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1. Introduction

A subgroup H of a group G is self-centralizing if the centralizer CG(H) is
contained in H. In [1] it has been remarked that a locally graded group in which
all non-trivial subgroups are self-centralizing has to be finite; therefore it has to
be either cyclic of prime order or non-abelian of order being the product of two
different primes.

In this article, we consider the more extensive class X of all groups in which
every non-cyclic subgroup is self-centralizing. In what follows we use the term
X-groups in order to denote groups in the class X. The study of properties of
X-groups was initiated in [1]. In particular, the first four authors determined the
structure of finite X-groups which are either nilpotent, supersoluble or simple.

In this paper, Theorem 2.1 gives a complete classification of finite X-groups.
We remark that this result does not depend on classification of the finite simple
groups rather only on the classification of groups with dihedral or semidihedral
Sylow 2-subgroups. We also determine the infinite soluble X-groups, and the
infinite locally finite X-groups, the results being presented in Theorems 3.6
and 3.7. It turns out that these latter groups are suitable finite extensions
either of the infinite cyclic group or of a Prüfer p-group, Zp∞ , for some prime
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p. Theorem 3.7 together with Theorem 2.1 provides a complete classification of
locally finite X-groups.

We follow [2] for basic group theoretical notation. In particular, we note that
F ∗(G) denotes the generalized Fitting subgroup of G, that is the subgroup of G
generated by all subnormal nilpotent or quasisimple subgroups of G. The latter
subgroups are the components of G. We see from [2, Section 31] that distinct
components commute. The fundamental property of the generalized Fitting
subgroup that we shall use is that it contains its centralizer in G [2, (31.13)]. We
denote the alternating group and symmetric group of degree n by Alt(n) and
Sym(n) respectively. We use standard notation for the classical groups. The
notation Dih(n) denotes the dihedral group of order n and Q8 is the quaternion
group of order 8. The term quaternion group will cover groups which are often
called generalized quaternion groups. The cyclic group of order n is represented
simply by n, so for example Dih(12) ∼= 2×Dih(6) ∼= 2×Sym(3). Finally Mat(10)
denotes the Mathieu group of degree 10. The Atlas [3] conventions are used for
group extensions. Thus, for example, p2:SL2(p) denotes the split extension of an
elementary abelian group of order p2 by SL2(p).
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2. Finite X-groups

In this section we determine all the finite groups belonging to the class X.
The main result is the following.

Theorem 2.1. Let G be a finite X-group. Then one of the following holds:

(1) If G is nilpotent, then either

(1.1) G is cyclic;
(1.2) G is elementary abelian of order p2 for some prime p;
(1.3) G is an extraspecial p-group of order p3 for some odd prime p; or
(1.4) G is a dihedral, semidihedral or quaternion 2-group.

(2) If G is supersoluble but not nilpotent, then, letting p denote the largest
prime divisor of |G| and P ∈ Sylp(G), we have that P is a normal subgroup
of G and one of the following holds:

(2.1) P is cyclic and either

(2.1.1) G ∼= D n C, where C is cyclic, D is cyclic and every non-trivial
element of D acts fixed point freely on C (so G is a Frobenius
group);

(2.1.2) G = D n C, where C is a cyclic group of odd order, D is a
quaternion group, and CG(C) = C × D0 where D0 is a cyclic
subgroup of index 2 in D with G/D0 a dihedral group; or
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(2.1.3) G = D n C, where D is a cyclic q-group, C is a cyclic q′-
group (here q denotes the smallest prime dividing the order of G),
1 < Z(G) < D and G/Z(G) is a Frobenius group;

(2.2) P is extraspecial and G is a Frobenius group with cyclic Frobenius
complement of odd order dividing p− 1.

(3) If G is not supersoluble and F ∗(G) is nilpotent, then either (3.1) or (3.2)
below holds.

