
GROUPS OF ORDER p5 AND THEIR UNRAMIFIED BRAUER

GROUPS

PRIMOŽ MORAVEC

Abstract. We prove that if p is a prime, p > 3, and G is a group of order
p5 not belonging to the 10-th isoclinism family, then the unramified Brauer

group of G is trivial.

1. Introduction

Let G be a finite group and V a faithful representation of G over C. Then there is
a natural action of G upon the field of rational functions C(V ). A problem posed
by Emmy Noether [19] asks as to whether the field of G-invariant functions C(V )G

is purely transcendental over C, i.e., whether the quotient space V/G is rational. A
question related to the above mentioned is whether V/G is stably rational, that is,
whether there exist independent variables x1, . . . , xr such that C(V )G(x1, . . . , xr)
becomes a pure transcendental extension of C. This problem has close connection
with Lüroth’s problem [21] and the inverse Galois problem [24, 22]. It is known
that the stable rationality of V/G does not depend upon the choice of V , but
only on the group G. Saltman [22] found examples of groups G of order p9 such
that V/G is not stably rational over C. His main method was application of the
unramified cohomology group H2

nr(C(V )G,Q/Z) as an obstruction. A version of
this invariant had been used before by Artin and Mumford [1] who constructed
unirational varieties over C that were not rational. Bogomolov [3] further explored
this cohomology group. He proved that H2

nr(C(V )G,Q/Z) is canonically isomorphic
to

(1.0.1) B0(G) =
⋂

A ≤ G,
A abelian

ker resGA,

where resGA : H2(G,Q/Z) → H2(A,Q/Z) is the usual cohomological restriction

map. The group B0(G) is a subgroup of the Schur multiplier H2(G,Q/Z) of G.
Kunyavskĭı [14] coined the term the Bogomolov multiplier of G for the group B0(G).
Bogomolov used the above description to find new examples of groups G of order
p6 with H2

nr(C(V )G,Q/Z) 6= 0. Subsequently, Bogomolov, Maciel and Petrov [5]
showed that B0(G) = 0 when G is a finite simple group of Lie type A`, whereas
Kunyavskĭı [14] recently proved that B0(G) = 0 for every quasisimple or almost
simple group G.

The Bogomolov multiplier of a given finite group is hard to compute. To illustrate
this, we note that Chu, Hu, Kang, and Kunyavskĭı [7] only recently computed
Bogomolov multipliers of all groups of order 64. In our paper [17], we have obtained
a new description of B0(G) for a finite group G. It relies on the notion of the
nonabelian exterior square G ∧ G of the group G (see Section 2 for definition and
further details). To state the main result of [17], denote by M(G) be the kernel
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of the commutator homomorphism κ : G ∧ G → [G,G], and M0(G) = 〈x ∧ y |
x, y ∈ G, [x, y] = 1〉. Then B0(G) is isomorphic to M(G)/M0(G). One of the
advantages of this approach is that it provides a purely combinatorial description
of B0(G) in terms of presentation of G. Among other things, this leads to a Hopf-
type formula for B0(G), and an efficient algorithm for computing B0(G) when G is
a finite solvable group. This method enables fast computer calculations of B0(G)
for a reasonably large finite solvable group G, cf. [17] for further details.

In his seminal paper [3], Bogomolov claimed that if G is a group of order p5,
where p is a prime, then B0(G) is trivial. Moreover, it had been conjectured that if
G is a group of order p5, then C(V )G is always purely transcendental over C. This
is indeed true for p = 2 and was confirmed by Chu, Hu, Kang, and Prokhorov [8].
On the other hand, we showed [17] that there are precisely three groups of order
35 with nontrivial Bogomolov multiplier. This shows that both Bogomolov’s claim
and the above conjecture are false. More recently, Hoshi and Kang [11] proved that
for every odd prime p there exist groups G of order p5 with B0(G) 6= 0. They posed
a problem of classification of all such groups G.

