is the least prime dividing n. This implies that if |G : Z2(G)| is
finite of order at most n then γ2(G/Z(G)) = G′Z(G)/Z(G) is finite of order
bounded by a function f(n) which depends only on n. Put H = G′Z(G), K =
G, M = Z(G) and N = Z2(G). Since [H, N ] = 1 = [K, M ], Lemma 1 yields
that the group [H, K]/[H, H ∩K][K, H ∩K] = γ3(G)/G′′ is isomorphic to a
factor group of the tensor product G′Z(G)/G′′Z(G) ⊗ G/G′Z2(G). Clearly
|G′Z(G)/G′′Z(G)| ≤ f(n) and |G/G′Z2(G)| ≤ n. It follows that there exists
a function g(n), which depends only on n, such that |γ3(G)/G′′| ≤ g(n).
Thus it suffices to show that the order of G′′ is bounded by a function of
n. Let H̄ = H/Z(H) and let S = H̄ n H, where the action of H̄ on H is
induced by conjugation. The group H/(N∩H) is isomorphic to a subgroup of
K/N = G/Z2(G), hence its order is at most n. As M ≤ Z(H), we conclude
that H̄ is a homomorphic image of H/M = G′Z(G)/Z(G) = γ2(G/Z(G)).
This yields that |H̄| ≤ f(n), whence the order of S/(N ∩H) is bounded by
some function h(n) depending only on n. Note that N ∩ H is contained in
the center of S, hence |S/Z(S)| ≤ h(n). By the above mentioned result of
Wiegold, |S ′| is bounded by k(n) = h(n)(logp h(n)−1)/2, where p is the least
prime dividing h(n). Let H? be the preimage of H̄ in G. Then we have
G′′ = [H, H] = [H?, H] ≤ S ′, whence |G′′| ≤ k(n), as required.

Proof of Proposition 2. By Theorem 3.9 and Corollary 4.5. in [8], (a) im-
plies (c). Suppose G is such that G/Z2(G) is locally finite of exponent e.
In particular, G is e-Kappe, hence G is also e2-Bell by [8, Theorem 2.1].
Therefore (c) implies (a). Thus it remains to show that (a) implies (b).
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Let G be a locally graded n-Bell group, and let H be any two-generator
subgroup of G. Then H/Z2(H) is locally graded (by [14]) of exponent di-
viding e = 12n5(n − 1)5 (by [8, Theorem 3.9]), thus it is finite. Now the
solution of the Restricted Burnside Problem [16, 17] implies that the or-
der of H/Z2(H) is bounded by |R(2, e)|, where R(2, e) is the largest two-
generator group of exponent e. Moreover, |R(2, e)| depends only on e.
¿From here we conclude that the order of H/Z2(H) is bounded by some
function of n. By Lemma 2, it follows that the order of γ3(H) is bounded
by some function of n. Let m be the exponent of γ3(H). Since H is
also k-Kappe for k = n(n − 1), we have [xk, y] ∈ Z(〈x, y〉). Furthermore,
we have [x, y]k ≡ [xk, y] mod γ3(〈x, y〉), hence [x, y]k = [xk, y]c for some
c ∈ γ3(〈x, y〉). This implies [x, y]km = [xk, y]mcm = [xk, y]m = [xkm, y], hence
H is (km)-Levi. As km depends only on n, this concludes the proof.

Note however that there exist n-Bell groups which are not k-Levi for any
k 6= 0, 1. Let r > 1 be an integer and let n be an odd integer, n ≥ 665.
S. I. Adjan [1] has constructed a finitely generated torsion-free group G =
A(r, n) such that G/Z(G) is isomorphic to the free r-generator Burnside
group B(r, n) of exponent n. It is clear that G is n-central, i.e., G/Z(G)
is of exponent dividing n, hence G is also n-Bell. Suppose G is k-Levi for
some k 6= 0, 1. It is not difficult to observe that G is also k(1− k)-Levi (see
[9]). But G is also a k(1− k)-Kappe group by [7, Theorem A]. This implies
[xk(1−k), y] ∈ Z(〈x, y〉), hence [xk(1−k)t, y] = [xk(1−k), y]t = [x, y]k(1−k)t for any
integer t. In particular, G is k(1 − k)n-Levi and k(1 − k)n-central, hence
[x, y]k(1−k)n = 1. But G is a torsion-free nonabelian group, hence we have a
contradiction. Thus G is not k-Levi for any k 6= 0, 1.

It is also easy to see that there exist locally graded n-Bell groups which
are not k-abelian for any k 6= 0, 1. For instance, if G is a torsion-free nilpotent
group of class two, then G is n-Bell for all integers n. On the other hand, if G
were k-abelian for some k 6= 0, 1, then the identity (xy)k = xkyk[y, x]k(k−1)/2

would imply [x, y] = 1 for all x, y ∈ G, which is impossible.

In [8, Theorem 4.7] it is proved that if G is a Bell group which is not
locally graded, then it contains a finitely generated subgroup H such that
H/Z(H) is infinite of finite exponent. Additionally, we have the following.

