
ON THE SCHUR MULTIPLIERS OF FINITE p-GROUPS OF
GIVEN COCLASS

PRIMOŽ MORAVEC

Abstract. In this paper we obtain bounds for the order and exponent of the
Schur multiplier of a p-group of given coclass. These are further improved

for p-groups of maximal class. In particular, we prove that if G is p-group of

maximal class, then |H2(G, Z)| < |G| and exp H2(G, Z) ≤ exp G. The bound
for the order can be improved asymptotically.

1. Introduction and main results

The coclass of a finite p-group of order pn and class c is defined to be cc(G) = n−c.
This invariant was introduced by Leedham-Green and Newman [14], and has proved
to be one of the most promising tools in the attempt to classify or at least better
understand the structure of finite p-groups.

Eick [5, 6] recently considered Schur multipliers of finite p-groups of fixed coclass
and pro-p groups of finite coclass. Here the Schur multiplier M(G) of an abstract
group G is defined to be the second homology group H2(G,Z), where Z is considered
as a trivial G-module, and if G is a pro-p group, then its Schur multiplier M(G) is
defined to be H2(G,Zp), where Zp denotes the p-adic integers. Eick showed that
for odd primes p there are finitely many p-groups G of fixed coclass r with M(G)
of prescribed order. Furthermore, if p > 2 and G is a pro-p group of finite coclass,
then |M(G)| =∞.

A fundamental aim of the theory of Schur multipliers has been to determine the
order, rank and exponent of M(G), where G is a finite group. In this paper we
obtain new results on the structure of p-groups of fixed coclass and their Schur
multipliers. At first we apply Shalev’s structure theorem on p-groups of given
coclass [21] to obtain bounds for the order and exponent of the nonabelian exterior
square G∧G of a p-group G of coclass r. These bounds can be expressed in terms
of expG and p and r only, and yield bounds for the order and exponent of M(G).
As a consequence we prove the following result.

Theorem 1.1. Let G be a finite p-group of coclass r. Then |M(G)| ≤ |γ2(G)|rpr2+2r.

The proof of Theorem 1.1 given here was suggested to us by Avinoam Mann. It
actually implies that |M(G)| ≤ |γ2(G)|d−1pkd−(d

2), where d = d(G) is the minimal
number of generators of G and k = logp |Gab|.

There is a classical result of Green [10] stating that if G is a group of order
pn, then |M(G)| ≤ pn(n−1)/2. If G is a p-group of coclass r, then |G| ≤ |G′|pr+1.
Denoting |G′| = p`, we obtain from Green’s result that logp |M(G)| ≤ (` + r +
1)(` + r)/2 which is quadratic in ` + r. On the other hand, Theorem 1.1 implies
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that logp |M(G)| ≤ r2 + 2r + `r which is only linear in `. Thus the above result
may be seen as an improvement of Green’s bound (this was pointed out to us by
the referee).

Finite p-groups of coclass 1 are also known as p-groups of maximal class. They
were first studied by Blackburn [1] in 1958. Here we study Schur multipliers of
p-groups of maximal class. At first we obtain the following generic bound.

Theorem 1.2. Let G be a p-group of maximal class. Then |M(G)| < |G|.

According to some computer experiments with small groups it seems quite prob-
able that the order of M(G) is somewhat close to

√
|G|. This is confirmed by the

following result.

Theorem 1.3. Let G be a p-group of maximal class, |G| = pn and n > p+1. Then

|M(G)| ≤ p
p+1
2 dn−1

p−1 e.

As for the exponent, our main result in this direction is the following.

Theorem 1.4. Let G be a p-group of maximal class. Then the exponent of G∧G,
and therefore the exponent of M(G), divides expG.

This bound is tight, even for the exponent of M(G). As the referee observed, the
estimate also improves a general bound obtained by Schur [22] stating that if G is
a finite group, then (expM(G))2 divides |G|. Namely, if G is a p-group of maximal
class and order pn, then its exponent is roughly pn/(p−1), which is at most pn/2 if
p is odd.

It had been conjectured for a long time that expM(G) divides expG for every
finite group G. The conjecture is known to be false in general, see e.g. [18] for a
counterexample. This leads to the following question.

Question 1.5. Given a prime p, what is the smallest r = r(p) such that there
exists a p-group G of coclass r with expM(G) - expG? Does there exist such r for
p > 2?

In the case p = 2, there exists a group G of order 211 and coclass 5 with expG = 4
and expM(G) = 8. A construction is given in [18]. The question is whether there
are examples of this kind having smaller coclass. The second part of Question 1.5
is related to the existence of a group G of odd order with expM(G) > expG. This
still appears to be unknown.