The purpose of this paper is to find all groups of order p5 with trivial Bogomolov
multiplier. A complete list of all groups of order p5 is known by the work of James
[13]. In his paper, the nonabelian groups of order p5 are divided into isoclinism
families Φk, 2 ≤ k ≤ 10. Hoshi and Kang [11] proved the following result.

Theorem 1.1 (Hoshi, Kang, [11]). Let p be an odd prime and let G be a group of
order p5 that belongs to the family Φ10. Then B0(G) 6= 0.

Our main result shows that these groups are essentially the only ones having
non-trivial Bogomolov multiplier:

Theorem 1.2. Let G be a group of order p5, p > 3. If G does not belong to the
family Φ10, then B0(G) = 0.

The case p = 3 is already dealt with in [11] by theoretical means, and in [17]
using computational methods. It turns out that a group order 35 has non-trivial
Bogomolov multiplier if and only if it belongs to Φ10. For the sake of simplicity
of the proofs we therefore assume that p > 3. The main step in the proof of the
above theorem is Proposition 3.2 which ensures a sufficient condition for a p-group
of nilpotency class ≤ 3 to have trivial Bogomolov multiplier. This condition can be
read off from a polycyclic presentation of the group. The result we obtain covers
the families Φ2, Φ3, Φ4, and Φ6, which form the major part of groups in question.
The remaining families are then dealt with separately. The techniques we use are
purely combinatorial, and do not require any cohomological machinery. The fact
that every group in Φ10 has nontrivial unramified Brauer group follows from Hoshi
and Kang [11].

In 1987, Bogomolov [3] announced a full classificiation of groups of order p6 with
nontrivial B0, yet no such classification has appeared. We note here that all groups
of order p6 have been listed by James [13]. Our techniques could be applied and
extended to find all groups among these that have nontrivial unramified Brauer
group, but the calculations would become quite lengthy.

We have recently become aware of a paper by Hoshi, Kang, and Kunyavskĭı
[12] where a full classification of groups of order p5 with non-trivial Bogomolov
multiplier has appeared. In fact, their results are more general and also deal with
isomorphisms of the corresponding fields. We note here that our techniques are
essentially different, and our argument is more elementary.

Notations. Let G be a group and x, y ∈ G. We use the notation xy = y−1xy for
conjugation from the right. The commutator [x, y] of elements x and y is defined by
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[x, y] = x−1y−1xy = x−1xy. Commutators of higher weight are defined inductively
by [x1, . . . , xn] = [[x1, . . . , xn−1], xn] for x1, . . . , xn ∈ G. We use shorthand notation
[x, ny] for the commutator [x, y, . . . , y] with n copies of y. When referring to the
classification of groups of order p5, we closely follow the notations of James [13].

2. The nonabelian exterior square of a group

We recall the definition and basic properties of the nonabelian exterior square of a
group. The reader is referred to [6, 15] for more thorough accounts on the theory
and its generalizations. Let G be a group. We form the group G∧G, generated by
the symbols m ∧ n, where m,n ∈ G, subject to the following relations:

m1m ∧ n = (mm
1 ∧ nm)(m ∧ n),(2.0.1)

m ∧ n1n = (m ∧ n)(mn ∧ nn1 ),(2.0.2)

m ∧m = 1,(2.0.3)

for all m,m1, n, n1 ∈ G. The group G ∧ G is said to be the nonabelian exterior
square of G. By definition, the commutator map κ : G ∧ G → [G,G], given by
g ∧ h 7→ [g, h], is a well defined homomorphism of groups. Clearly M(G) = kerκ
is central in G ∧ G, and G acts trivially via diagonal action on M(G). Miller [15]
proved that there is a natural isomorphism between M(G) and H2(G,Z).