(3.1) F ∗(G) is elementary abelian of order p2, F ∗(G) is a minimal normal
subgroup of G and one of the following holds:

(3.1.1) p = 2 and G ∼= Sym(4) or G ∼= Alt(4); or
(3.1.2) p is odd and G = G0 n N is a Frobenius group with Frobenius

kernel N and Frobenius complement G0 which is itself an X-group.
Furthermore, either

(3.1.2.1) G0 is cyclic of order dividing p2 − 1 but not dividing p− 1;
(3.1.2.2) G0 is quaternion;
(3.1.2.3) G0 is supersoluble as in (2.1.2) with |C| dividing p− ε where

p ≡ ε (mod 4);
(3.1.2.4) G0 is supersoluble as in (2.1.3) with D a 2-group, CD(C) a

non-trivial maximal subgroup of D and |C| odd dividing p− 1
or p+ 1;

(3.1.2.5) G0
∼= SL2(3);

(3.1.2.6) G0
∼= SL2(3).2 and p ≡ ±1 (mod 8); or

(3.1.2.7) G0
∼= SL2(5) and 60 divides p2 − 1.

(3.2) F ∗(G) is extraspecial of order p3 and one of the following holds:
(3.2.1) G ∼= SL2(3) or G ∼= SL2(3).2 (with quaternion Sylow 2-subgroups

of order 16); or
(3.2.2) G = K n N where N is extraspecial of order p3 and exponent

p with p an odd prime, K centralizes Z(N) and is cyclic of odd
order dividing p+ 1. Furthermore, G/Z(N) is a Frobenius group.

(4) If F ∗(G) is not nilpotent, then either
(4.1) F ∗(G) ∼= SL2(p) where p is a Fermat prime, |G/F ∗(G)| ≤ 2 and G

has quaternion Sylow 2-subgroups; or
(4.2) G ∼= PSL2(9), Mat(10) or PSL2(p) where p is a Fermat or Mersenne

prime.

Furthermore, all the groups listed above are X-groups.

We make a brief remark about the group SL2(3).2 and the groups appearing
in part (4.1) of Theorem 2.1 in the case G > F ∗(G). To obtain such groups,
take F = SL2(p2), then the groups in question are isomorphic to the normalizer
in F of the subgroup isomorphic to SL2(p). We denote these groups by SL2(p).2
to indicate that the extension is not split (there are no elements of order 2 in
the outer half of the group).

We shall repeatedly use the fact that if L is a subgroup of an X-group X, then
L is an X-group. Indeed, if H ≤ L is non-cyclic, then CL(H) ≤ CX(H) ≤ H.

The following elementary facts will facilitate our proof that the examples
listed are indeed X-groups.
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Lemma 2.2. The finite group X is an X-group if and only if CX(x) is an
X-group for all x ∈ X of prime order.

Proof. If X is an X-group, then, as X is subgroup closed, CX(x) is an X-group
for all x ∈ X of prime order. Conversely, assume that CX(x) is an X-group for
all x ∈ X of prime order (and hence of any order). Let H ≤ X be non-cyclic.
We shall show CX(H) ≤ H. If CX(H) = 1, then CX(H) ≤ H and we are done.
So assume x ∈ CX(H) and x 6= 1. Then H ≤ CX(x) which is an X-group. Hence
x ∈ CCX(x)(H) ≤ H. Therefore CX(H) ≤ H, and X is an X-group.

Lemma 2.3. Suppose that X is a Frobenius group with kernel K and complement
L. If K and L are X-groups, then X is an X-group.

Proof. Let x ∈ X have prime order. Then, as K and L have coprime orders,
x ∈ K or x is conjugate to an element of L. But then, since X is a Frobenius
group, either CX(x) ≤ K or CX(x) is conjugate to a subgroup of L. Since K and
L are X-groups, CX(x) is an X-group. Hence X is an X-group by Lemma 2.2.

The rest of this section is dedicated to the proof of Theorem 2.1; therefore G
always denotes a finite X-group. Parts (1) and (2) of Theorem 2.1 are already
proved in [1, Theorems 2.2, 2.4, 3.2 and 3.4]. However, our statement in (2.1.3)
adds further detail which we now explain. So, for a moment, assume that
G is supersoluble, q is the smallest prime dividing |G|, D is a cyclic q-group
and C is a cyclic q′-group. In addition, 1 6= Z(G) = CD(C). Assume that
d ∈ D \ Z(G). Then, as d 6∈ Z(G), C is not centralized by d. By coprime
action, C = [C, d]× CC(d) and so Y = [C, d]〈d〉 is centralized by CC(d). As Y
is non-abelian and CC(d)∩ Y = 1, we deduce that CC(d) = 1. Hence G/Z(G) is
a Frobenius group. This means that we can assume that (1) and (2) hold and,
in particular, we assume that G is not supersoluble.