The methods of the paper rely on the notion of the nonabelian tensor square of a
group, a construction introduced by Brown and Loday [3]. Here we extend this no-
tion to fit into the category of pro-p groups. We show that the complete nonabelian
tensor square G ⊗̂G of a pro-p group G is just the completion of the (abstract) non-
abelian tensor square G⊗G equipped with a natural topology. Then we focus on
complete nonabelian exterior squares G ∧̂G. Extending Miller’s work [17], we show
that M(G) is isomorphic to the kernel of the commutator map G ∧̂G→ G′. Using
the structure of pro-p groups of finite coclass, we derive bounds for the rank and
Zp-length of S ∧̂S, where S is an infinite pro-p group of finite coclass r.

2. The nonabelian tensor square of a pro-p group

Let G be a pro-p group. Define G ⊗̂G to be the pro-p group (topologically) gener-
ated by the symbols g ⊗̂h, where g, h ∈ G, subject to the following relations that
define G ⊗̂G as a pro-p group:

(2.0.1) g1g ⊗̂h = (gg1 ⊗̂hg)(g ⊗̂h) and g ⊗̂h1h = (g ⊗̂h)(gh ⊗̂hh1 ),
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for all g, g1, h, h1 ∈ G. The group G ⊗̂G is said to be the (complete) nonabelian
tensor square of G. Denote ∇(G) = 〈x ⊗̂x | x ∈ G〉. Then the group G ∧̂G =
(G ⊗̂G)/∇(G) is called the (complete) nonabelian exterior square of G. Note that
if G is abelian, then we have that G ⊗̂G ∼= Gab ⊗̂Zp

Gab and G ∧̂G ∼= Gab ∧̂Zp
Gab.

The complete tensor square of a pro-p group has the following universal property.
Let G and K be pro-p groups. A continuous map φ : G × G → K is said to be
a crossed pairing if (g1g, h)φ = (gg1 , h

g)φ(g, h)φ and (g, h1h)φ = (g, h)φ(gh, hh1 )φ

for all g, g1, h, h1 ∈ G. If φ further satisfies (x, x)φ = 1 for all x ∈ G, then we
say that φ is a diagonal crossed pairing. It is now evident that every crossed
pairing φ : G × G → K induces a unique homomorphism ψ : G ⊗̂G → K such
that (g ⊗̂h)ψ = (g, h)φ for all g, h ∈ G. A similar conclusion holds for diagonal
crossed pairings and nonabelian exterior squares. Note that, when proving that a
certain pro-p group T is isomorphic to G ⊗̂G, it suffices to show that T satisfies the
universal property for crossed pairings. Furthermore, since K is the inverse limit
of its finite quotients, it suffices to assume that K is a finite p-group.

If G is a finite p-group (or an abstract group in general), then we write ⊗ and
∧ instead of ⊗̂ and ∧̂ throughout, respectively. In this case, the above notions are
constistent with those of [3].

Theorem 2.1. Let G be a pro-p group. If G = lim←−Gi, where {Gi | i ∈ I} is
an inverse system of finite p-groups, then G ⊗̂G = lim←−(Gi ⊗ Gj) and G ∧̂G =
lim←−(Gi ∧ Gj), where the mixed terms Gi ⊗ Gj and Gi ∧ Gj, where i 6= j, are
considered as the ‘usual’ abelian tensor (exterior) products over Z.

Proof. We only prove the assertion for the complete nonabelian tensor square, the
exterior version follows along the same lines. Let T = lim←−(Gi⊗Gj), where (i, j) runs
through I×I. At first we note that G×G = lim←−(Gi×Gj). We have canonical crossed
pairings Gi×Gj → Gi⊗Gj given by (gi, gj) 7→ gi⊗gj . Taking inverse limits, we get
a crossed pairing ι : G×G→ T . For a, b ∈ G denote a ⊗̂ b = (a, b)ι. Suppose now K
is a finite p-group and ϕ : G×G→ K a crossed pairing. For i, j ∈ I denote by πij
the projection G×G→ Gi×Gj . There exists a crossed pairing ϕij : Gi×Gj → K
such that ϕ factors through it, i.e., ϕ = πijϕij ; this follows from [23, Proposition
1.1.6], by suitable adaptation of the proof. By the universal property, there exist
homomorphisms ϕ̄ij : Gi ⊗ Gj → K such that (gi ⊗ gj)ϕ̄ij = (gi, gj)ϕij for all
gi ∈ Gi and gj ∈ Gj . The homomorphism ϕ̄ : T → K defined via ϕ̄ij now satisfies
(a ⊗̂ b)ϕ̄ = (a, b)ϕ for all a, b ∈ G. By a remark above, T has the universal property
for crossed pairings, therefore T ∼= G ⊗̂G. �

A consequence of this theorem is that if G is a pro-p group, G ⊗̂G is the comple-
tion of G⊗G having the topology for which a fundamental system of neighborhoods
consists of the kernels of the canonical maps G⊗G→ Gi⊗Gj . A similar statement
holds true for G ∧̂G.