Theorem 2. Let G be a Bell group. Then either G/Z2(G) is a locally finite
group or G has an infinite simple section of finite exponent.

Proof. Let G be n-Bell. If G is locally graded, we are done by Theorem 4.7
of [8]. So we can assume G is not locally graded. By definition there exists
a finitely generated subgroup H in G with no nontrivial finite quotients. We
have that H is perfect and it follows from [8, Theorem 4.7] that H/Z(H) is
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infinite of finite exponent. In particular, H is not nilpotent. Let {Ni : i ∈ I}
be a chain of normal subgroups of H such that H/Ni is not nilpotent for
each i ∈ I. Let N be the union of this chain. If H/N is nilpotent, then it
is polycyclic. Hence H/N is finitely presented. By a result of P. Hall (see
e.g. [13, Part 1, Lemma 1.43]), N is finitely generated as a normal subgroup
of H, that is, N = 〈a1, . . . , ar〉H for some a1, . . . , ar in H. This gives that
N = Ni for some i ∈ I, a contradiction. Hence H/N is not nilpotent and
Zorn’s Lemma implies that there exists a normal subgroup M of H such
that H/M is infinite and nonnilpotent, but every proper quotient of H/M is
nilpotent. As H is perfect, this implies that H/M is simple. On the other
hand, H/M is also m-central for some m, thus it has finite exponent.

Note that the Adjan groups A(r, n) are torsion-free Bell groups, so the
subgroup H in Theorem 4.7 of [8] can be torsion-free. Our next result shows
that in Levi groups such a subgroup H has to be generated by elements of
finite order.

Proposition 3. Let G be a Levi group. Then either G/Z2(G) is locally
finite or there exists an infinite subgroup H of G generated by finitely many
periodic elements such that H/Z(H) is of finite exponent.

Proof. Let G be an n-Levi group. If G is locally graded, then the first claim
follows from Theorem 2. In case G is not locally graded, we can find a perfect
subgroup H of G such that H/Z(H) is of finite exponent m. As H = H ′, we
can assume that H is generated by finitely many commutators. Since H is
n(1−n)-Levi and n(1−n)-Kappe, we obtain that H is also mn(1−n)-Levi.
Whence [x, y]mn(1−n) = [xmn(1−n), y] = 1 for all x, y ∈ H. This concludes the
proof.

The results can be further improved when we restrict ourselves to Alperin
groups. First we prove the following elementary fact.

Proposition 4. Every n-abelian group is n(n− 1)-central.

Proof. Let G be an n-abelian group. This implies that G is (1− n)-abelian,
hence it is also n(1 − n)-abelian [9]. In particular, G is n(1 − n)-Levi,
hence we have [xn(1−n), y] = [x, y]n(1−n) = [xn, y1−n] = x−ny−1ynxny−ny =
x−ny−1(yxy−1)ny = x−ny−1(xn)y−1

y = 1, as desired.

On the other hand, there exist n-central groups which are not m-abelian
for any m 6= 0, 1; consider, for instance, the Adjan groups A(r, n).

Note that it is proved in [2] that every n-abelian group is isomorphic to a
subgroup of the direct product of a group of exponent n, a group of exponent
n− 1 and an abelian group. Using Theorem 1 and Corollary 1 in [2], we can
improve this result for finitely generated locally graded n-abelian groups.
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Corollary 3. Let G be a finitely generated, locally graded n-abelian group.
Then G is isomorphic to a subgroup of the direct product of a finite group of
exponent n, a finite group of exponent n− 1, and an abelian group.

It is also possible to improve Theorem 2 for Alperin groups. First we give
a characterization of locally graded Alperin groups.

Theorem 3. Let G be a locally graded group. Then G is an Alperin group
if and only if G/Z(G) has finite exponent.

Proof. Let G be a locally graded n-abelian group. By Proposition 4, the
group G/Z(G) is of exponent dividing n(n− 1). Conversely, suppose G is a
locally graded group such that G/Z(G) is of finite exponent k. Then G/Z(G)
is also locally graded, hence it is locally finite. Let H be any two-generator
subgroup of G. Then H/Z(H) is finite of order n, and n depends only on
k by the solution of the Restricted Burnside Problem [16, 17]. Hence H ′ is
finite by Schur’s theorem (see, for instance, [13, Theorem 4.12]), and we have
(H ′)n = 1. Let x, y ∈ H. Then (xy)k = xkykc for some c ∈ H ′, which implies
(xy)kn = xknykncn = xknykn. Therefore G is (kn)-abelian.

Theorem 4. Let G be an Alperin group and suppose G is not locally graded.
Then G contains a finitely generated infinite subgroup of finite exponent.

Proof. Let G be an n-abelian group. If G is not locally graded, there exists
a finitely generated subgroup H of G with no nontrivial finite quotients. We
have H = H ′. Since the order of [x, y] divides n(n − 1) for all x, y ∈ G
and G is n(1− n)-abelian, we conclude that H has finite exponent dividing
n(n− 1).

Acknowledgement. The authors would like to thank the referee for giving
useful suggestions.
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