An alternative way of obtaining G ∧ G is the following. Let G be a group and
let Gϕ be an isomorphic copy of G via the mapping ϕ : g 7→ gϕ for all g ∈ G. We
define the group τ(G) to be

τ(G) = 〈G,Gϕ | [g, hϕ]x = [gx, (hx)ϕ] = [g, hϕ]x
ϕ

, [g, gϕ] = 1 ∀x, g, h ∈ G〉.
The groups G and Gϕ embed into τ(G). In the rest of the paper we consider the
group [G,Gϕ] as a subgroup of τ(G). Then the map φ : G ∧ G → [G,Gϕ] defined
by (g ∧ h)φ = [g, hϕ] for all g and h in G is an isomorphism. This was proved
independently by Ellis and Leonard [9] and Rocco [20], and later further explored
by Blyth and Morse [2].

The advantage of the above description of G ∧ G is the ability of using the full
power of the commutator calculus instead of computing with elements of G ∧ G.
The following lemma collects various properties of τ(G) and [G,Gϕ] that will be
used in the proof of the main result.

Lemma 2.1 (Blyth and Morse [2]). Let G be a group.

(a) If G is nilpotent of class c, then τ(G) is nilpotent of class at most c+ 1.
(b) If [G,G] is nilpotent of class c, then [G,Gϕ] is nilpotent of class c or c+ 1.
(c) If G is nilpotent of class ≤ 2, then [G,Gϕ] is abelian.
(d) [g, hϕ] = [gϕ, h] for all g, h ∈ G.
(e) [g, h, kϕ] = [g, hϕ, k] = [gϕ, h, k] = [gϕ, hϕ, k] = [gϕ, h, kϕ] = [g, hϕ, kϕ] for

all g, h, k ∈ G.
(f) [[g1, h

ϕ
1 ], [g2, h

ϕ
2 ]] = [[g1, h1], [g2, h2]ϕ] for all g1, h1, g2, h2 ∈ G.

(g) If g and h are commuting elements of G of orders m and n, respectively,
then the order of [g, hϕ] divides gcd(m,n).

Let G be a finite solvable group. Then G is polycyclic, i.e., it has a subnormal
seriesG = G1.G2.· · ·.Gn+1 = 1 such that every factorGi/Gi+1 is cyclic of order ri.
A polycyclic generating sequence of G is a sequence g1, . . . , gn of elements of G such
that Gi = 〈Gi+1, gi〉 for all 1 ≤ i ≤ n. The value ri is called the relative order of gi.
With respect to a given polycyclic generating sequence g1, . . . , gn, each element g of
G can be represented in a unique way (normal form) as a product g = ge11 g

e2
2 · · · genn

with exponents ei ∈ {0, . . . , ri − 1}. Given a polycyclic generating sequence, the
group G can be presented by a polycyclic presentation, cf. [23] for further details.
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The following lemma will be basic in our considerations.

Lemma 2.2 (Proposition 20 of [2]). Let G be a finite solvable group with a polycyclic
generating sequence g1, . . . , gn. Then the group [G,Gϕ], considered as a subgroup
of τ(G), is generated by the set {[gi, gϕj ] | i, j = 1, . . . , n, i > j}.

3. Groups of order p5

Groups of order p5 were classified by James [13]. He compiled a list of polycyclic
presentations of these groups, and divided the non-abelian ones into families de-
noted by Φ2, . . . ,Φ10, according to isoclinism. In the case p = 3, James uses the
notation ∆ instead of Φ.

As already mentioned, there are no groups G of order 25 with B0(G) 6= 0, see
[8]. Also, there are precisely three groups of order 35 with nontrivial Bogomolov
multiplier. These groups are described in [11] and [17]. According to James’s
notation, they are the groups ∆10(2111)ai, i = 1, 2, 3. From here on we assume that
p ≥ 5. In this section we prove Theorem 1.2 using the theory developed in [17]. The
main idea is the following. Suppose that G is a finite group. Let φ be the natural
isomorphism betweenG∧G and [G,Gϕ]. Let κ∗ : [G,Gϕ]→ [G,G] be the composite
of φ−1 and κ, and denote M∗(G) = M(G)φ = kerκ∗ and M∗

0(G) = M0(G)φ. Then
B0(G) is clearly isomorphic to M∗(G)/M∗

0(G) by [17]. In order to prove that
B0(G) = 0 for a given group G it suffices to show that M∗(G) = M∗

0(G). This can
be achieved by finding a generating set of M∗(G) consisting solely of elements of
M∗

0(G).

