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Abstract. We study the class of all groups in which the centralizer of each
element is a subnormal subgroup. In particular, we focus on the case when

the defect of every centralizer is at most 2. We show that a group without

involutions satisfies this property if and only if it is 3-Engel.

1. Introduction

A group G is said to be n-Engel if it satisfies the identity [x, ny] = 1 for all x, y ∈ G.

More generally, G is said to be an Engel group if for all x, y ∈ G there exists a non-

negative integer n = n(x, y) such that [x, ny] = 1. These classes of groups have

been widely studied, we refer to a paper by Traustason [10] for a recent survey.

There are several well-known characterizations of 2-Engel groups; see, for instance,

[6]. One of them says that a group G is 2-Engel if and only if for every x ∈ G

the centralizer CG(x) is normal in G. A natural generalization of 2-Engel groups

is therefore the class Cn of all groups G in which for every x ∈ G the centralizer

CG(x) is subnormal in G of defect ≤ n. Furthermore, we denote by C the class of

all groups G in which for every x ∈ G the centralizer CG(x) is subnormal in G.

The purpose of this paper is to study the groups belonging to Cn, with emphasis

on the case n = 2. At first we note that every group in Cn (respectively, in C) is

a locally nilpotent (n+ 1)-Engel group (respectively, Engel group). The main part

of the paper consists of a detailed description of C2-groups. The starting point is a

characterization of C2-groups in terms of vanishing of a certain commutator word.

Based on that, we prove that if G is a C2-group, then every abelian subgroup of

G is subnormal of defect ≤ 3. We also show that the class C2 strictly contains the

variety of all nilpotent groups having nilpotency class ≤ 3, and is strictly contained

in the variety of all 3-Engel groups. Finally, we deal with the question as to which

3-Engel groups belong to C2. Our main result in this direction is the following.

Theorem 1.1. Let G be a group without involutions. Then G is a C2-group if and

only if it is a 3-Engel group.

As a consequence, we show that C2-groups need not to be solvable. Since there

exist n-generator 3-Engel 5-groups which are nilpotent of class exactly 2n− 1 (see

[4]), Theorem 1.1 also implies that there is no bound for the nilpotency class of

nilpotent groups in C2.

In order to prove the main result, we use the detailed description of 3-Engel

groups obtained by Gupta and Newman [4]. As in the latter case, our arguments

are guided by computer calculations with GAP [2]. In particular, we used GAP

to determine the exact bound for the nilpotency class in Proposition 3.3, as well
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as to find interactions between various commutators appearing in the proof. We

point out that our arguments are completely hand proved, and hence they do not

depend on these calculations. We also mention that some of our techniques could

be extended to cover the classes Cn for n > 2, but this will not be addressed

here. The structure of groups in Cn essentially depends on the structure of locally

nilpotent (n+ 1)-Engel groups, and this is, apart from the case n ≤ 3, still not well

determined.

2. General properties

For the unexplained notions throughout the paper we refer to [8] and [9]. We begin

with the following observation.

Proposition 2.1. If G is nilpotent of class ≤ n, then G ∈ Cn.

Proof. This is obvious, since every subgroup of G is subnormal of defect ≤ n. �

Recall that a group G is said to be n-Baer if for every x ∈ G the cyclic subgroup

〈x〉 is subnormal in G of defect ≤ n. Also, G is said to be a Baer group if for every

x ∈ G the cyclic subgroup 〈x〉 is subnormal in G. We refer to [9] for the basic

properties of these groups. In particular, it is well-known that Baer groups are

locally nilpotent. The following results point out connections between C-groups,

Engel groups and Baer groups.

Proposition 2.2. Every Cn-group is a (n+ 1)-Baer group.

Proof. Let G ∈ Cn and x ∈ G. Then 〈x〉 /CG(x) /nG, hence G is (n+ 1)-Baer. �

Since n-Baer groups are (n+1)-Engel, it follows from Proposition 2.2 that every

Cn-group is a (n+ 2)-Engel group. Actually, this can be improved.

Proposition 2.3. Every Cn-group is a (n+ 1)-Engel group.

Proof. Let G ∈ Cn and x, y ∈ G. Write H = CG(x). By [8, Proposition 1.1.1], we

have [y, nx] ∈ [G, nH] ≤ H, so [y,n+1 x] = 1. Therefore G is (n+ 1)-Engel. �

Proposition 2.4. Every C-group is a Baer group and an Engel group.