The following lemma provides the basic case subdivision of our proof.

Lemma 2.4. One of the following holds:

(i) F ∗(G) is elementary abelian of order p2 for some prime p.

(ii) F ∗(G) is extraspecial of order p3 for some prime p.

(iii) F ∗(G) is quasisimple.

Proof. Suppose first that F ∗(G) is nilpotent. Then its structure is given in part
(1) of Theorem 2.1. Suppose that F ∗(G) is cyclic. Since CG(F ∗(G)) = F ∗(G),
we have G/F ∗(G) is isomorphic to a subgroup of Aut(F ∗(G)). Because the
automorphism group of a cyclic group is abelian, we have that G is supersoluble.
Therefore, by our assumption concerning G, F ∗(G) is not cyclic. Hence F ∗(G)
is either elementary abelian of order p2 for some prime p, is extraspecial of order
p3 for some odd prime p or F ∗(G) is a dihedral, semidihedral or quaternion 2-
group. Since the automorphism groups of dihedral, semidihedral and quaternion
groups of order at least 16 are 2-groups, we deduce that when p = 2 and F ∗(G)
is non-abelian, F ∗(G) is extraspecial. This proves the lemma when F ∗(G) is
nilpotent.
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If F ∗(G) is not nilpotent, then there exists a component K ≤ F ∗(G). As
F ∗(G) = CF∗(G)(K)K and K is non-abelian, we have F ∗(G) = K and this is
case (iii).

Lemma 2.5. Suppose that p is a prime and F ∗(G) is extraspecial of order p3.
Then one of the following holds:

(i) G ∼= SL2(3), G ∼= SL2(3).2 (with quaternion Sylow 2-subgroups of order
16); or

(ii) G = NK where N is extraspecial of order p3 of exponent p with p an
odd prime, K centralizes Z(N) and is cyclic of odd order dividing p+ 1.
Furthermore, G/Z(N) is a Frobenius group.

Proof. Let N = F ∗(G). We have that N is extraspecial of order p3 by assumption.
Suppose first that p = 2, then we have N ∼= Q8 as the dihedral group of order
8 has no odd order automorphisms and G is not a 2-group. Since Aut(Q8) ∼=
Sym(4), G/Z(N) is isomorphic to a subgroup of Sym(4) containing Alt(4). If
G/Z(N) ∼= Alt(4), then G = NT ∼= SL2(3) where T is a cyclic subgroup of
order 3. When G/Z(N) ∼= Sym(4), taking T ∈ Syl3(G), we have NT ∼= SL2(3),
NG(T ) has order 12 and NG(T )/Z(N) ∼= Sym(3). Since NG(T ) is an X-group
and NG(T ) is supersoluble, we see that NG(T ) is a product DT where D is cyclic
of order 4 by (2.1.3). Because the Sylow 2-subgroups of G are either dihedral,
semidihedral or quaternion and D 6≤ N , we see that ND is quaternion. Thus
G ∼= SL2(3).2 as claimed in (i).

Assume that p is odd. We know that the outer automorphism group of N is
isomorphic to a subgroup of GL2(p) and CAut(N)(Z(N))/Inn(N) is isomorphic
to a subgroup of SL2(p). Since p is odd and the Sylow p-subgroups of G
are X-groups, we have N ∈ Sylp(G) and G/N is a p′-group by part (1) of
Theorem 2.1. Set Z = Z(N). Since G/N and N have coprime orders, the
Schur Zassenhaus Theorem says that G contains a complement K to N . Set
K1 = CK(Z). Then K1 commutes with Z and so K1 is cyclic. If K1 = 1, then
|K| divides p− 1 and we find that G is supersoluble, which is a contradiction.
Hence K1 6= 1. Let x ∈ K1. Then [N, x] and CN (x) commute by the Three
Subgroups Lemma. Hence CN (x) centralizes [N, x]〈x〉 which is non-abelian. It
follows that [N, x] = N and CN (x) = Z. If 〈x〉 does not act irreducibly on N/Z,
then there exists Z < N1 < N which is 〈x〉-invariant. If N1 is cyclic, then, as
〈x〉 centralizes Ω1(N1) = Z, 〈x〉 centralizes N1 > Z, a contradiction. If N1 is
elementary abelian, then, as 〈x〉 centralizes Z, [N1, 〈x〉] has order at most p
by Maschke’s Theorem. If [N1, 〈x〉] 6= 1, then [N1, 〈x〉]〈x〉 is non-abelian and
Z centralizes [N1, 〈x〉]〈x〉, a contradiction. Hence 〈x〉 centralizes N1 contrary
to CN (〈x〉) = Z. We conclude that every element of K1 acts irreducibly on
N/Z(N). In particular, since K1 is isomorphic to a subgroup of SL2(p), we have
that K1 is cyclic of odd order dividing p+ 1. Furthermore, as K1 acts irreducibly
on N/Z(N), N has exponent p.