The commutator maps κ⊗̂G : G ⊗̂G → γ2(G) and κ∧̂G : G ∧̂G → γ2(G), defined
by g ⊗̂h 7→ [g, h] and g ∧̂h 7→ [g, h], respectively, are surjective homomorphisms
of pro-p groups. In the abstract setting, these are closely related to the theory of
Schur multipliers of groups and homotopy groups. For instance, Miller [17] proved
that M(G) is isomorphic to kerκ∧G for any group G. Furthermore, if a group G is
given by a presentation G = F/R, then G∧G ∼= F ′/[F,R]. Analogs of these results
also hold true for pro-p groups. They can be proved by suitably adjusting Miller’s
arguments, so we leave out the details. The result is as follows.

Proposition 2.2 (cf. Miller [17]). Let G be a pro-p group given by a pro-p presen-
tation G = F/R. Then G ∧̂G ∼= F ′/[F,R], and M(G) ∼= kerκ∧̂G,G.
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3. Pro-p groups of finite coclass

An infinite pro-p group S is said to have coclass r if |S : γi(S)| = pi+r−1 for all
sufficiently large i. In this section we will further explore the complete nonabelian
exterior square of a pro-p group S of finite coclass. Its interest lies in the fact that
M(S) ∼= ker(S ∧̂S → S′) by Proposition 2.2.

Let S be a pro-p-group of finite coclass r. By [13, Corollary 7.4.13], S has the
structure of a uniserial p-adic pre-space group. More precisely, S is an extension
of a ZpP -lattice T ∼= Zdp by a finite p-group P , and P acts uniserially on T , i.e.,
|T : [T, iP ]| = pi for all i ≥ 0. Without loss of generality we can take T = γj(S) for
some large enough j ∈ N, and therefore |γi(S) : γi+1(S)| = p for i ≥ j. Furthermore,
we have d = (p− 1)ps for some s with 0 ≤ s ≤ r − 1 if p is odd, and 0 ≤ s ≤ r + 1
if p = 2. The integer d is said to be the dimension of S.

Let S = F/R be a free pro-p presentation of S. Then we can identify M(S) =
(F ′∩R)/[R,F ] by the Hopf formula, and S ∧̂S = F ′/[R,F ] by Proposition 2.2. The
factor group Sj = S/γj(S) has a free presentation Sj = F/γj(F )R, and thus we use
the Hopf formula again to further identify M(Sj) = (F ′ ∩ γj(F )R)/[R,F ]γj+1(F )
and Sj∧Sj = F ′/[R,F ]γj+1(F ). Eick [5] showed that the 5 term homology sequence
gives rise to the following exact sequence:

M(S) // M(Sj) // Cp // 1.

In view of the above identifications, all maps in the above sequence are the canon-
ical ones. Let Kj be the kernel of the map M(S) → M(Sj). We have that
Kj = (R ∩ [R,F ]γj+1F )/[R,F ] by [5]. Besides, we have a canonical map S ∧̂S →
Sj ∧ Sj given by [x, y][R,F ] 7→ [x, y][R,F ]γj+1(F ). Its kernel is given by Lj =
[R,F ]γj+1(F )/[R,F ], and thus we have a natural embedding Kj ↪→ Lj . From the
presentations it becomes apparent that there is a natural homomorphism Lj →
γj(S) given by x[R,F ] → xR for x ∈ [R,F ]γj+1F . The kernel of this map is
precisely Kj . Its image is [R,F ]γj+1(F )R/R = γj+1(F )R/R = γj+1(S). Since
|γj(S) : γj+1(S)| = p by the uniseriality, and because of Proposition 2.2, we get the
following result.

Theorem 3.1. Let S be a pro-p group of finite coclass. Denote Sj = S/γj(S),
Kj = ker(M(S) → M(Sj)), and Lj = ker(S ∧̂S → Sj ∧ Sj). For every j � 1 we
have the following commutative diagram with exact rows and columns:

(3.1.1) 1

��

1

��

1

��
1 // Kj //

��

M(S) //

��

M(Sj) //

��

Cp // 1

1 // Lj //

��

S ∧̂S //

��

Sj ∧ Sj //

��

1

1 // γj(S) //

��

S′ //

��

S′j //

��

1

Cp

��

1 1

1

Theorem 3.2. Let p > 2 and let S be an infinite pro-p group of coclass r. Let d be
the dimension of S. Then rk(S ∧̂S) ≤ d+q2(1+dlog2 qe)−1, where q = 2pr+r−1.

