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1. Introduction

Let X be any group theoretical class. A group G is said to be X-transitive
(or an XT-group) if for all x, y, z ∈ G\{1} the relations 〈x, y〉 ∈ X and
〈y, z〉 ∈ X imply 〈x, z〉 ∈ X. In graph theoretical terms, let ΓX(G) be the
simple graph whose vertices are all non-trivial elements of G, and vertices a
and b are connected by an edge if and only if 〈a, b〉 ∈ X. Then G is an XT-
group precisely when every connected component of ΓX(G) is a complete
graph. It is an obvious fact that the class of all XT-groups is closed under
taking subgroups; but, in general, it is not closed under taking homomorphic
images. Several authors have studied XT-groups for some special classes X.
In Section 2 we give a short overview of known results about finite XT-
groups, with emphasis on commutative-transitive groups (i.e., XT-groups
where X is the class of all abelian groups; these groups are briefly said
CT-groups), soluble-transitive groups, supersoluble-transitive groups, and
nilpotent-transitive groups. It is not surprising that the structure of infi-
nite XT-groups is hard to describe. Results on this topic are relatively rare.
Some known structural results are mentioned in Section 3, where we give
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a characterization of locally finite commutative-transitive groups together
with further generalizations to nilpotent-transitive groups, and structural
information on polycyclic commutative-transitive groups. Finally, in Sec-
tion 4 we study infinite soluble-transitive and polycyclic-transitive groups.
Here results of Lennox7 suggest that hyper(abelian-by-finite) groups might
be a good setting for studying such groups. We first show that if G is a
finitely generated hyper(abelian-by-finite) solub! le-transitive group, then
every 2-generator subgroup of G is soluble. From this we deduce that a
finitely generated hyper(abelian-by-finite) polycyclic-transitive group is ei-
ther polycyclic or polycyclic-semisimple. Moreover we show that both of
these cases can actually occur. Our final result is about soluble groups of
finite rank. We prove that if G is a finitely generated soluble group of finite
rank which is polycyclic-transitive, then G is residually finite. Furthermore,
if the Fitting subgroup of G is finitely generated then G is polycyclic.

2. Finite XT-groups

It is quite hard to describe the general structure of finite XT-groups. One
of the obstacles is the fact that one often needs to deduce properties of
the whole group from the structure of its 2-generator subgroups. In 1973,
Lennox7 introduced the following definition. Let X and Y be group theoret-
ical classes. Then the class X is said to be bigenetic within the class Y when
a group from Y belongs to X provided that all of its 2-generator subgroups
belong to X. Equipped with this notion, we say that a group theoretical
class X is a good class if it is subgroup closed, contains all finite abelian
groups, and is bigenetic within the class of all finite groups. Examples of
good classes are the class of all abelian groups, all nilpotent groups, all su-
persoluble groups and all soluble groups. It turns out that good classes of
groups are suitable for studying the corresponding transitivity properties.
Our first evidence is the following. Given a group theoretical class X, let
RX(G) be the product of all normal X-subgroups of G (the X-radical of G).
In general RX(G) does not belong to X. The crucial observation here is that
this is however true within the class of all finite X-transitive groups when
X is a good class of groups. This fact is one of the key ingredients of our
proof of the main structure result on finite XT-groups. Before formulating
the result, we recall that, according Robinson11, a group G is said to be
X-semisimple if G has no normal X-subgroups.

Theorem 2.1 (Delizia, Moravec and Nicotera3). Let X be a good
class of groups, and let G be a finite XT-group. Then one of the follow-
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ing holds:

(1) G belongs to X;
(2) G is a Frobenius group with kernel and complement both in X;
(3) G is X-semisimple.

When X is the class of all abelian groups, then all three possibilities of
Theorem 2.1 can occur. The following results, due to Weisner, Suzuki and
Yu-Fen Wu, characterize the structure of finite CT-groups.

Theorem 2.2 (Weisner15). A finite CT-group is soluble or simple.

Theorem 2.3 (Suzuki12). A finite non-abelian simple group is a CT-
group if and only if it is isomorphic with some PSL(2, 2f ), f > 1.

Theorem 2.4 (Yu-Fen Wu16). If G is a finite soluble CT-group, then
G = F o 〈x〉, where F = FitG is abelian and 〈x〉 is a fixed-point-free
group of automorphisms of F . Moreover, any two complements of F are
conjugate in G. Conversely, if G = F o 〈x〉, where F is finite abelian and
〈x〉 is a fixed-point-free group of automorphisms of F , then G is a finite
soluble CT-group with F = FitG.