By the definition of K1, |K/K1| divides |Aut(Z)| = p − 1. Assume that
K 6= K1 and let y ∈ K \K1 have prime order r. Then r does not divide |K1|
and Z〈y〉 is non-abelian. Since K1 centralizes Z, we have CK1

(y) = 1. Let
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w ∈ K1 have prime order q. Then 〈y〉〈w〉 is non-abelian and acts faithfully on
V = N/Z. Therefore [2, 27.18] implies that CN (y) 6= 1. As CN (y) ∩ Z = 1 and
CN (y) centralizes Z〈y〉, we have a contradiction. Hence K = K1. Finally, we
note that NK/Z(N) is a Frobenius group.

It remains to show that the groups listed are X-groups. We consider the
groups listed in (ii) and leave the groups in (i) to the reader. Assume that
H ≤ G is non-cyclic. We shall show that CG(H) ≤ H. If H ≥ N , then
CG(H) ≤ CG(N) ≤ N ≤ H and we are done. Suppose that H < N . Then,
as N is extraspecial of exponent p, H is elementary abelian of order p2 and
CN (H) = H. Since G/N is cyclic of odd order dividing p + 1, we see that
NG(H) = N and so CG(H) = CN (H) = H and we are done in this case.
Suppose that H 6≤ N and N 6≤ H. Let h ∈ H \ N . Then, as |G/N | divides
p+ 1 and is odd, we either have H ∩N = N or H ∩N = Z. So we must have
H ∩N = Z = Z(G). Now H/Z ∼= G/N is cyclic of order dividing p+ 1 and so
we get that H is cyclic, a contradiction. Thus G is an X-group.

Lemma 2.6. Suppose that N = F ∗(G) is elementary abelian of order p2. Then
one of the following holds:

(i) p = 2, G ∼= Sym(4) or Alt(4); or

(ii) p is odd and G = NG0 is a Frobenius group with Frobenius kernel N and
Frobenius complement G0 which is itself an X-group. Furthermore, either

(a) G0 is cyclic of order dividing p2 − 1 but not dividing p− 1;
(b) G0 is quaternion;
(c) G0 is supersoluble as in part (2.1.2) of Theorem 2.1 with |C| dividing

p− ε where p ≡ ε (mod 4);
(d) G0 is supersoluble as in part (2.1.3) of Theorem 2.1 with D a 2-group,

CD(C) a non-trivial maximal subgroup of D and |C| odd dividing
p− 1 or p+ 1;

(e) G0
∼= SL2(3);

(f) SL2(3).2 and p ≡ ±1 (mod 8); or
(g) G0

∼= SL2(5) and 60 divides p2 − 1.

Furthermore, all the groups listed are X-groups.

Proof. We have N has order p2, is elementary abelian and G/N is isomorphic
to a subgroup of GL2(p). If p = 2, then we quickly obtain part (i). So assume
that p is odd.