Proof. We have that γj(S) ∼= Zdp for some large enough j. Thus it follows from the
commutative diagram (3.1.1) that rk(S ∧̂S) ≤ d + d(M(S)) + rk(Sj ∧ Sj), where



SCHUR MULTIPLIERS 5

Sj = S/γj(S). Suppose that M(S) 6= 1. Using [5, Theorem 10], we get d(M(S)) =
d(M(Sj))−1. As Sj is a p-group of coclass r, its rank is bounded by q [16, Corollary
9]. From [15, Theorem 2.3] we thus get d(M(Si)) ≤

(
q
2

)
+ q2dlog2 qe, whereas [20,

Proposition 3.3] implies that rk(Si ∧ Si) ≤
(
q+1

2

)
+ q2dlog2 qe. Combining these

estimates, we get the required bound. �

Let S be a soluble pro-p group of finite rank. Then there exists a series 1 =
S0 E S1 E · · · E Sn = S such that all factors Si/Si−1 are procyclic. The number
of factors isomorphic to Zp is independent of the choice of series. It is called the
torsion-free rank (or the Zp-length) of S. It is denoted by tf(S).

Suppose now that p is odd and that S is an infinite pro-p group of finite coclass.
Denote with N the hypercenter of S, let T/N be the Fitting subgroup of S/N , and
put C/T = Z(S/T ). The group C/T is cyclic of order pt for some t ∈ N. According
to [6], we call t the central exponent of S.

Theorem 3.3. Let p > 2 and let S be an infinite pro-p group of coclass r. Let d be
the dimension of S and t the central exponent of S. Then tf(S ∧̂S) ≤ d+ pt−1(p−
1)/2.

Proof. Since S is soluble by Theorem C of the coclass theorems [13], the group S ∧̂S
is soluble too by diagram (3.1.1), hence S ∧̂S has finite torsion-free rank. As in the
proof of Theorem 3.2 let j ∈ N be such that γj(S) ∼= Zdp, and put Sj = S/γj(S).
We get tf(S ∧̂S) ≤ d+ tf(M(S)) + tf(Sj ∧ Sj). Note that tf(Sj ∧ Sj) = 0, and [6,
Theorem A] implies that tf(M(S)) = pt−1(p− 1)/2. This gives the result. �

4. Finite p-groups of fixed coclass

Let G be a group of order pn and nilpotency class cl(G) = c. The coclass of G is
defined to be cc(G) = n−c. We refer to [7, 13] for accounts on coclass theory. One of
the most illustrative notions here is that of the coclass graph G(p, r). The vertices of
G(p, r) correspond to the isomorphism types of p-groups of coclass r. Two vertices
G and H are joined by a directed edge from G to H if and only if G ∼= H/γcl(H)(H).
Every infinite pro-p group S of coclass r determines a maximal coclass tree T (S)
in G(p, r), namely, the subtree of G(p, r) consisting of all descendants of S/γi(S),
where i is minimal such that S/γi(S) has coclass r and S/γi(S) is not a quotient
of another infinite pro-p group R of coclass r not isomorphic to S. The coclass
theorems [13] imply that G(p, r) consists of finitely many maximal coclass trees and
finitely many groups lying outside these trees.

The structure of maximal coclass trees can be further described as follows. Let
S be an infinite pro-p group of coclass r and denote Sj = S/γj(S). Then there
exists i large enough such that T (S) contains a unique infinite path Si, Si+1, . . .
starting from the root Si of T (S). This path is called the main line of T (S). For
j ≥ i we define Bj(S) to be the subtree of T (S) with the root Sj and containing all
descendants of Sj that are not descendants of Sj+1. Each Bj(S) is a finite subtree
of T (S), and it is called a branch. The subtree T (S, k) of T (S) containing all
groups of distance at most k from the main line is called a shaved tree. We denote
its branches by Bj(S, k).

In this section we derive bounds for the order and exponent of the nonabelian
exterior square of a p-group of given coclass. Note that if G is a finite group, then
|G ∧ G| = |G′| · |M(G)| and exp(G ∧ G) ≥ expM(G), so these bounds will yield
corresponding estimates for the order and exponent of M(G).

At first we state the following elementary lemma that is probably well known.

Lemma 4.1. Let G be a finite p-group of coclass r. Then d(G) ≤ r + 1.
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Proof. Let |G| = pn, d(G) = d and cl(G) = c. Then |G : Φ(G)| = pd. On the other
hand, |G : Φ(G)| ≤ |G : G′| ≤ pn−(c−1) = pr+1, as required. �

The following result will be fundamental in our considerations.

Lemma 4.2 (cf Ellis [8]). Let G be a group and K and M normal subgroups of G,
K ≤M . Then the sequence

K ∧G −→M ∧G −→M/K ∧G/K −→ 1,

where all the maps are canonical, is exact.

A notion closely related to coclass theory is that of uniserial actions. Let G
be a finite p-group and N a normal subgroup of G. Denote |N | = pn and define
Ni = [N, iG] for i ≥ 0. We say that G acts uniserially on N if |Ni : Ni+1| = p for
1 ≤ i ≤ n.

