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Abstract. We show that if the quotient of a group by its absolute center is locally
finite of exponent n, then the exponent of its autocommutator subgroup is n-bounded,
that is, bounded by a function depending only on n. If the group itself is locally
finite, then its exponent is n-bounded as well. Under some extra assumptions, the
exponent of its automorphism group is n-bounded. We determine the absolute center
and autocommutator subgroup for a large class of (infinite) abelian groups.

1. Introduction

A classical result of Schur states that if the central quotient G/Z(G) of a group G is
finite, then the commutator subgroup G′ is finite as well, see [15, (10.1.4)]. Mann [11]
generalised this and proved that G′ is locally finite of n-bounded exponent if G/Z(G)
is locally finite of exponent n. In 1994, Hegarty [8] introduced the autocommutator
subgroup

G′? = 〈g−1gα | g ∈ G,α ∈ Aut(G)〉
of G and its absolute center

Z?(G) = {g ∈ G | gα = g for all α ∈ Aut(G)},
where he used the notation L(G) = Z?(G) and G? = G′?. Hegarty proved that if
G/Z?(G) is finite, then also G′? and the automorphism group Aut(G) are finite.

One of the goals of this paper is to extend Mann’s result to G-groups as considered
by Ellis [4]. A group M is a G-group if G is a group acting on M via a homomorphism
ϕ : G→ Aut(M) with image containing the inner automorphisms Inn(M). Accordingly,
the G-center of M is defined as

ZG(M) = {m ∈M | mg = m for all g ∈ G}
and its G-commutator subgroup is

[M,G] = 〈m−1mg | m ∈M, g ∈ G〉.
We prove that if M/ZG(M) is locally finite of exponent n, then [M,G] is locally finite
of n-bounded exponent. If Aut(M/ZG(M)) is nilpotent of class c and G acts faithfully,
then this allows us to prove that the exponent of G is bounded in terms of n and c. In
the special case when M is locally finite and G = Aut(M), we show that the exponent
of M is n-bounded.

Further results on the exponents ofG, [M,G], and Aut(M) are summarised in Section
2. As an application, we consider the relative Schur multiplier as defined by Loday [10].
We show that if G is a group with locally finite normal subgroup N of exponent n,
then the exponent of the relative Schur multiplier of the pair (G,N) is n-bounded. This
improves a recent result of [13], where the exponent is exp(G)-bounded.

Having established a connection between the exponents of M/ZG(M), [M,G], and
M , respectively, it is of interest to investigate the structure of ZG(M) and [M,G]. We
consider the special case of G = Aut(M) and M abelian. A recent result of Chiş et
al. [2] proves that every finite abelian group M occurs as the autocommutator subgroup
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of a group. Here we generalise this result to a certain class of infinite abelian groups, see
Section 3.1. In Section 3.2 we prove that Z?(M) has at most two elements if M = D×R
is abelian where D is divisible and R is reduced having no 2-elements of infinite height.
We note that in this paper a p-element means a non-trivial element of p-power order.

In the last section we define the upper G-central series of a G-group M , and prove
a partial converse of a stability result of Hall [7].

2. Exponents

Let M be a G-group. In this section we consider some consequences of the assumption
that M/ZG(M) has finite exponent. Our starting point is a recent result of Mann [11]
who proved that if G/Z(G) is locally finite of exponent n, then G′ is locally finite of
n-bounded exponent. His proof can be generalised as follows.

Theorem 2.1. Suppose that M is a G-group. If M/ZG(M) is locally finite of exponent
n, then [M,G] is locally finite of n-bounded exponent.

Proof. Let x, y ∈ M and put H = 〈x, y〉. The group HZG(M)/ZG(M) is a finite 2-
generator group of exponent dividing n. Its order k divides the order b(n) of the largest
finite 2-generator group of exponent n, which exists by the solution of the restricted
Burnside problem [16]. Since H ∩ ZG(M) ≤ Z(H), the transfer map from H to H ∩
ZG(M) is given by m 7→ mk. Hence, m 7→ mb(n) is a homomorphism on M , and
(m−1mg)b(n) = 1 for all m ∈M and g ∈ G, that is, the exponent of [M,G] divides b(n).
Since [M,G]/([M,G] ∩ ZG(M)) is locally finite and [M,G] ∩ ZG(M) is abelian of finite
exponent, [M,G] is locally finite as well. �

The bound for exp[M,G] obtained in the proof of Theorem 2.1 is very crude. In
some cases, better bounds can be found.