Suppose that p divides the order of G/N . Let P ∈ Sylp(G). Then P is
extraspecial of order p3 and P is not normal in G. Hence by [4, Theorem 2.8.4]
there exists g ∈ G such that G ≥ K = 〈P, P g〉 ∼= p2:SL2(p). Let Z = Z(P ), t
be an involution in K, K0 = CK(t) and P0 = P ∩K0. Then, as t inverts N ,
K0
∼= SL2(p), P0 has order p and centralizes Z〈t〉, which is a contradiction as

Z〈t〉 ∼= Dih(2p). Hence G/N is a p′-group.
Suppose that x ∈ G \ N . If CN (x) 6= 1, then CN (x) centralizes [N, x]〈x〉

which is non-abelian, a contradiction. Thus CN (x) = 1 for all x ∈ G \ N . It
follows that G is a Frobenius group with Frobenius kernel N . Let G0 be a
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Frobenius complement to N . As G0 ≤ G, G0 is an X-group. Recall that the
Sylow 2-subgroups of G0 are either cyclic or quaternion and that the odd order
Sylow subgroups of G0 are all cyclic [5, V.8.7].

Assume that N is not a minimal normal subgroup of G. Then G/N is
conjugate in GL2(p) to a subgroup of the diagonal subgroup. Therefore G is
supersoluble, which is a contradiction. Hence N is a minimal normal subgroup of
G and G0 is isomorphic to an irreducible subgroup of GL2(p). This completes the
general description of the structure of G. It remains to determine the structure
of G0.

If G0 is nilpotent, then Theorem 2.1 (1) applies to give G0 is either quaternion
or cyclic. In the latter case, as G0 acts irreducibly on N it is isomorphic to a
subgroup of the multiplicative group of GF(p2) and is not of order dividing p− 1.
This gives the structures in (ii) (a) and (b).

If G0 is supersoluble, then the structure of G0 is described in part (2.1) of
Theorem 2.1, as GL2(p) contains no extraspecial subgroups of odd order. We
adopt the notation from (2.1). By [5, V.8.18 c)], Z(G0) 6= 1. Hence (2.1.1)
cannot occur. Case (2.1.2) can occur and, as C commutes with a non-central
cyclic subgroup of order at least 4 and G0 is isomorphic to a subgroup of GL2(p),
|C| divides p − 1 if p ≡ 1 (mod 4) and |C| divides p + 1 if p ≡ 3 (mod 4).
In the situation described in part (2.1.3) of Theorem 2.1, the groups have no
2-dimensional faithful representations unless q = 2 and CD(C) has index 2. In
this case |C| is an odd divisor of p− 1 or p+ 1.

Suppose that G0 is not supersoluble. Refereing to Lemma 2.4 and using the
fact that the Sylow subgroups of G0 are either cyclic or quaternion, we have
that F ∗(G0) is either quaternion of order 8 or F ∗(G0) is quasisimple. In the first
case we obtain the structures described in parts (b), (e) and (f) from Lemma 2.5
where for part (f) we note that we require SL2(p) to have order divisible by 16.

If F ∗(G0) is quasisimple, then Zassenhaus’s Theorem [6, Theorem 18.6, p.
204] gives G0 = WM where W ∼= SL2(5) and M is metacyclic. Since G0 is an
X-group, this means that M ≤W and G0

∼= SL2(5). Since SL2(5) is isomorphic
to a subgroup of GL2(p) only when p = 5 or 60 divides p2 − 1 and p 6= 5 part
(g) holds.

That Sym(4) and Alt(4) are X-groups is easy to check. The groups listed in
(ii) are X-groups by Lemma 2.3.

The finite simple X-groups are determined in [1]. We have to extend the
arguments to the cases where F ∗(G) is simple or quasisimple. This is relatively
elementary.

Lemma 2.7. Suppose that F ∗(G) is simple. Then G ∼= SL2(4), PSL2(9),
Mat(10) or PSL2(p) where p is a Fermat or Mersenne prime.

Proof. Set H = F ∗(G). As X is subgroup closed, H is an X-group and so H
is one of the groups listed in the statement by Theorem 3.7 of [1]. Hence we
obtain H ∼= SL2(4), PSL2(9) or PSL2(p) for p a Fermat or Mersenne prime.

Suppose that G > H. If H ∼= SL2(4), then G ∼= Sym(5) and the subgroup
2 × Sym(3) witnesses the fact that Sym(5) is not an X-group. Suppose H ∼=
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PSL2(9) ∼= Alt(6). If G ≥ K ∼= Sym(6), then G contains Sym(5) which is
impossible. ThereforeG ∼= PGL2(9) orG ∼= Mat(10). In the first case, G contains
a subgroup Dih(20) ∼= 2×Dih(10) which is impossible. Thus G ∼= Mat(10) and
this group is easily shown to satisfy the hypothesis as all the centralizer of
elements of prime order are X-groups.