Proof. This follows by a similar argument as in the proof of Proposition 2.2 and

Proposition 2.3. �

Corollary 2.5. C-groups are locally nilpotent.

In the sequel, the following well-known commutator identities will be used with-

out further reference:

[a, b] = [b, a]−1,

[ab, c] = [a, c][a, c, b][b, c],

[a, bc] = [a, c][a, b][a, b, c],

[a−1, b] = [a, b, a−1]−1[b, a],

[c, [b, a]] = [c, b, a][c, a, b]−1u

where u is a product of commutators with entry set {a, b, c} and weight at least 4.

We note that the last identity listed above is a version of the Hall-Witt identity

(see for instance [4]).

Lemma 2.6. A group G is in C2 if and only if the relation [g, h1, h2, x] = 1 holds

for all g, x ∈ G and for all h1, h2 ∈ CG(x).
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Proof. Note that the relation [g, h1, h2, x] = 1 holds for all g, x ∈ G and for all

h1, h2 ∈ H = CG(x) if and only if [g, h1, h2] ∈ H for all h2 ∈ H, which is further

equivalent to [g, h1] ∈ NG(H) for all h1 ∈ H. This is equivalent to [G,H] ≤ NG(H),

that is, [G,H,H] ≤ H. It is well-known (see for instance [8], Proposition 1.1.1)

that this is equivalent to the fact that H is subnormal in G of defect at most 2.

This completes the proof. �

Proposition 2.7. Let G 6= 1 be a group and suppose that G = AB, where the

subgroups A and B are abelian and A is normal in G. If G ∈ C2, then Z(G) 6= 1.

Proof. Arguing by contradiction, we assume that Z(G) = 1. Since G ∈ C2 and

B is abelian, Lemma 2.6 implies that [a, b1, b2, b] = 1 for all a ∈ A and for all

b1, b2, b ∈ B. This means that [a, b1, b2] ∈ CG(B), and since [a, b1, b2] ∈ A, where A

is abelian, we have [a, b1, b2] ∈ Z(G). Thus [a, b1, b2] = 1 for every a ∈ A, b1, b2 ∈ B.

So [a, b1] ∈ CG(B) ∩ A, and as above we conclude that [a, b1] = 1 for every a ∈ A
and for every b1 ∈ B. But this means that G is abelian, a contradiction. �

Proposition 2.8. Let G ∈ C2. Then every abelian subgroup of G is subnormal of

defect ≤ 3.

Proof. Let A be a maximal abelian subgroup of G. Then for every g ∈ G and for

every a1, a2, a3 ∈ A we have that [g, a1, a2, a3] = 1, since G ∈ C2 and A ⊆ CG(a3).

By the maximality of A this implies that [g, a1, a2] ∈ A. Now we will prove that

[G,A,A] = 〈[k, a] : k ∈ [G,A], a ∈ A〉 ≤ A.

Put C = {[g, a] : g ∈ G, a ∈ A}. If c = [g, a] ∈ C, then for every a1 ∈ A

we have [c, a1] = [g, a, a1] ∈ A. If c = [a, g] ∈ C−1, then [c, a1] = [a, g, a1] =

[g, a−1, a1]a = [g, a−1, a1] ∈ A. This means that [c, a1] ∈ A for all c ∈ C ∪C−1 and

for all a1 ∈ A. Moreover, ac = a[a, c] ∈ A for all a ∈ A and for all c ∈ C ∪ C−1.

By a similar argument as in the proof of Lemma 2.6 we conclude that [k, a] ∈ A for

every k ∈ [G,A] and for every a ∈ A. So [G,A,A] ≤ A, therefore A is subnormal

in G of defect ≤ 2.

Now let H be an abelian subgroup of G. Then there exists a maximal abelian

subgroup A of G such that H ≤ A. Clearly, H is normal in A, so H is subnormal

in G of defect ≤ 3. �

The converse of Proposition 2.8 is not true. Garrison and Kappe [3, Example

5.2] constructed a finite 3-Baer group G that is not 3-Engel, hence it does not

belong to C2. On the other hand, one can compute all conjugacy classes of abelian

subgroups of G using GAP [2], and verify that the representatives of these classes

are always subnormal in G of defect at most 3.