Proposition 2.2. Let M be a G-group with M/ZG(M) of exponent n.
a) If M is a finite p-group of class less than p, then exp[M,G] divides n.
b) If n ∈ {2, 3, 4, 6}, then exp[M,G] divides n2.

Proof. a) Since M has class less than p, it is an immediate consequence of [9, Satz
III.10.2] that M is regular, that is, for every u, v ∈ M and every integer i ≥ 1 there
exists w ∈ [M,M ] with (uv)p

i
= up

i
vp

i
wp

i
, see also [9, Satz III.10.8g)]. In addition,

this property implies that [M,M ]n = [Mn,M ] as proved in [9, Satz III.10.8c)]. Since
Mn ≤ ZG(M), we have [M,M ]n = 1, thus m 7→ mn is an endomorphism of M . Hence,
if g ∈ G and m ∈M , then (m−1mg)n = (mn)−1(mn)g = 1 as mn ∈ ZG(M).

b) Clearly, the exponent of M/Z(M) divides n, and a group M with this property is
called n-central. It is proved in [12] that if M is an n-central group with n ∈ {2, 3, 4, 6},
then m 7→ mn2

is an endomorphism of M , see [12, Theorems A, 1.1, and 1.2] for the
precise reference. This implies that (m−1mg)n

2
= 1 for all m ∈M and g ∈ G. �

The next result shows that, under certain assumptions, there is a finite quotient A
of M with induced G-action such that exp[M,G] = exp[A,G].

Proposition 2.3. Let M be a finitely generated G-group with M/ZG(M) finite of ex-
ponent n. Then M embeds into a direct product A × B, where A and B are G-groups,
A is finite and A/ZG(A) has exponent dividing n, and B is torsion-free abelian of finite
rank. Moreover, G acts trivially on B and exp[M,G] = exp[A,G].
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Proof. We only have to consider infinite M . In this case, ZG(M) is infinite and, as a
subgroup of finite index in a finitely generated group, ZG(M) is finitely generated as well,
see for example [15, (1.6.11)]. By assumption, M/Z(M) is finite and so is M ′ by Schur’s
theorem. This implies that the elements in M of finite order form a characteristic
subgroup T . By Zorn’s lemma we can choose a maximal torsion-free subgroup S of
ZG(M). Since M/ZG(M) is finite and ZG(M)/S is a finitely generated abelian torsion
group, the quotient A = M/S is finite with induced G-action. Clearly, expA/ZG(A)
divides n. Since M ′ is finite, M ′ ≤ T , and B = M/T is torsion-free abelian. It follows
from Theorem 2.1 that [M,G] has finite exponent, that is, [M,G] ≤ T , and G acts
trivially on B. Finally, since S ∩T = 1, there is an embedding of M into A×B. Hence,
[M,G] embeds into [A,G]. Since A is a quotient of M , the assertion follows. �

We now consider the exponent of G where M is a G-group and G acts faithfully.
Note that expG may not be finite even though M has finite exponent. For example,
consider the direct product M =

∏
z∈ZCn of cyclic groups of order n and G = Aut(M);

we note that all direct products in this paper are restricted direct products. This shows
that some extra assumptions are required to bound the exponent of G. Let VarG(M) =
{g ∈ G | m−1mg ∈ ZG(M) for all m ∈M}, cf. [8].

Proposition 2.4. Let M be a G-group with G acting faithfully and M/ZG(M) locally
finite of exponent n. Then the following hold:
a) The exponent of VarG(M) is n-bounded.
b) If Aut(M/ZG(M)) is nilpotent of class c, then expG is (c, n)-bounded.