Lemma 3.1. Let G be a nilpotent group of class ≤ 3. Then

[x, yn] = [x, y]n[x, y, y](
n
2)[x, y, y, y](

n
3)

for all x, y ∈ τ(G) and every positive integer n.

Proof. Since the class of G is at most 3, it follows that τ(G) is nilpotent of class
≤ 4 by Lemma 2.1 (a). In particular if x, y ∈ τ(G), then 〈x, y〉 is metabelian. The
assertion now follows easily by induction on n, see, for example, Lemma 3 of Hogan
and Kappe [10]. �

In the following, we say that an element g of a polycyclic generating sequence of
G is absolute if its relative order is equal to the order of g.

Proposition 3.2. Let G be a p-group, p > 3, and suppose that G is nilpotent of
class ≤ 3. Let g1, . . . , gn be a polycyclic generating sequence of G. Suppose that all
nontrivial commutators [gi, gj ], where i > j, are different absolute elements of the
polycyclic generating sequence. Then B0(G) = 0.

Proof. The group [G,Gϕ] is generated by the set G = {[gi, gϕj ] | i > j}. As above, let

κ∗ be the commutator map [G,Gϕ]→ [G,G], and suppose that [gi1 , gj1 ], . . . , [gi` , gj` ]

are the nontrivial elements of Gκ∗
. Since [G,Gϕ] is nilpotent of class ≤ 2 by Lemma

2.1 (b), every word w ∈ [G,Gϕ] can be written as

w =
∏̀
k=1

[gik , g
ϕ
jk

]nk · w̃,

where w̃ ∈ M∗
0(G). Mapping w with κ∗, we get

wκ
∗

=
∏̀
k=1

[gik , gjk ]nk .

Let prk be the order of [gik , gjk ]. Since these commutators are different absolute
terms of the polycyclic generating sequence of G, it follows that w ∈ M∗(G) = kerκ∗
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if and only if prk divides nk for every i. We have that [gik , g
ϕ
jk

]p
rk belongs to M∗(G).

On the other hand,

[gik , g
ϕ
jk

]p
rk

= [gp
rk

ik
, gϕjk ][gϕjk , gik , gik ](

prk
2 )[gϕjk , gik , gik , gik ](

prk
3 )

= [gp
rk

ik
, gϕjk ][[gϕjk , gik ](

prk
2 ), gik ][[gϕjk , gik ](

prk
3 ), gik , gik ].

Since p > 3, it follows that [[gϕjk , gik ](
prk
2 ), gik ] and [[gϕjk , gik ](

prk
3 ), gik , gik ] belong to

M∗
0(G). In addition to that, since G is nilpotent of class ≤ 3, we get [gjk , g

prk

ik
] =

[gjk , gik ]p
rk [gjk , gik , gik ](

prk
2 ) = [[gjk , gik ](

prk
2 ), gik ] = 1, hence [gp

rk

ik
, gϕjk ] ∈ M∗

0(G).

Thus we conclude that [gik , g
ϕ
jk

]p
rk belongs to M∗

0(G). By the above we clearly

have that M∗(G) = 〈[gik , g
ϕ
jk

]p
rk | k = 1, . . . , `〉M∗

0(G) = M∗
0(G) and therefore

B0(G) = 0. �

Proposition 3.2 can be applied to groups of order p5. For example, the group
Φ6(221)a has a polycyclic presentation 〈α1, α2, β, β1, β2 | [α1, α2] = β, [β, αi] =
βi = αpi , β

p = βpi = 1, (i = 1, 2)〉 that satisfies the assumptions of Proposition 3.2,
hence B0(Φ6(221)a) = 0. By closely inspecting other polycyclic presentations of
groups of order p5 in [13], we obtain the following.

Corollary 3.3. Let G be a group of order p5, p > 3. If G belongs to one of the
families Φ2, Φ3, Φ4 or Φ6, then B0(G) = 0.