When X is the class of all nilpotent groups, then again all three possibilities
of Theorem 2.1 can occur.

Theorem 2.5 (Delizia, Moravec and Nicotera3). Let G be a finite
nilpotent-transitive group. Then one of the following holds:

(1) G is nilpotent;
(2) G is a Frobenius group with nilpotent complement;
(3) G ∼= PSL(2, 2f ) for some f > 1, or G ∼= Sz(q) with q = 22n+1 > 2.

Conversely, every finite group under (1) – (3) is nilpotent-transitive.

For certain good classes X, however, we are able to exclude the existence
of X-semisimple XT-groups by using the well known Thompson’s classi-
fication13 of minimal simple groups, i.e., finite non-abelian simple groups
all whose proper subgroups are soluble. We refer to the paper by Delizia,
Moravec and Nicotera3 for further details. As a consequence we get the
following unexpected result.

Theorem 2.6 (Delizia, Moravec and Nicotera3). A finite group is
soluble-transitive if and only if it is soluble.
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An interesting open question, posed by Bechtell, is whether or not the class
of all soluble groups contains a proper subformation X that is also a good
class of groups, such that G ∈ X if and only if G is an XT-group.

Every finite supersoluble-transitive group is soluble. More precisely:

Theorem 2.7 (Delizia, Moravec and Nicotera3). Let G be a finite
supersoluble-transitive group. If G is not supersoluble, then G is a Frobenius
group with supersoluble complement. In particular, G is always soluble.

On the other hand, there exist finite supersoluble-transitive groups which
are not supersoluble, as well as finite Frobenius groups having supersoluble
complement but not being supersoluble-transitive (see Delizia, Moravec and
Nicotera3).

Given a positive integer c, let Nc denote the class of all nilpotent groups
of class 6 c. Moreover, given positive integers k > 1 and c, let N(k, c) denote
the class of all groups in which every k-generator subgroup is nilpotent of
class 6 c. It is easy to show that NcT-groups form an ascending chain of
classes of groups (see Delizia, Moravec and Nicotera2). When c > 1, the
class Nc is not a good class of groups. So Theorem 2.5 cannot be used
to describe the structure of NcT-groups. Nevertheless we get a complete
classification of such groups.

Theorem 2.8 (Delizia, Moravec and Nicotera2). Let G be a finite
NcT-group with c > 1. Then G is either soluble or simple. More precisely:

(1) G is soluble if and only if it is either an N(2, c)-group or a Frobenius
group with the kernel which is an N(2, c)-group and complement which
is nilpotent of class 6 c;

(2) G is a non-abelian simple group if and only if it is isomorphic either to
PSL(2, 2f ), where f > 1, or to Sz(q), the Suzuki group with parameter
q = 22n+1 > 2.

The existence of the second family of non-abelian simple NcT-groups is
probably the strongest evidence showing the gap between CT-groups and
NcT-groups with c > 1.

3. Infinite XT-groups

It would probably be too optimistic to expect that one could obtain a
structural description of infinite XT-groups in general. An obvious evidence
for this is the fact that every free group is a CT-group. Nevertheless, in-
finite CT-groups have played a major role in the model theory of groups.
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Remeslennikov9 and independently Gaglione and Fine5 proved that a resid-
ually free group is a CT-group if and only it is fully residually free, and this
is further equivalent to the fact that the group in question is universally
free, i.e., it shares the same universal theory as the class of free groups.

The structure of locally finite CT-groups was investigated by Yu-Fen
Wu16. She obtained results which are rather similar to the ones in the finite
case.

Theorem 3.1 (Yu-Fen Wu16). If G is a locally finite soluble CT-group,
then G = F oH, where F = FitG is abelian and H is a locally cyclic group
of fixed-point-free automorphisms of F . Moreover, any two complements
of F are conjugate in G. Conversely, if F is a locally finite abelian group
and H a locally cyclic group of fixed-point-free automorphisms of F , then
G = F oH is a locally finite soluble CT-group.

Theorem 3.2 (Yu-Fen Wu16). Let G be an insoluble locally finite group.
Then G is a CT-group if and only if it is isomorphic with PSL(2, F ) for
some locally finite field F of characteristic 2 with |F | > 4.