Proof. a) By Theorem 2.1, the exponent of [M,G] is bounded by k = k(n). If g ∈
VarG(M) and m ∈ M , then, by induction, mgi = mg(m−1mg)i−1. Now the assertion
follows from mgk+1

= mg for all m ∈M .
b) Note that VarG(M) is the kernel of the induced G-action on M/ZG(M), hence

the exponent of G does not exceed exp VarG(M) · exp Aut(M/ZG(M)). By a), the
assertion follows if we prove that the exponent of Aut(M/ZG(M)) is (c, n)-bounded.
Denote N = M/ZG(M) and A = {α ∈ Aut(N) | x−1xα ∈ Z(N)}. From the proof
of [14, Theorem 4.1] we conclude that Z(A)/CZ(A)([N,A]) is isomorphic to a subgroup
of power automorphisms of [N,A]. If θ is a such a power automorphism and x ∈ [N,A],
then xθ = xtx for some integer tx coprime to the order of x. Hence, xθ

φ(|x|)
= x, where φ is

Euler’s totient function. The exponent of [N,A] divides n and, hence, φ(|x|) is a divisor
of φ(n). This shows that θφ(n) = 1, and the exponent of Z(A)/CZ(A)([N,A]) divides
φ(n). It follows directly from the proof of [14, Theorem 4.1] that expCZ(A)([N,A]) is n-
bounded. We conclude that expZ(A) is n-bounded, thus expZ(Aut(N)) is n-bounded.
Since Aut(N) is nilpotent of class c, the exponent of Aut(N) divides (expZ(A))c, see [15,
(5.2.22)], thus is (c, n)-bounded. This completes the proof. �

In the remainder of this section we consider the special case when G = Aut(M). We
start with a preliminary lemma.

Lemma 2.5. Let M be a locally finite group such that M/Z?(M) is a π-group. If M
contains a unique involution, then M is a (π ∪ {2})-group, and a π-group otherwise.

Proof. Assume that Z?(M) contains a p-element, where p /∈ π. Then every p-element
of M lies in Z?(M), and the p-component S of Z?(M) is characteristic in M . Since
M = CM (S) and S is a normal maximal p-subgroup of M , the groups M and S satisfy
the conditions of [3, Theorem 2], which shows that S is a direct factor of M . Thus, every
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automorphism of S lifts to an automorphism of M , and S ≤ Z?(M) implies Aut(S) = 1.
Since s 7→ s−1 is an automorphism of S, we have expS = 2. But every abelian group of
finite exponent is a direct product of cyclic groups, see [5, Theorem 17.2], which implies
that S = C2. Thus, p = 2 and M has a unique involution. �

Theorem 2.6. Let M be a locally finite group. If M/Z?(M) has exponent n, then expM
is n-bounded.

Proof. Let π be the set of prime divisors of n, and let t = t(n) be their product. From
Lemma 2.5 it follows that M is a (π ∪ {2})-group. The exponent of M/Z(M) divides n,
and, using the notation of the proof of Theorem 2.1, the map M → Z(M), m 7→ mb(n), is
an endomorphism of M . By the solution of the Restricted Burnside problem, b = b(n) is
a π-number and n divides b, see [16]. Clearly, the map m 7→ m2bt+1 is an endomorphism
as well. In fact, it is an automorphism, since 2bt + 1 is not a π-number. Therefore,
m2bt = 1 for all m ∈ Z?(M), and the exponent of M divides 2bnt. �

Corollary 2.7. Let M =
∏
i Pi be a direct product of pi-groups Pi for pairwise distinct

primes pi such that no Pi is locally cyclic. Suppose that Aut(M) is nilpotent of class c.
If expM/Z?(M) = n, then the exponent of Aut(M) is (c, n)-bounded.

Proof. Since Aut(M) is nilpotent, the group M is nilpotent as well, which implies that
M is locally finite. Theorem 2.6 shows that expM is n-bounded. We can assume that
i = 1, that is, M is a p-group which is not locally cyclic. It follows from expM/Z?(M) =
n that the inner automorphism group of G has finite exponent. Now [6, Theorem 2] can
be applied, which proves that Aut(M)/Z(Aut(M)) has finite exponent, e say. Since
Aut(M) is nilpotent of class c, its exponent divides ec, see [15, (5.2.22)]. In particular,
Aut(M) has finite exponent and we can apply [6, Proposition 9b)], which proves the
assertion. �

2.1. Relative Schur multipliers. As an application of the above results we con-
sider the following. Let G be a group with normal subgroup N . The relative Schur
multiplier of the pair (G,N) is defined as the relative homology group H2(G,N ; Z), see
Loday [10]. By [4], it can also be described as M(G,N) = ker(N ∧G → [N,G]), where
N ∧ G is the non-abelian exterior product as defined in [1]. For finite G, it is proved
in [13] that the exponent of M(G,N) can be bounded in terms of expG. The following
is an improvement of this result.