If H ∼= PSL2(p), p a Fermat or Mersenne prime, then G ∼= PGL2(p) and
contains a dihedral group of order 2(p+ 1) and one of order 2(p− 1). One of
these is not a 2-group and this contradicts G being an X-group.

Lemma 2.8. Suppose that F ∗(G) is quasisimple but not simple. Then F ∗(G) ∼=
SL2(p) where p is a Fermat prime, |G/H| ≤ 2 and G has quaternion Sylow
2-subgroups.

Proof. Let H = F ∗(G) and Z = Z(H). Since H centralizes Z, we have Z is
cyclic. Let S ∈ Syl2(H). If Z 6≤ S, then S must be cyclic. Since groups with a
cyclic Sylow 2-subgroup have a normal 2-complement [2, 39.2], this is impossible.
Hence Z ≤ S. In particular, Z(G) 6= 1 as the central involution of H is central
in G. It follows also that all the odd order Sylow subgroups of G are cyclic. By
part (1) of Theorem 2.1, S is either abelian, dihedral, semidihedral or quaternion.
If S is abelian, then S/Z is cyclic and again we have a contradiction. So S is
non-abelian. Thus S/Z is dihedral (including elementary abelian of order 4).
Hence H/Z ∼= Alt(7) or PSL2(q) for some odd prime power q [4, Theorem 16.3].
Since the odd order Sylow subgroups of G are cyclic, we deduce that H ∼= SL2(p)
for some odd prime p. If p − 1 is not a power of 2, then H has a non-abelian
subgroup of order pr where r is an odd prime divisor of p−1 which is centralized
by Z. Hence p is a Fermat prime.

Suppose that G > H with H ∼= SL2(p), p a Fermat prime. Note G/H has
order 2. Let S ∈ Syl2(G). Then S ∩H is a quaternion group. Suppose that S
is not quaternion Then there is an involution t ∈ S \H. By the Baer-Suzuki
Theorem, there exists a dihedral group D of order 2r for some odd prime r which
contains t. Since D and Z commute, this is impossible. Hence S is quaternion.
This gives the structure described in the lemma.

It remains to demonstrate that the groups SL2(p) and SL2(p).2 with p a Fer-
mat prime are indeed X-groups. Let G denote one of these group, H = F ∗(G) ∼=
SL2(p). Recall from the comments just after the statement of Theorem 2.1 that
G is isomorphic to a subgroup of X = SL2(p2). Let V be the natural GF(p2)
representation of X and thereby a representation of G. Assume that L ≤ G
is non-cyclic. Since H has no abelian subgroups which are not cyclic, L is
non-abelian and L acts irreducibly on V . Schur’s Lemma implies that CX(L)
consists of scalar matrices and so has order at most 2. If L has even order, then
as G has quaternion Sylow 2-subgroups, L ≥ CG(L). So suppose that L has odd
order. Then using Dickson’s Theorem [7, 260, page 285], as p is a Fermat prime,
we find that L is cyclic, a contradiction. Thus G is an X-group.

Proof of Theorem 2.1. This follows from the combination of the lemmas in this
section.
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3. Infinite locally finite X-groups

It has been proved in [1, Theorem 2.2] that an infinite abelian group is in the
class X if and only if it is either cyclic or isomorphic to Zp∞ (the Prüfer p-group)
for some prime p. Moreover, Theorem 2.3 and Theorem 2.5 of [1] imply that
every infinite nilpotent X-group is abelian. We start this section by showing that
some extensions of infinite abelian X-groups provide further examples of infinite
X-groups.

Lemma 3.1. The infinite dihedral group belongs to the class X.

Proof. Write G = 〈a, y | y2 = 1, ay = a−1〉. Then for every non-cyclic subgroup
H of G there exist non-zero integers n and m such that an, amy ∈ H. It easily
follows that CG(H) = 1.

Lemma 3.2. Let G = A〈y〉 where A ∼= Z2∞ and 〈y〉 has order 2 or 4, with
y2 ∈ A and ay = a−1, for all a ∈ A. Then G belongs to the class X.