As in the case of CT-groups, every locally finite N2T-group is either sol-
uble or simple (see Delizia, Moravec and Nicotera2). For the NcT-groups
with c > 2 this is no longer true. For instance, Bachmuth and Mochizuki1

constructed an insoluble N(2, 3)-group H of exponent 5. This group H is
a locally finite N3T-group (therefore a 3-Engel group, and so locally nilpo-
tent). Clearly H is not simple, otherwise H would coincide with the normal
closure of any non-trivial element of H, and it would therefore be nilpotent
(see, for instance, Kappe and Kappe4), a contradiction.

The next two results describe the structure of locally finite NcT-groups
which are either soluble or not locally soluble. Analogous results hold true
for locally finite NT-groups. To simplify the formulations we allow c to be
∞, and identify N∞T with NT and N(2,∞) with the class of weakly nilpo-
tent groups, i.e., groups in which every 2-generator subgroup is nilpotent.
With these identifications we have the following.

Theorem 3.3 (Delizia, Moravec and Nicotera2). Let c ∈ N ∪ {∞}.
Every locally finite soluble NcT-group is either an N(2, c)-group or a Frobe-
nius group whose kernel and complement are both N(2, c)-groups. Con-
versely, every locally finite Frobenius group in which kernel and complement
are both N(2, c)-groups is an NcT-group.

Theorem 3.4 (Delizia, Moravec and Nicotera2). Let c ∈ N ∪ {∞},
and let G be a locally finite NcT-group which is not locally soluble. Then
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there exists a locally finite field F such that G is isomorphic either to
PSL(2, F ) or to Sz(F ).

We are now able to complete the classification of locally finite NcT-groups
and NT-groups partially given in Delizia, Moravec and Nicotera2. The next
result namely describes locally finite locally soluble NcT-groups that are
not soluble.

Theorem 3.5. Let c ∈ N∪{∞}. Then every locally finite NcT-group which
is insoluble and locally soluble is either an N(2, c)-group or a Frobenius
group whose kernel and complement are both N(2, c)-groups.

Proof. Let G be an insoluble, locally soluble and locally finite NcT-group.
Suppose G is not an N(2, c)-group. Then there exist elements a, b ∈ G such
that the subgroup 〈a, b〉 is not in Nc. Thus Theorem 2.8 yields that 〈a, b〉 is
a finite Frobenius group. By the hypotheses, the same conclusion holds for
the subgroup 〈a, b, x1, . . . , xn〉, for all integers n and all choices of elements
x1, . . . , xn ∈ G. Hence the finite subgroups of G containing a and b are a
local system of Frobenius groups for G. Therefore G is a Frobenius group
by Proposition 1.J.3 in Kegel and Wehrfritz6. Moreover, Theorem 1.J.2
in the same book states that both Frobenius kernel and complement of
G have non-trivial center, therefore they are N(2, c)-groups, since G is an
NcT-group.

From Theorem 3.3, 3.4 and 3.5 we readily conclude the following:

Corollary 3.1. Let c ∈ N ∪ {∞} and let G be a locally finite NcT-group.
Then one of the following holds:

(1) G is an N(2, c)-group;
(2) G is a Frobenius group whose kernel and complement are both N(2, c)-

groups;
(3) G ∼= PSL(2, F ) or G ∼= Sz(F ), for some locally finite field F .

Yu-Fen Wu16 also dealt with polycyclic CT-groups. The following theorem
characterizes the abelian-by-finite case.

Theorem 3.6 (Yu-Fen Wu16). Let G be an abelian-by-finite polycyclic
group and let F be its Fitting subgroup (which is abelian). Then G is a
CT-group if and only if one of the following holds:

(1) G = F o 〈x〉 where 〈x〉 is a finite fixed-point-free group of automor-
phisms of F ;
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(2) Q = G/F is a generalized quaternion group of fixed-point-free auto-
morphisms of F and resQQ0

(α) 6= 0 for every quaternion subgroup Q0

of Q with order 8, where α is the cohomology class of the extension
F � G� Q.

Polycyclic CT-groups which are not abelian-by-finite groups are in close
relationship with algebraic number fields, as the following result shows.