Now we note that there exist 3-Engel groups not belonging to C2. For example,

if G is the standard wreath product of a cyclic group of order 2 and a countably

infinite elementary abelian 2-group, then G is 3-Engel (see [9], p. 48). On the other

hand, since Z(G) = 1, by Proposition 2.7 the group G is not in C2.

Our next example exhibits a finite metabelian 3-Engel group of class 4 that does

not belong to C2.

Example 2.9. Let E be an elementary abelian 2-group of order 512 generated by

e1, . . . , e9. Form a semidirect product G1 = E o 〈a〉, where a is of order 2 and

acts upon E in the following way: [e1, a] = e6e8 and [ei, a] = 1 for i ≥ 2. Next,

let G2 = G1 o 〈c〉, where c is of order 2, acting on G1 by [a, c] = e4, [e2, c] = e7,

[e3, c] = e6, [e5, c] = e9, and [ei, c] = 1 otherwise. Now define G3 = G2 o 〈b〉, where

|b| = 2, and the action is given by [c, b] = e1, [a, b] = e3, [e2, b] = e5, [e4, b] = e8,

[e7, b] = e9, and [ei, b] = 1 otherwise. Finally, let G = G3 o 〈d〉, where d is an
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automorphism of G3 of order 2 acting as follows: [b, d] = [c, d] = 1, [a, d] = e2,

[e3, d] = e5, [e4, d] = e7, [e6, d] = [e8, d] = e9, and [ei, d] = 1 otherwise. It is

straightforward to verify that G is a metabelian group of class 4, and of order 213.

The relations of G show that G/E is elementary abelian. Let x, y ∈ G and set

z = [x, y] ∈ E. Then [y, x, x, x] = [z, x, x] = z(−1+x)2 = z1−2x+x2

= z2−2x = 1,

hence G is a 3-Engel group. On the other hand, the defining relations imply that

[b, d] = [c, d] = 1, but [a, b, c, d] = e9 6= 1, hence G does not belong to C2 by Lemma

2.6.

3. Three-Engel groups without involutions

The aim of this section is to prove that every 3-Engel group without involutions is

a C2-group. The basic information on 3-Engel groups we start with is the following.

In [5] Heineken proved that every 2-generator 3-Engel group without involutions

is nilpotent of class ≤ 3. Gupta and Newman [4] showed that 3-generator 3-Engel

groups are nilpotent of class ≤ 5. We will prove that such groups have nilpotency

class≤ 4 provided that two of the generators commute, and there are no involutions.

This, together with Lemma 2.6, will be the key step towards proving Theorem 1.1.

At first we prove the following auxiliary result.

Lemma 3.1. Let x1, . . . , xn, a, b be elements of a group G, with [a, b] = 1. Then

[x1, . . . , xn, a, b] ≡ [x1, . . . , xn, b, a] modulo γ2(n+1)(G).

Proof. From [x1, . . . , xn, ab] = [x1, . . . , xn, ba] we obtain

[x1, . . . , xn, b][x1, . . . , xn, a][x1, . . . , xn, a, b]

= [x1, . . . , xn, a][x1, . . . , xn, b][x1, . . . , xn, b, a],

and the result follows. �

We proceed with listing the properties of 3-Engel groups we need due course.

Gupta and Newman [4] proved that, for n > 2, every n-generator 3-Engel group

is nilpotent of class ≤ 2n − 1. In particular, Lemma 3.4 of [4] states that if G

is a 3-Engel group without involutions, then in every commutator of elements of

G, a pair of neighboring equal entries can be moved past any other entry without

changing the value of the commutator modulo commutators of higher weight:

[. . . , a, a, b, . . . ] ≡ [. . . , b, a, a, . . . ].

As in [4], we will refer to this fact as the shifting property. Moreover, for s ≥ 3, the

commutator [a, b1, . . . , bs, a] can be written as a product of commutators of weight

s + 2 with the same entry set and neighboring a’s and of commutators of higher

weight (closing property).

By Lemma 3.3 of [4], given elements a, b, c, d in a 3-Engel group G having no

involutions, we get the following fundamental congruences modulo γ6(G):

(1) [c, b, b, a, d] ≡ [c, a, b, b, d] ≡ [c, a, d, b, b],

(2) [c, b, a, b, d] ≡ [c, a, b, d, b] ≡ [c, a, d, b, b]3.