Proof. It is clear that G/A has order 2, and A is the Fitting subgroup of G. Also
CG(A) = A and Z(G) is the subgroup of order 2 of A. Let H be a non-cyclic
subgroup of G with H 6= A. Then H 6≤ A as every proper subgroup of A is
cyclic. Pick any element h ∈ H \A. Then G = A〈h〉 since |G : A| = 2. Therefore
by the Dedekind modular law we get H = C〈h〉, where C = A ∩H > 1 is finite.

Since h = bv with b ∈ A and v ∈ 〈y〉 \A, we get ah = a−1 for all a ∈ A. In
particular, CA(h) has order 2 and CG(h) has order 4. Since C has a unique
involution and h ∈ CG(H), we conclude that CG(H) ≤ H and so G is an
X-group.

When 〈y〉 has order 2, the group G = Ao 〈y〉 of Lemma 3.2 is a generalized
dihedral group.

Let p denote any odd prime. Then, by Hensel’s Theorem (see for instance [8,
Theorem 127.5]), the group Zp∞ has an automorphism of order p− 1, say φ.

Lemma 3.3. The groups G = Zp∞ o 〈φj〉 for 1 ≤ j ≤ p− 1 are X-groups.

Proof. As X is subgroup closed, it suffices to show that G = Zp∞ o 〈φ〉 is an
X-group. Write the elements of G in the form ay with a ∈ A ∼= Zp∞ and y ∈ 〈φ〉.
Suppose there exist non-trivial elements a ∈ A and y ∈ 〈φ〉 such that ay = a.
For a suitable non-negative integer n, the element ap

n

has order p and it is fixed
by y. Then y centralizes all elements of order p in A, and therefore y = 1 by a
result due to Baer (see, for instance, [9, Lemma 3.28]). This contradiction shows
that 〈φ〉 acts fixed point freely on A.

Let H be any non-cyclic subgroup of G. Then, as G/A is cyclic, A ∩H 6= 1.
If H = A then of course CG(H) = H. Thus we can assume that there exist
non-trivial elements a, b ∈ A and y ∈ 〈φ〉 such that a, by ∈ H. Let g ∈ CG(H).
If g ∈ A then 1 = [g, by] = [g, y], so g = 1. Now let g = cz with c ∈ A and
1 6= z ∈ 〈φ〉. Thus 1 = [cz, a] = [z, a], and a = 1, a contradiction. Therefore
CG(H) ≤ H for all non-cyclic subgroups H of G, so G is an X-group.
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Lemma 3.4. An infinite polycyclic group belongs to the class X if and only if it
is either cyclic or dihedral.

Proof. Arguing as in the proof of Theorem 3.1 of [1], one can easily prove that
every infinite polycyclic X-group is either cyclic or dihedral. On the other hand,
the infinite dihedral group belongs to the class X by Lemma 3.1.

Proposition 3.5. A torsion-free soluble group belongs to the class X if and only
if it is cyclic.

Proof. Let G be a torsion-free soluble X-group. Then every abelian subgroup of
G is cyclic, so G satisfies the maximal condition on subgroups by a result due
to Mal’cev (see, for instance, [10, 15.2.1]). Thus G is polycyclic by [10, 5.4.12].
Therefore G has to be cyclic.

In next theorem we determine all infinite soluble X-groups.

Theorem 3.6. Let G be an infinite soluble group. Then G is an X-group if and
only if one of the following holds:

(i) G is cyclic;

(ii) G ∼= Zp∞ for some prime p;

(iii) G is dihedral;

(iv) G = A〈y〉 where A ∼= Z2∞ and 〈y〉 has order 2 or 4, with y2 ∈ A and
ay = a−1, for all a ∈ A;

(v) G ∼= AoD, where A ∼= Zp∞ and 1 6= D ≤ Cp−1 for some odd prime p.