Theorem 3.7 (Yu-Fen Wu16). A polycyclic CT-group G which is not
abelian-by-finite has a normal subgroup F o X of finite index, where F is
the Fitting subgroup of G, X and F are free-abelian groups, and F has a
series in which each factor Hi is X-rationally irreducible with fixed-point-
free X-action. Moreover, Hi is isomorphic to an additive subgroup of the
ring of algebraic integers of a number field Ki, and X is embedded in the
unit group of Ki.

4. Infinite polycyclic-transitive groups

In this section we study polycyclic-transitive groups. Of course, Theorem 2.6
stases that for finite groups this condition is equivalent to the solubility.
Moving on to infinite groups, it is helpful to point out first some basic
properties of soluble-transitive groups. We start by establishing a weak
form of closure under taking quotients.

Lemma 4.1. Let G be a soluble-transitive group, and let N be a soluble
normal subgroup of G. Then G/N is also soluble-transitive.

Proof. Let x, y, z ∈ G\N and suppose that the groups 〈xN, yN〉 and
〈yN, zN〉 are soluble. Then the groups 〈x, y〉N/N and 〈y, z〉N/N are sol-
uble. As N is soluble, it follows that 〈x, y〉 and 〈y, z〉 are soluble. Since G
is soluble-transitive, it follows that 〈x, z〉 is soluble, hence so is the group
〈xN, zN〉.

Theorem 4.1. Let G be a soluble-by-finite soluble-transitive group. Then
G is soluble.

Proof. Let N be a soluble normal subgroup of G such that |G : N | is finite.
By Lemma 4.1 the factor group G/N is soluble-transitive. Thus G/N is
soluble by Theorem 2.6. Therefore G is soluble.

By a result of Lennox7, polycyclicity is bigenetic within the class of
all finitely generated hyper(abelian-by-finite) groups. This means that a



June 30, 2009 11:34 WSPC - Proceedings Trim Size: 9in x 6in DMN2008

8

finitely generated hyper(abelian-by-finite) group is polycyclic provided that
every its 2-generator subgroup is. This fact motivates us to study infinite
polycyclic-transitive groups in the class of finitely generated hyper(abelian-
by-finite) groups.

Proposition 4.1. Let G be a finitely generated hyper(abelian-by-finite)
group. If G is soluble-transitive, then G every 2-generator subgroup of G
is soluble.

Proof. By definition there exists a non-trivial normal subgroup N of G
that is abelian-by-finite. Using Theorem 4.1, we see thatN has to be soluble.
It follows that 〈N, g〉 is soluble for all g ∈ G. Let x, y ∈ G and let a be
a non-trivial element of N . Since 〈a, x〉 and 〈a, y〉 are soluble, and G is
soluble-transitive, it follows that 〈x, y〉 is soluble.

Corollary 4.1. Let G be a finitely generated hyper(abelian-by-finite)
soluble-transitive group which is linear over a field of characteristic k. Then
G is soluble-by-periodic. Moreover, if k = 0, then G is soluble.

Proof. By Proposition 4.1, every 2-generator subgroup of G is soluble.
Then G is soluble-by-periodic by a result of Wehrfritz14. Moreover, in the
case k = 0, the group G is soluble-by-finite by Platonov’s theorem8, so G
is soluble by Theorem 4.1.

Note that a similar argument as in the proof of Theorem 4.1 shows that
every polycyclic-by-finite polycyclic-transitive group is polycyclic. Moving
on to hyper(abelian-by-finite) groups, we can prove the following result.

Theorem 4.2. Let G be a finitely generated hyper(abelian-by-finite) group.
If G is polycyclic-transitive, then G is either polycyclic or polycyclic-
semisimple.

Proof. Suppose there exists a non-trivial normal polycyclic subgroup N

of G. Then for all g ∈ G the group N〈g〉/N is cyclic, hence N〈g〉 is poly-
cyclic. Let x and y in G. Choose an element a ∈ N \ {1}. Since 〈a, x〉 and
〈a, y〉 are polycyclic, and G is polycyclic-transitive, it follows that 〈x, y〉 is
polycyclic. Thus every 2-generator subgroup of G is polycyclic. Therefore
G is polycyclic by the above mentioned result of Lennox7.

Of course, the hypothesis that G is finitely generated cannot be removed in
Theorem 4.2. For, every infinitely generated abelian group is a polycyclic-
transitive group which is neither polycyclic nor polycyclic-semisimple.
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The following example shows that there exist finitely generated
hyper(abelian-by-finite) polycyclic-transitive groups which are not poly-
cyclic.