Proposition 4.3. Let G be a p-group acting uniserially on a normal subgroup N .
Let |N | = pn and d(G) = t. Then |G ∧ G| ≤ ptn|G/N ∧ G/N | and exp(G ∧ G) ≤
pn exp(G/N ∧G/N).

Proof. Define N0 = N and Ni+1 = [Ni, G] for i ≥ 0. We have a central series
N = N0 > N1 > · · · > Nn = 1 with |Ni : Ni+1| = p for all i = 0, . . . , n − 1. From
the exact sequences

N ∧G −→ G ∧G −→ G/N ∧G/N −→ 1

and
Ni+1 ∧G −→ Ni ∧G −→ Ni/Ni+1 ∧G/Ni+1 −→ 1,

where i = 1, . . . , n− 1, we obtain the following inequality:

(4.3.1) |G ∧G| ≤ |G/N ∧G/N |
n∏
i=1

|Ni/Ni+1 ∧G/Ni+1|

and

(4.3.2) exp(G ∧G)| divides exp(G/N ∧G/N)
n∏
i=1

exp(Ni/Ni+1 ∧G/Ni+1).

Note that Ni/Ni+1
∼= Cp for all i = 0, . . . , n − 1. In addition to that, Ni/Ni+1 ≤

Z(G/Ni+1), hence G/Ni+1 and Ni/Ni+1 act trivially upon each other. There-
fore, Ni/Ni+1 ∧ G/Ni+1

∼= Ni/Ni+1 ∧ (G/Ni+1)ab ∼= Ni/Ni+1 ⊗ (G/Ni+1)ab/〈n ⊗
n(G/Ni+1)ab | n ∈ Ni/Ni+1〉, in other words, the group Ni/Ni+1∧G/Ni+1 is either
isomorphic to Cp ⊗ Gab or to a quotient of this group by a subgroup of order p.
In fact, if i > 0, then Ni/Ni+1 ≤ G′/Ni+1, hence Ni/Ni+1 ∧ G/Ni+1

∼= Cp ⊗ Gab

for i = 1, . . . , n − 1. It follows from here that exp(Ni/Ni+1 ∧ G/Ni+1) = p and
|Ni/Ni+1 ∧G/Ni+1| ≤ pt, where t = d(Gab) = d(G). Applying these to (4.3.1) and
(4.3.2), we get the result. �

At this stage we require some general bounds for the order and exponent of the
nonabelian exterior square of a given group.

Lemma 4.4 (Ellis, [8], Jones, [12]). Let G be a finite p-group. If |G| = pn and
d(G) = d, then p(

d
2) ≤ |G ∧G| ≤ pnd−(d+1

2 ).

Lemma 4.5 ([19]). Let G be a finite p-group of exponent pe and nilpotency class
c ≥ 2. Then exp(G ∧G) divides p2eblog2 cc.

We also mention the following result proved by Shalev [21].

Lemma 4.6 (Shalev, [21]). Let G be a p-group of coclass r.
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(a) Let p be odd and |G| ≥ p2pr+r. Let m = pr−pr−1. Then γm(G) is powerful
with d = (p− 1)ps generators, where 0 ≤ s ≤ r − 1.

(b) Let p = 2 and |G| ≥ 22r+3+r. Let m = 2r+2. Then γm(G) is powerful with
d = 2s generators, where 0 ≤ s ≤ r + 1.

In both cases, G acts uniserially on γm(G) and 01(γi(G)) = γi+d(G) for all i ≥ m.

Theorem 4.7. Let G be a finite p-group of coclass r. Denote d1 = d(G) and sup-
pose that exp γm(G) = pe, and expG/γm(G) = pf . With notations and assump-
tions of Lemma 4.6, we have |G ∧ G| ≤ pdd1e+d1(r+m−1)−(d1+1

2 ), and exp(G ∧ G)
divides pde+2fblog2(m−1)c.

Proof. By Lemma 4.6, G acts uniserially on γm(G). Using Proposition 4.3, we
obtain |G ∧ G| ≤ |γm(G)|d1 |G/γm(G) ∧ G/γm(G)|, and that exp(G ∧ G) divides
|γm(G)| exp(G/γm(G)∧G/γm(G)). As γm(G) is a powerful p-group, it follows that
|γm(G)| ≤ pde by a result of Lubotzky and Mann [15]. On the other hand, the group
G/γm(G) has coclass ≤ r and nilpotency class ≤ m− 1. It follows from here that
|G : γm(G)| ≤ pr+m−1. By Lemma 4.4, |G/γm(G)∧G/γm(G)| ≤ pd1(r+m−1)−(d1+1

2 ),
whereas Lemma 4.5 implies that exp(G/γm(G) ∧G/γm(G)) divides p2fblog2(m−1)c.
From here the assertion follows readily. �

Using Theorem 4.7 and Lemma 4.1, we obtain the following bounds:

Corollary 4.8. Let G be a p-group of coclass r and exponent pe. With notations
and assumptions of Lemma 4.6, we have |G ∧ G| ≤ p(r+1)2e+(r+1)(r+m−1)−1, and
exp(G ∧G) divides (expG)r+1+2blog2(m−1)c.