Proof. First let G be an X-group. If G is abelian then (i) or (ii) holds by [1,
Theorem 2.2]. Assume G is non-abelian, and let A be the Fitting subgroup of
G. Then A 6= 1 and CG(A) ≤ A as G is soluble. Let N be a nilpotent normal
subgroup of G. Then N is finite, as, otherwise, using N is self-centralizing and
G/Z(N) is a subgroup of Aut(N), we obtain G is finite, which is a contradiction.
Thus [1, Theorems 2.3 and 2.5] imply that N is abelian. In particular, as the
product of any two normal nilpotent subgroups of G is again a normal nilpotent
subgroup by Fitting’s Theorem, we see that the generators of A commute. Hence
A is abelian. As A is infinite and abelian, A = CG(A) is either infinite cyclic or
isomorphic to Zp∞ for some prime p. In the former case clearly G′ ≤ A. In the
latter case, let C be any proper subgroup of A. Thus C is finite cyclic. Moreover
C is characteristic in A, so it is normal in G, and G/CG(C) is abelian since it
is isomorphic to a subgroup of Aut(C). It follows that G′ ≤ CG(C), and again
G′ ≤ CG(A) = A. Therefore G/A is abelian.

If A is infinite cyclic, then the argument in the proof of Theorem 3.1 of [1]
shows that G is dihedral. Thus (iii) holds.

Let A ∼= Zp∞ for some prime p, and suppose there exists an element x ∈ G
of infinite order. Then x ∈ G \ A, and so there exists an element y ∈ A such
that [x, y] 6= 1. Then 〈y〉 is a finite normal subgroup of G, so conjugation by x
induces a non-trivial automorphism of 〈y〉. Since Aut(〈y〉) is finite, it follows
that there is an integer n such that [xn, y] = 1. Now y is a torsion element and
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xn has infinite order and so 〈xn, y〉 is neither periodic nor torsion-free and this
contradicts [1, Theorems 2.2]. Therefore G is periodic, and G/A is isomorphic
to a periodic subgroup of automorphisms of Zp∞ .

It is well-known that Aut(Zp∞) is isomorphic to the multiplicative group of
all p-adic units. It follows that periodic automorphisms of Zp∞ form a cyclic
group having order 2 if p = 2, and order p− 1 if p is odd (see, for instance, [11]
for details). In the latter case (v) holds. Finally, let p = 2. Then G/A = 〈yA〉
has order 2, and G = A〈y〉 with y /∈ A and y2 ∈ A. Moreover ay = a−1, for all
a ∈ A. If y has order 2 then G = A o 〈y〉. Otherwise from y2 ∈ A it follows
y2 = (y2)y = y−2, so y has order 4. Therefore G has the structure described in
(iv).

On the other hand, Lemmas 3.1 – 3.3 show that the groups listed in (i) – (v)
are X-groups.

Finally, we determine all infinite locally finite X-groups.

Theorem 3.7. Let G be an infinite locally finite group. Then G is an X-group
if and only if one of the following holds:

(i) G ∼= Zp∞ for some prime p;

(ii) G = A〈y〉 where A ∼= Z2∞ and 〈y〉 has order 2 or 4, with y2 ∈ A and
ay = a−1, for all a ∈ A;

(iii) G ∼= AoD, where A ∼= Zp∞ and 1 6= D ≤ Cp−1 for some odd prime p.

Proof. Any abelian subgroup of G is either finite or isomorphic to Zp∞ for some
prime p, so it satisfies the minimal condition on subgroups. Thus G is a Černikov
group by a result due to Šunkov (see, for instance [10, page 436, I]). Hence there
exists an abelian normal subgroup A of G such that A ∼= Zp∞ for some prime
p, and G/A is finite. It follows that G is metabelian, arguing as in the proof of
Theorem 3.6. Therefore the result follows from Theorem 3.6.

Clearly Theorem 2.1 and Theorem 3.7 give a complete classification of locally
finite X-groups.

Corollary 3.8. Let G be an infinite locally nilpotent group. Then G is an
X-group if and only if one of the following holds:

(i) G is cyclic;

(ii) G ∼= Zp∞ for some prime p;

(iii) G = A〈y〉 where A ∼= Z2∞ and 〈y〉 has order 2 or 4, with y2 ∈ A and
ay = a−1, for all a ∈ A.

Proof. Suppose G is not abelian. Every finitely generated subgroup of G is
nilpotent, so it is either abelian or finite. It easily follows that all torsion-free
elements of G are central. Thus G is periodic (see [12, Proposition 1]). Therefore
G is direct product of p-groups (see, for instance, [10, Proposition 12.1.1]).
Actually only one prime can occur since G is an X-group, so G is a locally finite
p-group. Thus the result follows by Theorem 3.7.
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