Proposition 2.8. Let G be a group and N a locally finite normal subgroup of G. If the
exponent of N is n, then the exponent of M(G,N) is n-bounded.

Proof. Our proof relies on the notion of a relative central extension of the pair (G,N),
see [10]. It consists of a group homomorphism ∂ : M → G with image equal to N , an
action of G upon M such that ∂ is a G-homomorphism, ker ∂ ≤ ZG(M), and u∂(v) = uv

for all u, v ∈ M . Let ∂ : M → G and ∂′ : M ′ → G be relative central extensions
of the pair (G,N). A morphism between these is a G-homomorphism φ : M → M ′

satisfying ∂′φ = ∂. Thus all relative central extension of the pair (G,N) form a category
RCE(G,N). At first we show that RCE(G,N) admits a projective object. Let F be
the free group on the set N × G with G-action defined by (k, g′)g = (k, g′g). The map
(k, g) 7→ kg induces a homomorphism ∂̄ : F → G. Now define

M = F/〈x∂̄(y)x−y, a−1ag for all x, y ∈ F, a ∈ ker ∂̄, g ∈ G〉F .
It follows that ∂̄ induces a homomorphism ∂ : M → G, and it is straightforward but
technical to verify that the latter is a projective object in RCE(G,N).
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Note that N ∼= M/ ker ∂, and there is an epimorphism M/ ker ∂ →M/ZG(M), that
is, expM/ZG(M) divides n. Theorem 2.1 shows that exp[M,G] is n-bounded. It is
proved in [4, Theorem 7] that N ∧G is isomorphic to [G,M ]. Thus, the group M(G,N)
embeds into [M,G], which proves the assertion. �

3. The absolute center and autocommutator subgroup of an abelian group

The aim of this section is to investigate the absolute center and the autocommutator
subgroup of an abelian group. It is proved in [5, Theorem 21.3] that every abelian group
G is a direct product G = D × R where D is the unique maximal divisible subgroup
of G and R is reduced, that is, R has no non-trivial divisible subgroup. If p is a prime,
then the p-component of R is denoted by Rp. The (p-)height of an element g ∈ Rp is px

if x is maximal with the property that g = kp
x

for some k ∈ Rp. If there is no bound on
x, then g has infinite height. We say a group has no elements of infinite height if every
non-trivial element has finite height.

Reduced groups with no elements of infinite height feature nice properties, which
is the main reason why we restrict attention to abelian groups G = D × R where R
satisfies certain conditions on the height of some of its elements. We often make use of
the following lemma about elements of finite height; it is proved in [5, Corollaries 27.2
& 27.9].

Lemma 3.1. Let G be an abelian group.

a) Let g ∈ G be of order p and finite height pk. If h ∈ G with hp
k

= g, then 〈h〉 is a
direct factor of G.

b) An element g ∈ G of prime-power order belongs to a finite direct summand of G if
and only if the group 〈g〉 contains no elements of infinite height.

3.1. The autocommutator subgroup. Chiş et al. [2] proved that every finite
abelian group is the autocommutator subgroup of a finite group. We now generalise this
result to the class of abelian groups G = D × R where D is divisible and R is torsion
and reduced having no 2-elements of infinite height.

First, we need some more notation. An element k ∈ Rp is p-minimal if it has height 1
and k|k|/p has height |k|/p. Note that every element of height 1 and order p is p-minimal.
If g ∈ Rp has order pm and gp

m−1
has height py, then gp

m−1
= kp

y
for some k ∈ Rp. It

is easy to see that k is p-minimal.
For an abelian group A and a positive integer m let Am denote the subgroup of m-th

powers. The next lemma summarises some preliminary results.