We now proceed to the proof of Theorem 1.1. The following lemma was suggested
to us by Avinoam Mann.

Lemma 4.9. Let G be a finite p-group and denote d = d(G). Then |M(G)| ≤
|G′|d−1|M(Gab)|.

Proof. Let G = F/R be a free presentation of G. Let N = S/R be a subgroup of
G of order p and contained in γ2(G). Then a result of Blackburn and Evens [2,
Theorem 1.1] implies that there is an exact sequence

1 −→ [S, F ]/[R,F ] −→M(G) −→M(G/N) −→ Cp −→ 1.

Since S/[R,F ] ≤ Z2(F/[R,F ]), and S/R has order p, we see that S/[R,F ] cen-
tralizes (γ2(F )F p)/[R,F ], i.e., [γ2(F )F p, S] = [R,F ]. Since pd = |G : Φ(G)| =
|F : γ2(F )F pR|, we conclude that |[S, F ]/[R,F ]| ≤ pd. This, together with the
above exact sequence, implies |M(G)| ≤ pd−1|M(G/N)|, and iterating this yields
|M(G)| ≤ |γ2(G)|d−1|M(G/γ2(G))|, as required. �

Proof of Theorem 1.1. If d = d(G) and |Gab| = pk, then d ≤ k ≤ r+ 1. By Lemma
4.4 we have that |M(Gab)| = |Gab ∧Gab| ≤ pkd−(d

2). From Lemma 4.9 we therefore
obtain |M(G) ≤ |γ2(G)|d−1pkd−(d

2) ≤ |γ2(G)|rpr2+2r. �

In the rest of the section we focus on the Schur multipliers of p-groups of coclass
r, according to their positions in the coclass trees induced by infinite pro-p groups
S of coclass r. At first we deal with groups belonging to a given branch of T (S).

Proposition 4.10. Let S be a pro-p group of coclass r and G ∈ Bj(S), where
j is large enough. Then |G ∧ G| ≤ |γj(G)|d(G)|Sj ∧ Sj |, and exp(G ∧ G) divides
|γj(G)| exp(Sj ∧ Sj).

Proof. This follows directly from Proposition 4.3, as every G ∈ Bj(S) is a uniserial
extension of γj(G) by Sj . �
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If we consider only shaved trees, we obtain the following estimates that extend
a related result proved by Eick for M(G), see [5].

Proposition 4.11. Let S be a pro-p group of coclass r and G ∈ Bj(S, k) for large
enough j. Then |G∧G| ≤ pk d(G)|Sj ∧Sj |, and exp(G∧G) divides pk exp(Sj ∧Sj).

Proof. Suppose without loss of generality that k is the distance of G from the main
line of T (S). We prove the assertion by induction on k, the case k = 0 being
obvious. Suppose that k > 0. Let H ∈ Bj(S, k − 1) be the ancestor of G in T (S).
Then H ∼= G/N , where N is the last nontrivial term of the lower central series of
G. As N ∼= Cp and N ≤ G′, we conclude that N ∧G ∼= Cp ⊗Gab ∼= C

d(G)
p . From

the exact sequence
N ∧G −→ G ∧G −→ H ∧H −→ 1

we obtain |G∧G| ≤ pd(G)|H ∧H|, and that exp(G∧G) divides p exp(H ∧H). This
concludes the proof by the induction assumption. �

Finally we consider the main line groups of T (S) and obtain the following.

Proposition 4.12. Let S be a pro-p group of coclass r and j large enough. Let
dj = d(Sj) and expSj = pej . Then |Sj ∧ Sj | ≤ pdj(r+j−1)−(dj

2 ), and exp(Sj ∧ Sj)
divides p2ejblog2(j−1)c.

Proof. As |Sj | = pr+j−1 and cl(Sj) = j − 1, this is a consequence of Lemma 4.4
and Lemma 4.5. �

5. Finite p-groups of maximal class

Finite p-groups of coclass 1 are also known as p-groups of maximal class. For
p = 2 these are known to be either dihedral, semidihedral or quaternion groups [13,
Theorem 3.3.10]. We have that M(D2n) = C2, M(SD2n) = 1 and M(Q2n) = 1 for
every n. Thus we assume for the rest of this section that p is odd, unless otherwise
stated.