We deal with the remaining families separately. At first we exhibit those with
trivial Bogomolov multiplier.

Proposition 3.4. Let G be a group of order p5, p > 3. If G belongs to the family
Φ5, then B0(G) = 0.

Proof. There are two groups in the family Φ5, by James’s notations [13] we denote
them by Φ5(2111) and Φ5(15). They are both nilpotent of class 2. We only prove
the result for G = Φ5(2111), the proof for Φ5(15) is almost identical. The group G
has a polycyclic presentation

G = 〈α1, α2, α3, α4, β | [α1, α2] = [α3, α4] = αp1 = β, αp2 = αp3 = αp4 = βp = 1〉,
where all the relations of the form [x, y] = 1 between the generators have been
omitted from the list. A generating set of the group [G,Gϕ] can be found by
Lemma 2.2. It consists of [α1, α

ϕ
2 ], [α3, α

ϕ
4 ], [α1, α

ϕ
3 ], [α1, α

ϕ
4 ], [α2, α

ϕ
3 ], [α2, α

ϕ
4 ],

and [αi, β
ϕ], i = 1, 2, 3, 4. Apart from the first two, all of these generators belong

to M∗
0(G). Since [G,Gϕ] is abelian, every element w ∈ [G,Gϕ] can be written as

w = [α1, α
ϕ
2 ]m[α3, α

ϕ
4 ]nw̃, where w̃ ∈ M∗

0(G). Then wκ
∗

= βm+n, hence w ∈ M∗(G)
if and only if p divides m+ n. Now, since τ(G) is nilpotent of class ≤ 3, we get

1 = [αϕ1 , α
p
2] = [αϕ1 , α2]p[αϕ1 , α2, α2](

p
2) = [αϕ1 , α2]p,

hence [α1, α
ϕ
2 ] is of order p. Similarly, [α3, α

ϕ
4 ] is of order p. It follows that

M∗(G) = 〈[α1, α
ϕ
2 ][α3, α

ϕ
4 ]−1〉M∗

0(G).

Note that 1 = [α1, α2][α4, α3] = [α1α4, α2α3], hence [α1α4, (α2α3)ϕ] ∈ M∗
0(G).

Expanding the latter using the class restriction and Lemma 2.1, we get

[α1α4, (α2α3)ϕ] = [α1, α
ϕ
2α

ϕ
3 ][α1, α

ϕ
2α

ϕ
3 , α4][α4, α

ϕ
2α

ϕ
3 ]

= [α1, α
ϕ
2α

ϕ
3 ][α1, α2α3, α

ϕ
4 ][α4, α

ϕ
3 ][α4, α

ϕ
2 ][α4, α

ϕ
2 , α

ϕ
3 ]

= [α1, α
ϕ
3 ][α1, α

ϕ
2 ][α1, α2, α

ϕ
3 ][α1, α2, α

ϕ
4 ][α1, α3, α

ϕ
4 ]

· [α4, α
ϕ
3 ][α4, α

ϕ
2 ][α4, α2, α

ϕ
3 ]

= [α1, α
ϕ
3 ][α1, α

ϕ
2 ][β, αϕ3 ][β, αϕ4 ][α4, α

ϕ
3 ][α4, α

ϕ
2 ].
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Note that [α1, α
ϕ
3 ], [β, αϕ3 ], [β, αϕ4 ], and [α4, α

ϕ
2 ] belong to M∗

0(G). From here it
follows that [α1, α

ϕ
2 ][α3, α

ϕ
4 ]−1 ∈ M∗

0(G), hence B0(G) = 0. �

Proposition 3.5. Let G be a group of order p5, p > 3. If G belongs to the family
Φ7, then B0(G) = 0.

Proof. The family Φ7 consists of five groups. James [13] denotes them by Φ7(2111)a,
Φ7(2111)br, where r = 1 or r is the smallest non-quadratic residue mod p, Φ7(2111)c,
and Φ7(15). These groups are all nilpotent of class 3.