Lemma 3.2. Let G = D × R be an abelian group such that D is divisible and R is
reduced having no 2-elements of infinite height.
a) G′? = D ×R′? and R2 ≤ R′?; in particular, Rp ≤ R′? for all p > 2.
b) The p-component Rp is generated by the p-minimal elements. If Rp has unbounded

exponent, then the order of p-minimal elements is unbounded.
c) An element k ∈ R is 2-minimal if and only if 〈k〉 is a direct factor of R.
d) Let h, k ∈ R be 2-minimal. If |k| > |h|, then h ∈ R′?. If |k| = |h| and 〈h〉 ∩ 〈k〉 = 1,

then h, k ∈ R′?.

Proof. a) Note that D ≤ G is characteristic and it follows readily that the restriction
homomorphism ϕ : Aut(G) → Aut(D) × Aut(R) is surjective where we identify R with
G/D. This shows that D′? × R′? ≤ G′?. Inversion is an automorphism of D and,
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hence, D2 ≤ D′?. But D2 = D since D is divisible, that is, D = D′?. The kernel
of ϕ is isomorphic to Hom(R,D) where a homomorphism ψ : R → D corresponds to
the automorphism (d, r) 7→ (drψ, r) of D × R. Hence, if α ∈ kerϕ and r ∈ R, then
r−1rα ∈ D, which proves that G′? = D ×R′?. Clearly, R2 ≤ R′?.

b) If g ∈ Rp has height px, then g = kp
x

for some k ∈ Rp of height 1. It remains
to show that every element k of height 1 is a product of p-minimal elements. We use
induction on the order |k| = pm. If m = 1, then k is p-minimal. Now let m > 1
and assume that k is not p-minimal and the height of kp

m−1
is py with y ≥ m. Then

kp
m−1

= wp
y

= (wp
y−m+1

)p
m−1

for some p-minimal w ∈ Rp. We now write k = wp
y−m+1

c

for some c ∈ Rp with |c| ≤ pm−1; note that c 6= 1 as k has height 1. Since wp
y−m+1

and
k have heights ≥ p and 1, respectively, the height of c is 1. By induction, c is a product
of p-minimal elements.

c) This follows from Lemma 3.1a).
d) By c), we have R = 〈h〉 × U = 〈k〉 × V , and k = hiu for some u ∈ U and i ∈ Z.

First, let |h| = 2x and |k| = 2y with y > x. Since k2y−1
= u2y−1

, the element u is
2-minimal as well, and 〈h〉 × 〈u〉 is a direct factor of R. The homomorphism defined by
u 7→ uh lifts to an automorphism α of R, and h = u−1uα ∈ R′?.

Now let |h| = |k| = 2x. If i is even, then k2x−1
= u2x−1

. As above, 〈h〉 × 〈u〉 is a
direct factor of R, and h, u ∈ R′?. Hence, let i be odd and consider w = h−1k with
w2x−1

= u2x−1 6= 1. If u2x−1
has height 2x−1, then u is p-minimal, and 〈h〉 × 〈u〉 is a

direct factor of R. This implies that h, u ∈ R′?. If the height of u2x−1
is larger than

2x−1, then u2x−1
= v2y for some y ≥ x and p-minimal v. Write v = hir with r ∈ U and

note that v2y = r2y , that is, r is p-minimal. Now 〈h〉 × 〈r〉 is a direct factor of R, and
h ∈ R′?. A similar argument yields k ∈ R′?. �

Theorem 3.3. Let G = D × R be an abelian group such that D is divisible and R is
reduced and torsion. If R has no 2-elements of infinite height, then G = K ′? for some
abelian group K.

Proof. We constructK = D×S for some reduced group S having no elements of infinite
height such that R = S′?, cf. Lemma 3.2. Denote by R =

∏
pRp the decomposition of

R into its p-components. First, we assume that R2 has finite exponent 2m. It is proved
in [5, Theorem 17.2] that every abelian group of bounded exponent is a direct product
of cyclic groups. Hence, we can decompose R2 =

∏
n≤m

∏
i∈In C2n for some index sets

In. If |Im| > 1, then Lemma 3.2 implies that R = R′?, and we can choose S = R, that
is, K = G. If |Im| = 1, then define T = C2m+1×

∏
n<m

∏
i∈In C2n and S = T ×

∏
p>2Rp.