Lemma 3.2. Let G = 〈a, b, c〉 be a 3-Engel group without involutions. If [b, c] = 1,

then the nilpotency class of G is ≤ 4.

Proof. We have that γ6(G) = {1} by [4, Theorem 2.4]. The subgroup γ5(G) is gen-

erated by the commutators [a, b, b, c, c], [b, a, a, c, c] and [c, a, a, b, b] (see [4], Theorem

3.5). Since [b, c] = 1, the shifting property gives γ5(G) = 〈[a, b, b, c, c]〉. Replacing

a and d by b, b by c, c by a in (1) and (2), we obtain [a, c, c, b, b] = [a, b, b, c, c] and



5

[a, c, b, c, b] = [a, b, b, c, c]3. Thus by Lemma 3.1 we get [a, b, b, c, c]2 = 1, and the

result follows, since G has no involutions. �

In what follows, we will often use the fact that in a 3-Engel group all commutators

with a triple entry are trivial (see [7] and [4]).

Proposition 3.3. Let G = 〈a, b, c, d〉 be a 3-Engel group without involutions. If

[b, d] = 1 = [c, d], then the nilpotency class of G is ≤ 5.

Proof. Suppose z ∈ G has the property that z2 ∈ γ7(G). By [4, Theorem 4.4] we

have γ5(G)5 = 1, hence z5 = 1. It follows that z = z−4 belongs to γ7(G), hence

the group G/γ7(G) has no involutions. Passing to this quotient group, we may

assume without loss of generality that γ7(G) = {1}. Our aim is to prove that every

commutator of weight 6 having entry set {a, b, c, d} is trivial. Notice that every

commutator of weight 6 lies in the centre of G, so it can be expanded linearly.

Moreover, [x2, x1, x3, x4, x5, x6] = [x1, x2, x3, x4, x5, x6]−1. By our assumptions,

and since the roles of b and c are symmetric, we only have to deal with commutators

[c, a, x3, x4, x5, x6] (we call these commutators of type 1), [c, b, x3, x4, x5, x6] (type 2)

and [d, a, x3, x4, x5, x6] (type 3), where x3, x4, x5, x6 run through the set {a, b, c, d}.
Throughout this proof, the commutators will be always listed in lexicographic order.

We start by considering commutators w = [c, a, x3, x4, x5, x6] of type 1.

If x3 = a, then we can assume x4, x5 and x6 to be different from a (otherwise

w = 1, since w has a triple entry). Moreover, we may assume d ∈ {x4, x5, x6},
otherwise w = 1, since 3-generator 3-Engel groups are nilpotent of class ≤ 5. Then

we always get w = 1 by using the shifting property and Lemma 3.1. Therefore all

commutators of type 1 with x3 = a are trivial.

If x3 = b and x4 = a, we have to consider the commutators w1 = [c, a, b, a, b, d],

w2 = [c, a, b, a, c, d], w3 = [c, a, b, a, d, b], w4 = [c, a, b, a, d, c], w5 = [c, a, b, a, d, d].

Now we obtain from (2), by setting d = a, that

(3) [c, b, a, b, a] ≡ [c, a, b, a, b] ≡ [c, a, a, b, b]3 mod γ6(G).

From (3) we obtain that w1 is the cube of a commutator of type 1 with x3 = a,

so w1 = 1. By interchanging a and b and replacing d by c in (2), we obtain

w2 = [c, b, c, a, a, d]3; thus by the shifting property, w2 is the cube of a commutator

of type 1 with x3 = a, so w2 = 1. By Lemma 3.1, w3 = w1 = 1 and w4 = w2 = 1.

Finally, w5 = 1 by the shifting property. Therefore all commutators of type 1 with

x3 = b and x4 = a are trivial.

If x3 = b = x4, we need to consider the commutators w6 = [c, a, b, b, a, d],

w7 = [c, a, b, b, c, d], w8 = [c, a, b, b, d, a], w9 = [c, a, b, b, d, c], w10 = [c, a, b, b, d, d].

From (1), by setting d = a, we obtain that w6 is a commutator of type 1 with

x3 = a, so w6 = 1. Using Lemma 3.1 and the equations (2) and (1), we get

[c, a, b, b, d] ≡ [c, a, d, b, b]3 ≡ [c, a, b, b, d]3 modulo γ6(G). SinceG has no involutions,

this implies that [c, a, b, b, d] ∈ γ6(G). Thus w7 = w8 = w9 = w10 = 1. Therefore

all commutators of type 1 with x3 = b = x4 are trivial.