At first we deal with the case G = Φ7(15). The group G has a polycyclic
presentation

G = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3,

αp = α
(p)
1 = αpi+1 = βp = 1, (i = 1, 2)〉,

where α
(p)
1 denotes αp1α

(p
2)

2 α
(p
3)

3 . Since p > 3, the relation α
(p)
1 = 1, together with

other power relations, implies αp1 = 1.
The group [G,Gϕ] is generated modulo M∗

0(G) by [α1, α
ϕ], [α2, α

ϕ], and [α1, β
ϕ].

Since the nilpotency class of [G,Gϕ] is at most 2, every element w ∈ [G,Gϕ] can
be written as w = [α1, α

ϕ]m1 [α2, α
ϕ]m2 [α1, β

ϕ]m3w̃, where w̃ ∈ M∗
0(G). This gives

wκ
∗

= αm1
2 αm2+m3

3 , therefore w ∈ M∗(G) if and only if p divides m1 and m2 +m3.
By Lemma 3.1 we have for i = 1, 2 that

1 = [αϕ, αpi ]

= [αϕ, αi]
p[αϕ, αi, αi]

(p
2)[αϕ, αi, αi, αi]

(p
3)

= [αϕ, αi]
p[αi+1, α

ϕ
i ](

p
2)

= [αϕ, αi]
p,

and similarly [αi, β
ϕ]p = 1. From here it follows that M∗(G) is generated modulo

M∗
0(G) by [α2, α

ϕ][α1, β
ϕ]−1, thus we need to show that [α2, α

ϕ][α1, β
ϕ]−1 ∈ M∗

0(G).
At first we observe that [α2β, αα1] = [α2, α1]β [α2, α]α1β [β, α1][β, α]α1 = 1, hence
[α2β, (αα1)ϕ] ∈ M∗

0(G). Expansion gives

[α2β, (αα1)ϕ] = [α2, α
ϕ
1 ]β [α2, α

ϕ]α
ϕ
1 β [β, αϕ1 ][β, αϕ]α

ϕ
1

= [α2, α
ϕ
1 ]β [α2, α

ϕ][α2, α
ϕ, αϕ1 β][β, αϕ1 ][β, αϕ]α

ϕ
1 .

Observe that [α2, α
ϕ
1 ], [α2, α

ϕ, αϕ1 β], and [β, αϕ] all belong to M∗
0(G). Thus we

conclude that [α2, α
ϕ][α1, β

ϕ]−1 = [α2, α
ϕ][β, αϕ1 ] ∈ M∗

0(G), as required.
The proofs for Φ7(2111)a and Φ7(2111)c are almost the same and are thus omit-

ted. In the case of G = Φ7(2111)br, a polycyclic presentation of G is

G = 〈α, α1, α2, α3, β | [α1, α] = α2, [α2, α] = α3, [α1, β]r = αr3 = α
(p)
1 ,

αp = αp2 = αp3 = βp = 1〉,

where r is as above. Write β̄ = βr. Then the groupG is generated by α, α1, α2, α3, β̄,
the relation βp = 1 is equivalent to β̄p = 1, and the relation [α1, β]r = αr3 is equiv-
alent to [α1, β̄] = αr3. It is now easy to adapt the above argument to show that
B0(G) = 0, hence we skip the details. �

Proposition 3.6. Let G be a group of order p5, p > 3. If G belongs to the family
Φ8, then B0(G) = 0.

Proof. The only group in the family Φ8 is

G = Φ8(32) = 〈α1, α2, β | [α1, α2] = β = αp1, β
p2 = αp

2

2 = 1〉.
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G is nilpotent of class 3, and [G,Gϕ] is nilpotent of class ≤ 2, generated modulo
M∗

0(G) by [α1, α
ϕ
2 ]. We have

1 = [αϕ1 , α
p2

2 ]

= [αϕ1 , α2]p
2

[αϕ1 , α2, α2](
p2

2 )[αϕ1 , α2, α2, α2](
p2

3 )

= [αϕ1 , α2]p
2

[β, αϕ2 ](
p2

2 )[β, α2, α
ϕ
2 ](

p2

3 )

= [αϕ1 , α2]p
2

.