We embed C2m into C2m+1 and consider R as a subgroup of S. Then R has index 2 in
S, and S′? ≤ R: If α ∈ Aut(S) and s ∈ S \ R, then sα /∈ R and sαR = sR, that is,
[s, α] ∈ R. Now Lemma 3.2 implies that R = K ′? with K = D×S. If R2 has unbounded
exponent, then R = R′? follows directly from Lemma 3.2, and we can choose K = G. �

The following corollary deals with a special case where R is not torsion. We denote
by C∞ the cyclic group of infinite order.

Corollary 3.4. Let G = D × R be an abelian group such that D is divisible and R is
reduced having no 2-elements of infinite height. Assume that R = T × F where T is the
torsion subgroup of R and F =

∏
i∈I C∞ for some non-empty index set I. Then

G′? =

{
G if |I| > 1,
D × T × F 2 if |I| = 1.
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Proof. By Lemma 3.2, we can assume that D = 1. Let z be a generator of a direct
factor of F and let r ∈ T be a torsion element. Then z 7→ rz lifts to an automorphism
α of R with r = [z, α] ∈ G′?, that is, T ≤ G′?. If |I| > 1 and y, z ∈ F are generators
of two different factors of F , then y 7→ yz lifts to an automorphism of G, which implies
that F ≤ G′? as well. If F = C∞, then T ×F 2 is a characteristic subgroup of R of index
2. The proof of Theorem 3.3 shows that G′? ≤ T × F 2, which implies the assertion. �

3.2. The absolute center. Since inversion is an automorphism of every abelian
group G, the absolute center Z?(G) has exponent dividing 2. The aim of this section is
to prove the following result.

Theorem 3.5. Let G = D × R be an abelian group such that D is divisible and R is
reduced having no 2-elements of infinite height.
a) Suppose that D has 2-elements. If D has a unique involution z, then Z?(G) = 〈z〉,

and Z?(G) = 1 otherwise.
b) Suppose that D has no 2-elements. If R has a unique involution z of maximal height,

then Z?(G) = 〈z〉, and Z?(G) = 1 otherwise.

Proof. a) First, we assume that R = 1. The structure of divisible groups is determined
in [5, Theorem 23.1], and we can assume that D =

∏
p

∏
i∈Ip Cp∞×

∏
j∈J Q, where p runs

over all primes, Ip and J are index sets, and Cp∞ is a quasicyclic p-group. Recall that
Z?(D) is a 2-group contained in H =

∏
i∈I2 C2∞ . Every automorphism of H extends to

an automorphism of D, and we have Z?(D) = Z?(H). Suppose that |I2| > 1 and choose
a well-ordering on I2 with smallest element i0. For i ∈ I2 let i+ be its unique successor
if exists, and i+ = i0 otherwise. Let ϕi : C

(i)
2∞ → C

(i+)
2∞ be an isomorphism between the

i-th and i+-th direct factor of H. We use this notation to define an automorphism αi of
H which maps g ∈ C(i)

2∞ to ggϕi , and fixes all other elements of H. Since αi lifts to an
automorphism of D, we have Z?(D) = 1. Thus, it remains to consider |I2| = 1, that is,
H = C2∞ . Clearly, the map H → H, h 7→ h3, is an automorphism of H with fixed point
set {1, z}, where z ∈ H is the unique element in H of order 2.

Now we consider the general case and, first, show that Z?(G) ≤ D. Since D ≤ G is
characteristic, the restriction homomorphism Aut(G)→ Aut(D)× Aut(R) is surjective
and has kernel isomorphic to Hom(R,D), see the proof of Lemma 3.2a). Since D contains
elements of 2-power order, it can be read of the above decomposition of D that D has
a direct factor C2∞ . Thus, if R is a 2′-group, then we can assume that R = 1 and the
assertion follows from the above argument. Now let g ∈ R be a 2-element. By our
assumptions, g has finite height and Lemma 3.1b) shows that R = C× R̃ for some cyclic
2-group C containing g. Let α be the automorphism of G defined by a homomorphism
R → D which has kernel R̃ and embeds C into a quasicyclic factor C2∞ ≤ D. Then α
moves g, which implies that Z?(G) ≤ Z?(D). Hence, Z?(D) = Z?(G), which proves the
assertion.
b) Using the structure of Aut(G) as determined in the proof of Theorem 3.5a), we have
Z?(G) = Z?(R). Assume that Z?(R) 6= 1 and choose a ∈ Z?(R) of minimal height, 2n