Finite p-groups of maximal class have a tight power-commutator structure, as
opposed to the p-groups of larger coclass. Thus the asymptotic results obtained in
Section 4 that hold for any coclass do not seem to reflect the whole structure of
p-groups of maximal class. Here we obtain relatively sharp bounds for the order
and exponent of the Schur multiplier of a p-group G of maximal class. At first we
deal with the order and prove Theorem 1.2 stating that |M(G)| < |G|. This will
follow from a bound obtained for a larger class of p-groups, called the ECF-groups
according to Blackburn [1]. Let p be a prime and m and n integers, 3 ≤ m ≤ n.
Then ECF(m,n, p) is defined to be the set of all groups of order pn and class m−1
for which Gab is elementary abelian and |γi(G) : γi+1(G)| = p for 2 ≤ i ≤ m− 1. It
is clear that every p-group of maximal class and order pn belongs to ECF(n, n, p).
Here we prove the following.

Proposition 5.1. If G ∈ ECF(m,n, p), then |M(G)| ≤ p(n−m+1)(n+m−2)/2.

Proof. By definition we have that |G′| = pm−2 and hence Gab ∼= Cn−m+2
p . There-

fore M(Gab) ∼= C
(n−m+2)(n−m+1)/2
p and d(G) = n−m+ 2. Now the result follows

from Lemma 4.9. �

Theorem 1.2 now follows from Proposition 5.1 applied to the case m = n.
Next we deal with the exponent of M(G). Our aim is to prove Theorem 1.4. We

require the following lemma on commutator calculus.

Lemma 5.2. Let G be a group and N a normal subgroup of G. Then the following
hold:
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(a) [0i(N), G] ≡ 0i([N,G]) mod
i∏

r=1
0i−r([G, prN ]),

(b) [0i(N), G] ≡ 0i([N,G]) mod
i∏

r=1
[0i−r(N), r(p−1)+1G].

Proof. The congruence (a) is a well known consequence of the Hall-Petrescu identity
and can be proved by suitably modifying the proof of [4, Lemma 11.9]. In order to
prove (b), we use induction on i, the cases i = 0 and i = 1 being obvious. Now let
1 ≤ r ≤ i. Then the induction assumption implies

[0i−r(N), prG] ≡ 0i−r([N, prG]) mod
i−r∏
t=1

[0i−r−t(N), t(p−1)+prG].

As pr ≥ r(p− 1) + 1, we get 0i−r([N, prG]) ≤
i∏

r=1
[0i−r(N), r(p−1)+1G]. Thus

i∏
r=1

0i−r([G, prN ]) ≤
i∏

r=1

0i−r([N, prG]) ≤
i∏

r=1

[0i−r(N), r(p−1)+1G].

By (a) the result follows. �

Proof of Theorem 1.4. Let |G| = pn and suppose that expG = pe. Let H be a
covering group of G. Then there exists Z ≤ Z(H) ∩ H ′ such that H/Z ∼= G and
Z ∼= M(G). As G is nilpotent of class n − 1, we conclude that γn+1(H) = 1. As
G ∧G ∼= H ′, it suffices to show that 0e(H ′) = 1. By our assumption we have

(5.2.1) [0e(H), H] = 1.

If n < p + 1, then Lemma 5.2 (a), together with (5.2.1), implies 0e(γ2(H)) ≤∏e
r=1 0e−r(γpr+1(H)), hence 0e(γ2(H)) = 1. Suppose now that n = p+1. Then G

is not regular, and we have exp γ2(G) = expG/γp(G) = p [13]. Therefore expG =
p2. It follows from here that [02(H), H] = 1 and 01(H) ≤ γp(H)Z. The latter
implies that [01(H), H,H] = 1. From Lemma 5.2 (a) we now obtain 02([H,H]) ≤
01(γp+1(H)). As γp+1(H) ≤ Z, we conclude 01(γp+1(H)) = [01(H), pH] = 1, thus
02([H,H]) = 1, as required.

From here on we assume that n > p + 1. Define P1 = CG(γ2(G)/γ4(G)) and
Pi = γi(G) for 2 ≤ i ≤ n. By [13] we have a chief series G > P1 > P2 > · · · >
Pn−1 > Pn = 1. Denote expPi = pei for 1 ≤ i ≤ n. Furthermore, we have that
Ω1(Pi) = Pn−p+1 and 01(Pi) = Pi+p−1 for every i with 1 ≤ i ≤ n − p + 1. As
P1 is regular by [1, p. 69, Corollary 1], we conclude from here that if i ≥ 1, then
0k(Pi) = Pi+k(p−1) for i + k(p − 1) ≤ n, and 0k(Pi) = 1 otherwise. It follows
that expPi = pei , where ei = d(n − i)/(p − 1)e. Clearly we have e1 ≥ 2. Choose
any x ∈ G \ P1. Then G = 〈x〉P1. For any g ∈ G we have g = xαy for some
y ∈ P1 and α ∈ Z. If α is divisible by p, then xα ∈ Pn−1 ≤ Z(G) by [1], therefore
gp

e1 = 1, and gp = yp ∈ 01(P1) = Pp. Assume now that gcd(α, p) = 1. This
clearly gives xα /∈ P1. Replacing x by a suitable power, we may assume without
loss of generality that α = 1. If y ∈ P2, we get by [1, p. 64, Corollary 2] that xy
is conjugate to x, and (xy)p = xp ∈ Pn−1 ≤ Pp. This yields gp