Every element w ∈ [G,Gϕ] can be written as w = [α1, α
ϕ
2 ]mw̃ with w̃ ∈ M∗

0(G).
Thus w belongs to M∗(G) if and only if βm = 1, which in turn is equivalent to
p2|m. It follows that M∗(G) = M∗

0(G), hence B0(G) = 0. �

The families Φ9 and Φ10 consist of groups G of order p5 that are nilpotent of class
4. Since every group of order p5 is metabelian, it follows that [G,Gϕ] is nilpotent
of class ≤ 2. Besides, τ(G) is nilpotent of class ≤ 5. When expanding commutators
in τ(G), we will need the following lemma.

Lemma 3.7 (Lemma 9 of [16]). Let H be a nilpotent group of class ≤ 5, n a
positive integer and x, y ∈ H. Then

[xn, y] = [x, y]n[x, y, x](
n
2)[x, y, x, x](

n
3)[x, y, x, x, x](

n
4)[x, y, x, [x, y]]σ(n),

where σ(n) = n(n− 1)(2n− 1)/6.

Proposition 3.8. Let G be a group of order p5, p > 3. If G belongs to the family
Φ9, then B0(G) = 0.

Proof. The groups belonging to the family Φ9 are denoted by Φ9(2111)a, Φ9(2111)br,
where r + 1 = 1, 2, . . . , gcd(p− 1, 3), and Φ9(15).

All the groups in Φ9 have a polycyclic generating sequence α, α1, . . . , α4 satisfing
the relations [αi, α] = αi+1, where i = 1, 2, 3. These are the only nontrivial com-
mutator relations between these generators. Thus the group [G,Gϕ] is generated
modulo M∗

0(G) by [αi, α
ϕ], where i = 1, 2, 3. Since the nilpotency class of [G,Gϕ]

is at most 2, every element w of [G,Gϕ] can be written as w =
∏3
i=1[αi, α

ϕ]miw̃,

where w̃ ∈ M∗
0(G). We have that wκ

∗
=

∏3
i=1 α

mi
i+1. In all cases, the elements αi+1,

where i = 1, 2, 3, have order p, hence w ∈ M∗(G) if and only if p|mi, i = 1, 2, 3.
In the cases when G = Φ9(15) or G = Φ9(2111)a, the power relations imply that

αp1 = 1. For i = 1, 2, 3 we get by Lemma 3.7 that

1 = [αpi , α
ϕ]

= [αi, α
ϕ]p[αi, α

ϕ, αi]
(p
2)[αi, α

ϕ, 2αi]
(p
3)[αi, α

ϕ, 3αi]
(p
4)[αi, α

ϕ, αi, [αi, α
ϕ]]σ(p)

= [αi, α
ϕ]p[αi+1, α

ϕ
i ](

p
2)[αi+1, αi, α

ϕ
i ](

p
3)[αi+1, αi, αi, α

ϕ
i ](

p
4)[αi+1, α

ϕ
i , [αi, α

ϕ]]σ(p)

= [αi, α
ϕ]p.

From here it follows that M∗(G) = M∗
0(G), hence B0(G) = 0.

When G = Φ9(2111)br, the defining relations imply that αp = αp
2

1 = 1. By the
above calculations we see that [αi+1, α

ϕ], i = 1, 2, 3, are elements of order p. On
the other hand, expansion of 1 = [αp, αϕ1 ] yields that [α1, α

ϕ] has order p as well.
Therefore M∗(G) = M∗

0(G), and thus B0(G) = 0. �

This finishes the proof of Theorem 1.2. We remark here that a recent result of [18]
shows that groups within an isoclinism family have isomorphic unramified Brauer
groups. This has been generalized by Bogomolov and Böhning [4] who showed that
isoclinic groups have stably equivalent generically free linear quotients.
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