say. Let b ∈ R with b 6= a be an involution of height 2m with m ≥ n, and choose g, h ∈ R
with a = g2n and b = h2m . If no such b exists, then the assertion follows immediately.
By Lemma 3.1a), we have R = 〈g〉 × U = 〈h〉 × V , and h = giu for some integer i and
u ∈ U . If m > n, or m = n and ai = 1, then b = h2m = u2m , and Lemma 3.1a) shows
that 〈g〉×〈u〉 is a direct factor of R. Clearly, there is an automorphism of R which maps
g to gu2m−n , which contradicts a ∈ Z?(R). Hence, we have m = n and b = h2m = au2m .
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Now consider k = g−1h. Then c = k2m = u2m is an involution of height l ≥ m. If
l = m, then 〈g〉 × 〈u〉 is a direct factor of R and the same argument as above yields a
contradiction. If l > m, then c = f2l for some f = gjv with v ∈ U . Again, as shown
above, this gives a contradiction. It follows that Z?(R) = {1, a}, where a ∈ R is the
unique involution of maximal height. �

4. Stability series

Let M be a G-group. A subgroup series M = M1 > M2 > · · · is a G-central series
of M if G acts trivially on each section Mi/Mi+1. Hall [7, Theorem 1] proved that if
M = M1 > · · · > Mn+1 = 1 is a G-central series with G acting faithfully, then G is
nilpotent of class at most n. In this section we provide a partial converse of this result.

First, we introduce some notation. The upper G-central series of M

1 = ζG,0(M) ≤ ζG,1(M) ≤ · · ·
is defined by ζG,1(M) = ZG(M) and ζG,i+1(M)/ζG,i(M) = ZG(M/ζG,i(M)). If n is
minimal with ζG,n(M) = M , then M is G-nilpotent of G-class n. Note that M is
G-nilpotent if and only if it admits a G-central series.

Being G-nilpotent can be quite restrictive: Let M be an abelian G-group with G =
Aut(M) and G-class n. Since inversion is an automorphism of M , it can be proved by
induction that the exponent of ζG,i(M) divides 2i. This shows that M is a torsion group
with exponent dividing 2n.

Proposition 4.1. Let M be a finite nilpotent G-group with G acting faithfully.
a) Suppose that G = Aut(M) is nilpotent. Then M is G-nilpotent if and only if its

Sylow p-subgroups are non-cyclic for all p ≥ 3.
b) If G acts trivially on M/M ′, then G is nilpotent and M is G-nilpotent.

Proof. a) We can assume that M is a p-group. If M is cyclic and p ≥ 3, then
ZG(M) = 1, and M is not G-nilpotent. If M is a cyclic 2-group and ζG,i(M) < M , then
ZG(M/ζG,i(M)) is the unique subgroup of M/ζG,i(M) of order 2, and M is G-nilpotent.
Now let M be a non-cyclic p-group. Since M has finite exponent and Aut(M) is nilpo-
tent, we can apply [14, Corollary 4.5], which shows that G is a p-group. Assume, for
a contradiction, that M is not G-nilpotent. Then there exists i ≥ 0 such that G acts
fixed point freely on K = M/ζG,i(M). Let H be the image of G→ Aut(K) and consider
W = H nK. Since H acts fixed point freely, W is a Frobenius group. The structure of
Frobenius groups is well-known and it is proved in [9, Satz V.8.3 ] that the order of |H|
divides |K| − 1. Since H and K are p-groups, this yields a contradiction.

b) Assume that M is a p-group which is not G-nilpotent. As in a), there exists i
such that W = H nK is a Frobenius group where K = M/ζG,i(M) and H the image of
G→ Aut(K). Recall that |H| divides |K|−1, see [9, Satz V.8.3 ], hence H is a p′-group.
Thus, Inn(M) acts trivially on K, that is, K is abelian and M ′ ≤ ζG,i(M). But this
implies H = 1, a contradiction. Thus, M is G-nilpotent, and Hall’s result [7, Theorem
1] completes the proof. �
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