2
= 1, hence also

gp
e1 = 1. Suppose now that y /∈ P2. Then it follows from [1, Lemma 3.3] that

(xy)p ≡ xp mod Pp+1. Thus gp = xpz for some z ∈ Pp+1. As xp ∈ Pn−1 ≤ Z(G),
it follows that gp ∈ Pp and gp

e1 = zp
e1−1

. By the above we have that ep+1 = 1 if
n ≤ 2p, whereas ep+1 = e2 − 1 ≤ e1 − 1 if n > 2p. In both cases we conclude that
gp

e1 = 1. This shows that expG = expP1, and we have also proved along the way
that 01(G) ≤ Pp.

Write Pi = Qi/Z for i = 1, . . . n. Then we have a series H > Q1 > Q2 >
· · · > Qn−1 > Qn = Z. From the above argument we get that [0e1(H), H] = 1
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and [0ei
(Qi), H] = 1 for i = 1, . . . , n. In addition to that, we have Qi = γi(H)Z

for i ≥ 2, hence γ2(H) = Q2 and γi+1(H) = [Qi, H] for i ≥ 2. This implies
[0k(Qi), H] = γi+k(p−1)+1(H) for i ≥ 1. Furthermore, since H/Qp ∼= G/Pp, we
conclude that 01(H) ≤ Qp by the above. By Lemma 5.2 (b) we have

(5.2.2) 0e1([H,H]) ≤
e1∏
r=1

[0e1−r(H), r(p−1)+1H].

If r = e1, then [0e1−r(H), r(p−1)+1H] = γe1(p−1)+2(H) ≤ γn+1(H) = 1. As-
sume now that r < e1. Then 0e1−r(H) ≤ 0e1−r−1(01(H)) ≤ 0e1−r−1(Qp).
This inclusion yields that [0e1−r(H), r(p−1)+1H] ≤ [[0e1−r−1(Qp), H], r(p−1)H] =
γp+(e1−r−1)(p−1)+1+r(p−1)(H) = γ2+e1(p−1)(H) ≤ γn+1(H) = 1. Therefore the
equation (5.2.2) becomes 0e1([H,H]) = 1, and this concludes the proof. �

Let G be a p-group of maximal class with |G| = pn. In the course of proof of
Theorem 1.4 we considered three separate cases: n < p+1, n > p+1, and n = p+1.
In all these, there are examples showing that the bound for exp(G ∧ G) given by
Theorem 1.4 is tight in general.

Example 5.3. Let G be the 26th group in the GAP [9] library of groups of order
35. Then G is of maximal class and exp(G) = expM(G) = 9.

Similiarly, let G be the 7th group of order 54 in the GAP library of small groups.
Then clG = 3 and expG = expM(G) = 5.

Lastly, let G be the 630th group of order 56 in the GAP library of small groups.
We have that G is of maximal class, expG = exp(G∧G) = 25, but expM(G) = 5.

On the other hand, we have been able to find examples with expM(G) = expG
only in the cases when n 6= p + 1. If n = p + 1, then expG = p2. Computer
experiments with GAP [9] suggest that M(G) is always an elementary abelian p-
group in this case. The methods of the proof of Theorem 1.4 do not seem to be
strong enough to decide whether or not this is true.

Returning to the question of the order of M(G), we prove Theorem 1.3 and thus
improve the bound of Theorem 1.2 for groups G with logp |G| > p+ 1.

Proof of Theorem 1.3. By the Universal Coefficient Theorem we have that the
group H2(G,Z/pZ) is isomorphic to Ext(Gab,Z/pZ) ⊕ Hom(Z/pZ,M(G)), hence
H2(G,Z/pZ) ∼= (Gab ⊗ Z/pZ) ⊕ (M(G) ⊗ Z/pZ). Therefore we conclude that
d(M(G)) = dimFp

H2(G,Z/pZ)− d(G). Since G is a p-group of maximal class, we
have that d(G) = 2 by Lemma 4.1. Let r(G) be the minimal number of relations
needed in a presentation of G as a factor group F/R of a free group F of rank 2 by R.
By [11, Proposition 7.2.4] we have that H2(G,Z/pZ) ∼= Hom(R/Rp[F,R],Z/pZ),
hence dimFp

H2(G,Z/pZ) ≤ r(G). From [13, Exercise 3.3.4] it follows that r(G) ≤
(p + 5)/2. This yields d(M(G)) ≤ (p + 1)/2. By Theorem 1.4 we have that
logp expM(G) ≤ d(n− 1)/(p− 1)e. This gives the required result. �
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