Example 4.1. Consider

A =
{ a

2n
: a ∈ Z, n > 0

}
as an additive subgroup of Q. Note that A is torsion-free and locally cyclic.
The map x 7→ x/2 induces an automorphism φ of A. Let G = A o 〈φ〉.
Clearly we have that G = 〈1/2, φ〉. Let x = (φk, a/2n) and y = (φl, b/2m)
be arbitrary elements of G. Then calculation shows that

[x, y] =
(

1,− a

2n
− b

2m+k
+

a

2n+l
+

b

2m

)
.

At first we show that G is a CT-group. To this end, let x = (φk, a/2n),
y = (φl, b/2m) and z = (φj , a/2p) be non-trivial elements of G and suppose
that [x, y] = [y, z] = 1. Then the above argument yields the following
relations:

2−na(2−l − 1) = 2−mb(2−k − 1),
2−mb(2−j − 1) = 2−pc(2−l − 1).

Note that if l = 0, then k = j = 0, as b 6= 0. In this case it is clear that
[x, z] = 1. So we can suppose that l 6= 0. If b = 0, then also a = c = 0,
and again we conclude that [x, z] = 1. So we can additionally assume that
b 6= 0. If both k and j are zero, then we also have [x, z] = 1, thus we can
assume without loss of generality that j 6= 0. Then we obtain

2−na(2−j − 1) =
2−n−pac(2−l − 1)

2−mb
= 2−pc(2−k − 1),

hence [x, z] = 1, as required.
To show that G is polycyclic-transitive, it clearly suffices to prove that

a 2-generator subgroup of G is polycyclic if and only if it is abelian. Let
x = (φk, a/2n) and y = (φl, b/2m) be elements of G. Suppose that [x, y] 6= 1.
We have that [x, y] = (1, c), where c = −a/2n − b/2m+k + a/2n+l + b/2m

is a non-trivial element of A. Consider the group H = 〈[x, y]〉〈(φ,0)〉. It is
easy to see that (φ, 0)−u[x, y]v(φ, 0)u = (1, 2−uvc) for all u, v ∈ Z, hence H
is generated by the set {(1, 2−uc) : u > 0}, and it cannot be generated by
a smaller set. This shows that if [x, y] 6= 1 then 〈x, y〉 is not polycyclic.
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The group G in Example 4.1 is soluble of finite rank. The structure of
finitely generated soluble polycyclic-transitive groups of finite rank is sub-
ject to the following restrictions, that make them near to be polycyclic.

Theorem 4.3. Let G be a finitely generated soluble group of finite rank
which is polycyclic-transitive. Then G is residually finite. Moreover the Fit-
ting subgroup F of G is nilpotent, and G/F is polycyclic. Finally, G is
nilpotent-by-abelian-by-finite, and it has no infinite subgroups satisfying the
minimal condition on subgroups.

Proof. First, the group G is minimax (see, for instance, Robinson’s book10,
Part 2, Theorem 10.38). Moreover, by Theorem 4.2, G is either polycyclic
or polycyclic-semisimple. Every polycyclic group is residually finite by a
theorem due to Hirsch (see, for instance, Theorem 5.4.17 in Robinson11).
Moreover, a well-known result of Mal’cev states that every polycyclic group
has a normal subgroup of finite index whose derived subgroup is nilpotent
(see, for instance, Theorem 15.1.6 in Robinson11). So clearly we can assume
that G is polycyclic-semisimple. If A is a normal abelian subgroup of G
satisfying the minimal condition on subgroups then A is trivial, otherwise
A has a non-trivial characteristic polycyclic subgroup, a contradiction since
G is polycyclic-semisimple. Let R be the finite residual of G. Then R is the
direct product of finitely many quasicyclic subgroups of G (see Robinson10,
Part 2, Theorem 10.33). It follows that R = 1 and G is residually finite. So
G has no infinite subgroups satisfying the minimal condition on subgroups.
Moreover F is nilpotent, and G/F is polycyclic and abelian-by-finite.

The above theorem shows that the Fitting subgroup F plays a decisive role
in finitely generated soluble groups G of finite rank that are polycyclic-
transitive. Namely, if F is finitely generated, then G is polycyclic by Theo-
rem 4.2. If however F is not finitely generated, then Theorem 4.3, together
with Theorem 4.2, shows that G is polycyclic-semisimple.
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