If x3 = b and x4 = c, we have to consider the commutators w11 = [c, a, b, c, a, d],

w12 = [c, a, b, c, b, d], w13 = [c, a, b, c, d, a], w14 = [c, a, b, c, d, b], w15 = [c, a, b, c, d, d].

Interchanging a and b and replacing d by c in (2), we get [c, a, b, c, a] ≡ [c, b, c, a, a]3

modulo γ6(G). By the shifting property, w11 is the cube of a commutator of

type 1 with x3 = a, so w11 = 1. By expanding [c, a, bc, bc, bc, d] = 1 we ob-

tain 1 = [c, a, b, b, c, d]w12[c, a, c, b, b, d], so w12 = 1 by the shifting property, and

since all commutators of type 1 with x3 = b = x4 are trivial. We also get

w13 = [a, c, b, c, d, a]−1. By the closing property, [a, c, b, c, d, a] is a product of
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certain commutators ui of weight 6 with entries b, c, c, d and neighboring a’s. By

the shifting property, each ui can be written as a commutator with x2 = a = x3.

Since [b, d] = 1 = [c, d], Lemma 3.1 and the shifting property yield ui = [b, d, . . . ]

or ui = [c, d, . . . ], so ui = 1. Thus w13 = 1. Finally, w14 = w12 = 1 by Lemma 3.1,

and w15 = 1 by the shifting property. Therefore all commutators of type 1 with

x3 = b and x4 = c are trivial.

If x3 = b and x4 = d, we need to consider the commutators w16 = [c, a, b, d, a, b],

w17 = [c, a, b, d, a, c], w18 = [c, a, b, d, a, d], w19 = [c, a, b, d, b, a], w20 = [c, a, b, d, b, c],

w21 = [c, a, b, d, b, d], w22 = [c, a, b, d, c, a], w23 = [c, a, b, d, c, b], w24 = [c, a, b, d, c, d],

w25 = [c, a, b, d, d, a], w26 = [c, a, b, d, d, b], w27 = [c, a, b, d, d, c]. By the shifting

property we get w25 = w26 = w27 = 1. By Lemma 3.1 and the shifting property

we also have w21 = w24 = 1. Moreover, since all commutators of type 1 with

x3 = b and x4 = c are trivial, Lemma 3.1 gives w22 = w23 = 1. Analogously, since

all commutators of type 1 with x3 = b = x4 are trivial, it follows from 3.1 that

w19 = w20 = 1. By expanding [c, a, b, ad, ad, ad] = 1 we easily obtain w18 = 1.

Now, in order to expand [c, a, b, abd, abd, abd] = 1, we only need to consider com-

mutators with x4 = d and x5 = a. Thus we get w16 = w18 = 1. Finally, modulo

γ6(G), [a, c, b, d, a] is a product of commutators of weight 5 with entries b, c, d and

neighboring a’s by the closing property. By the shifting property and Lemma 3.1,

each of these commutators can be written modulo γ6(G) as [b, d, . . . ] or [c, d, . . . ],

so it is trivial. Thus w17 = 1. Therefore all commutators of type 1 with x3 = b are

trivial.

If x3 = c, we need to consider the following commutators: w28 = [c, a, c, b, a, d],

w29 = [c, a, c, b, b, d], w30 = [c, a, c, b, d, a], w31 = [c, a, c, b, d, b], w32 = [c, a, c, b, d, d],

w33 = [c, a, c, d, a, b], w34 = [c, a, c, d, b, a], w35 = [c, a, c, d, b, b], w36 = [c, a, c, d, b, d],

w37 = [c, a, c, d, d, b]. Since all commutators of type 1 with x3 = b are trivial, Lemma

3.1 and the shifting property give w29 = w31 = w32 = w35 = w36 = w37 = 1. By the

closing property, [a, c, c, b, a] is, modulo γ6(G), a product of commutators of weight 5

with entries b, c and neighboring a’s. By the shifting property and Lemma 3.1, each

of these commutators can be written modulo γ6(G) in the form [b, d, . . . ] or [c, d, . . . ],

so it is trivial. Thus w28 = 1. Now w30 = [a, c, c, b, d, a]−1 = [a, b, c, c, d, a]−1 by

the shifting property, so w30 = [b, a, c, c, d, a]. Interchanging b and c in w8 = 1,

we obtain w30 = 1. Furthermore, by Lemma 3.1 we get w34 = w30 = 1. Finally,

[c, a, c, d, a] ∈ γ6(G) by the closing property, so w33 = 1. Therefore all commutators

of type 1 with x3 = c are trivial.

If x3 = d and x4 = a, we have to consider the commutators w38 = [c, a, d, a, b, b],

w39 = [c, a, d, a, b, c], w40 = [c, a, d, a, b, d], w41 = [c, a, d, a, c, b], w42 = [c, a, d, a, d, b].

First, w38 = w8 = 1 by the shifting property. Moreover, Lemma 2.2 (v) of [4] gives

[c, a, d, a]4 ≡ [c, d, a, a]2 modulo γ5(G). In our case this means [c, a, d, a] ∈ γ5(G),

so w39 = w40 = w41 = w42 = 1. Therefore all commutators of type 1 with x3 = d

and x4 = a are trivial.

If x3 = d and x4 = b, we have to consider the commutators w43 = [c, a, d, b, a, b],

w44 = [c, a, d, b, a, c], w45 = [c, a, d, b, a, d], w46 = [c, a, d, b, b, a], w47 = [c, a, d, b, b, c],

w48 = [c, a, d, b, b, d], w49 = [c, a, d, b, c, a], w50 = [c, a, d, b, c, b], w51 = [c, a, d, b, c, d],

w52 = [c, a, d, b, d, a], w53 = [c, a, d, b, d, b], w54 = [c, a, d, b, d, c]. Modulo γ6(G),

[a, c, d, b, a] is a product of commutators of weight 5 with entries b, c, d and neigh-

boring a’s by the closing property. By the shifting property and Lemma 3.1, each of

these commutators can be written modulo γ6(G) in the form [b, d, . . . ] or [c, d, . . . ],

so it is trivial. Thus w43 = w44 = w45 = 1. Using the shifting property and

the fact that all commutators of type 1 with x3 = 1 = x4 are trivial, we obtain



7

w46 = w47 = w48 = 1. Using the shifting property, together with Lemma 3.1, we

easily get w51 = w52 = w53 = w54 = 1. Expansion of [c, a, bd, bd, c, bd] = 1 (by

using the shifting property and the fact that all commutators of type 1 with x3 = b

are trivial) gives w50w51 = 1, so w50 = 1. Finally, w49 = 1 by the closing property.

Therefore all commutators of type 1 with x3 = d and x4 = b are trivial.

If x3 = d and x4 = c, then we have to consider commutators of the form

[c, a, d, c, x5, x6]. Using Lemma 2.2 (v) of [4] together with the shifting property

and Lemma 3.1, we obtain [c, a, d, c]4 ≡ [a, c, d, c]−4 ≡ [a, d, c, c]−2 ≡ [a, c, d, d]−2 ≡
[c, a, c, d]2 ≡ [c, a, d, c]2 modulo γ5(G). Since G has no involutions, this means that

[c, a, d, c] ∈ γ5(G). Therefore all commutators of type 1 with x3 = d and x4 = c are

trivial.

If x3 = d = x4, then w = 1 by the shifting property. Therefore all commutators

of type 1 are trivial.

Now we consider commutators w = [c, b, x3, x4, x5, x6] of type 2.

If x3 = a = x4, we must consider commutators of the form w = [c, b, a, a, x5, x6],

with d ∈ {x5, x6}. By the shifting property we have w = [c, a, a, b, x5, x6], with

d ∈ {x5, x6}. Applying Lemma 3.1, we get w = [c, d, a, a, b, , x6] = 1. Therefore all

commutators of type 2 with x3 = a = x4 are trivial.

If x3 = a and x4 = b, we have to consider the commutators w55 = [c, b, a, b, a, d],

w56 = [c, b, a, b, c, d], w57 = [c, b, a, b, d, a], w58 = [c, b, a, b, d, c], w59 = [c, b, a, b, d, d].

From (3) we obtain that w55 = w1 = 1. Moreover, the equation (2) yields w57 =

w19 = 1, w58 = w20 = 1, w59 = w21 = 1. Finally, w56 = w58 = 1 by Lemma 3.1.

Therefore all commutators of type 2 with x3 = a and x4 = b are trivial.

If x3 = a and x4 = c, we must consider commutators w = [c, b, a, c, x5, x6]. We

have that w−1 = [b, c, a, c, x5, x6]. Since the roles of b and c are symmetric, we

conclude that w−1 = 1, as all commutators of type 2 with x3 = a and x4 = b are

trivial. Therefore all commutators of type 2 with x3 = a and x4 = c are trivial.

If x3 = a and x4 = d, we have to consider commutators w = [c, b, a, d, x5, x6].

If x5 = a then, by interchanging a and b in (2), we obtain w = [c, a, b, a, d, x6], so

w = 1, since all commutators of type 1 are trivial. Moreover, if x5 ∈ {b, c}, then

w = 1 by Lemma 3.1, since all commutators of type 2 with x3 = a and x4 = b or

x4 = c are trivial. Finally, if x5 = d, then w = 1 by the shifting property. Therefore

all commutators of type 2 with x3 = a are trivial.

If x3 = b, then we may assume x4 = a. In this case we only have to consider

the commutators w60 = [c, b, b, a, a, d], w61 = [c, b, b, a, c, d], w62 = [c, b, b, a, d, a],

w63 = [c, b, b, a, d, c], w64 = [c, b, b, a, d, d]. Clearly, w60 = 1 = w64 by the shifting

property. Setting d = c in (1), we obtain w61 = w7 = 1. From (1) we also get

w62 = w8 = 1. Finally, w63 = w61 = 1 by Lemma 3.1. Therefore all commutators

of type 2 with x3 = b are trivial.

If x3 = c, then we have to consider commutators w = [c, b, c, x4, x5, x6] =

[b, c, c, x4, x5, x6]−1. Thus, by the symmetry between b and c, w = 1 since all

commutators of type 2 with x3 = b are trivial. It is also clear that if x3 = d, then

w = 1. Therefore all commutators of type 2 are trivial.

We are left with the commutators w = [d, a, x3, x4, x5, x6] of type 3.

Let x3 = a. If x4 = a, then w = 1, since G is 3-Engel. If x4 ∈ {b, c, d}, then

w = 1 by the shifting property. Therefore all commutators of type 3 with x3 = a

are trivial.

If x3 = b and x4 = a, we have to consider the commutators w65 = [d, a, b, a, b, c],

w66 = [d, a, b, a, c, b], w67 = [d, a, b, a, c, c], w68 = [d, a, b, a, c, d], w69 = [d, a, b, a, d, c].

By setting c = d in Lemma 2.3 (v) of [4], we obtain w65 = [d, a, a, b, b, c]3, so w65 = 1,
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since all commutators of type 3 with x3 = a are trivial. From (2), by interchanging

c by d and replacing b by a, we get [d, a, b, a, c] = 1. Thus w66 = w67 = w68 = 1. Of

course, w69 = w68 by Lemma 3.1. Therefore all commutators of type 3 with x3 = b

and x4 = a are trivial.

Clearly, all commutators of type 3 with x3 = b = x4 are trivial by the shifting

property.

Let x3 = b and x4 = c. If x5 = a, then w = [d, a, b, c, a, x6]. By the closing

property, [a, d, b, c, a] is, modulo γ6(G), a product of commutators of weight 5 with

entries b, c, d and neighboring a’s. By the shifting property and Lemma 3.1, each of

these commutators can be written modulo γ6(G) in the form [b, d, . . . ] or [c, d, . . . ],

so it is trivial. It follows that w = 1. The same argument shows that if w6 = a,

then w = 1. Thus we only need to consider the commutators w70 = [d, a, b, c, b, c],

w71 = [d, a, b, c, b, d], w72 = [d, a, b, c, c, b], w73 = [d, a, b, c, c, d], w74 = [d, a, b, c, d, b],

w75 = [d, a, b, c, d, c]. Clearly, w72 = w73 = 1 by the shifting property. From

(1), by replacing c by d, d by b and b by bc, we easily obtain [d, a, b, bc, bc] ≡
[d, bc, bc, a, b] = 1 modulo γ6(G). By Lemma 3.1 it follows that [d, a, b, c, b] ∈ γ6(G).

Hence w70 = w71 = 1. Using (1) again, and replacing c by d, d by b and b by cd

therein, we obtain [d, a, b, cd, cd] ≡ [d, cd, cd, a, b] = 1 modulo γ6(G). From Lemma

3.1 it follows that [d, a, b, c, d][d, a, b, d, c] ∈ γ6(G), that is, [d, a, b, c, d]2 ∈ γ6(G).

Then [d, a, b, c, d] ∈ γ6(G), since G has no involutions, so w74 = w75 = 1. Therefore

all commutators of type 3 with x3 = b and x4 = c are trivial.

Let x3 = b and x4 = d. If a ∈ {x5, x6}, then, as before, w = 1 by the closing

property. Thus we only need to consider the commutators w76 = [d, a, b, d, b, c],

w77 = [d, a, b, d, c, b], w78 = [d, a, b, d, c, c]. By Lemma 3.1 and the shifting property

we easily get w76 = 1. Moreover, w77 = w76 = 1 by Lemma 3.1, and w78 = 1 by

the shifting property. Therefore all commutators of type 3 with x3 = b are trivial.

If x3 = c, then we have to deal with commutators w = [d, a, c, x4, x5, x6]. By the

symmetry between b and c, w = 1 since all commutators of type 3 with x3 = b are

trivial.

If x3 = d, then we may assume that x4 ∈ {b, c}, since 2-generator 3-Engel groups

are nilpotent of class ≤ 3. If a ∈ {x5, x6}, then, as before, w = 1 by the closing

property. Thus we only need to consider the commutators w79 = [d, a, d, b, b, c],

w80 = [d, a, d, b, c, b], w81 = [d, a, d, b, c, c], w82 = [d, a, d, c, b, b], w83 = [d, a, d, c, b, c],

w84 = [d, a, d, c, c, b]. Clearly, w79 = w81 = w82 = w84 = 1 by the shifting prop-

erty. By the same property we also have [d, a, d, b, bc, bc] = 1, since [b, d] = 1[c, d].

Expanding this equality using the shifting property, we obtain w80 = 1. Finally,

w83 = 1 by the symmetry between b and c. Therefore all commutators of type 3

are trivial.

This completes the proof. �

Lemma 3.4. Let G = 〈a, b, c, d〉 be a 3-Engel group without involutions, and sup-

pose that [b, d] = 1 = [c, d]. If {b, c, d} ⊆ {x1, x2, x3, x4, x5} ⊆ {a, b, c, d}, then

[x1, x2, x3, x4, x5] = 1.

Proof. This easily follows from Lemma 3.6 of [4]. �

Lemma 3.5. Let G = 〈a, b, c, d〉 be a 3-Engel group without involutions, and sup-

pose that [b, d] = 1 = [c, d]. If {x1, x2, x3, x4} = {a, b, c, d}, then

[x1, x2, x3, x4] = [x3, x2, x1, x4][x3, x1, x2, x4]−1.
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Proof. Using Proposition 3.3 and Lemma 3.4, we obtain

[x1, x2, x3, x4] = [[x2, x1]−1, x3, x4]

= [x3, [x2, x1], x4]

= [[x3, x2, x1][x3, x1, x2]−1, x4]

= [x3, x2, x1, x4][[x3, x1, x2]−1, x4]

= [x3, x2, x1, x4][x3, x1, x2, x4]−1,

as required. �

Now we are ready to prove our main result.

Proof of Theorem 1.1. Let G be a 3-Engel group without involutions. Let a, d ∈ G
and b, c ∈ CG(d). By Lemma 3.2, the subgroup 〈a, c, d〉 of G has nilpotency class

≤ 4. Thus Lemma 2.2 (iv) of [4] gives [d, a, a, c] = 1. Replacing a by ab, we also

obtain [d, ab, ab, c] = 1. By expanding the latter commutator using Lemma 3.4, we

get [d, a, b, c] = 1. Hence Lemma 3.5 implies [b, a, d, c] = 1. By Lemma 3.1, this

means [b, a, c, d] = 1. It now follows from Lemma 3.4 that [a, b, c, d] = 1, and the

result follows by Lemma 2.6. �

Corollary 3.6. There exist non-solvable C2-groups.

Proof. By Theorem 1 of [1] there exists a 3-Engel group of exponent 5 which is not

solvable. Therefore the result follows by Theorem 1.1. �
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