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Abstract. A group G is said to be n-central if the factor group G/Z(G)
is of exponent n. We improve a result of Gupta and Rhemtulla by
showing that every 4-central group is 16-abelian and every 6-central
group is 36-abelian. There are examples of finite groups which show that
these bounds are best possible. Consequently, we completely describe
the structure of exponent semigroups of free non-cyclic n-central groups
for n = 2, 3, 4, 6. We obtain a characterization of metabelian p-central
groups and a classification of finitely generated 2-central groups. We
compute the nilpotency class of the free metabelian 4-central group of
arbitrary finite rank.
Keywords. group, finite exponent, central extension, n-abelian.

1. Introduction

The groups of finite exponent play a prominent role in group theory. Two
of the most important problems that occur in connection with these groups
are the so called Burnside problem and the restricted Burnside problem. For
a survey about these two problems the reader is refered to the M. Vaughan–
Lee’s book [18].

The purpose of this paper is the study of center-by-finite-exponent groups.
More precisely, a group G is said to be n-central if G/Z(G) is a group of
exponent n. This type of groups was initially considered by N. D. Gupta
and A. H. Rhemtulla [7]. In particular, they noted that if an integer n is
such that the free two-generator Burnside group B(2, n) of exponent n is
finite, then there exists an integer 1 < f(n) ≤ |B(2, n)| such that the map
x 7→ xf(n) is a group endomorphism of every n-central group. Saying that
a group G is k-abelian if (xy)k = xkyk for any x, y ∈ G, we can state the
following question of [7]: Does there exist for a given positive integer n,
an integer f(n) > 1 such that every n-central group is f(n)-abelian? The
answer to this question is negative in general, as it was shown by S. I. Adjan
[1]. On the other hand, the answer is certainly positive for n = 2, 3, 4, 6 by
the solution of Burnside problem for these exponents. Apart from the crude
bound f(n) = |B(2, n)|, the following result can be found in [7].

Theorem A ([7], Theorem 1).
(a) Every 2-central group is 4-abelian.
(b) Every 3-central group is 9-abelian.
(c) Every 4-central group is 32-abelian.

There is a question whether the bounds for f(2), f(3) and f(4) in Theorem
A are the best possible. It turns out that this is true for 2-central and 3-
central groups. However, the bound for 4-central groups can be improved.

Theorem 1.1. Every 4-central group is 16-abelian.

The result is best possible in a sense that there exists a 4-central group
(even finite and metabelian) which is not k-abelian for any 1 < k < 16.
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Beside that, there appears to be no reasonably good estimate for f(6) in [7]
or elsewhere. Using computer calculations, we are able to construct the free
two-generator 6-central group. This gives us the following result.

Theorem 1.2. Every 6-central group is 36-abelian.

Here it is worth mentioning that there exists a finite nilpotent 6-central
group which is not k-abelian for 1 < k < 36. By investigating the structure
of nilpotent 6-central groups in more detail, we also give a characterization
of nilpotent 6-central groups in terms of the powers of certain Engel words;
see Corollary 4.3.

In [19, 20] E. I. Zel’manov solved the celebrated restricted Burnside prob-
lem by proving that there is a largest finite quotient R(r, n) of the free
r-generator group B(r, n) of exponent n. Now, let G be a locally soluble
or locally finite n-central group. Let a, b ∈ G. Then 〈a, b〉/Z(〈a, b〉) is a
homomorphic image of R(2, n), hence 〈a, b〉′ is a finite group of exponent e
dividing |R(2, n)| by Schur’s theorem [16, Part 1, Theorem 4.12]. Now it is
easy to see that (ab)k = akbk for k = ne, therefore every locally soluble or
locally finite n-central group is g(n)-abelian for some g(n) > 1. Focusing on
n-central metabelian groups, we prove that every n-central metabelian group
is 2n2-abelian; if n is odd, then such a group is even n2-abelian (Proposition
2.8). This result is best possible at least in the case when n is an odd prime.
If h(n) > 1 is the least integer such that every metabelian n-central group is
h(n)-abelian, then one might conjecture that h(n) ≥ n2 for all n’s. However,
this fails to be true. Namely, it turns out that h(8) = 32; this is proved in
Section 5.

Dealing with soluble n-central groups, one can reduce the problem to a
consideration of finite soluble n-central groups; see Theorem 2.5. As a con-
sequence, we obtain the following characterization of metabelian p-central
groups.

Theorem 1.3. Let p be a prime and let G be a metabelian group. Then G
is p-central if and only if the exponent of G′ divides p and G is nilpotent of
class ≤ p.

This is an extension of Theorem 13 of [13] which gives a characterization
of metabelian p-central p-groups. It also generalizes the well–known result
of Meier-Wunderli [16, Part 2, pp. 50] that a metabelian group of exponent
p is nilpotent of class at most p. A similar result in this direction, Corollary
2.7, is a classification of finitely generated 2-central groups, which depends
on a classification of finite 2-central groups obtained in [5].

Another question arising in the study of metabelian n-central groups is
the following. Suppose that Fr is the free metabelian 4-central group of rank
r. What is the nilpotency class of Fr? From a result of [8] it follows directly
that Fr is of class ≤ r + 3 when r = 2, 3, and is of class ≤ r + 2 when r > 3.
Lifting the identities, which hold in the free r-generator group of exponent
four, to Fr and using some commutator calculations, we compute the exact
class of Fr.

Theorem 1.4. Let r > 1 and let Fr be the r-generator free metabelian 4-
central group. Then Fr is nilpotent and the class of Fr is 5 when r = 2, 3,
and is r + 1 when r > 3.
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The paper is organized as follows. In Section 2 we derive some general
properties of soluble n-central groups. Section 3 is devoted to 4-central
groups. There we prove Theorem 1.1 and Theorem 1.4. In sections 4 and
5 we deal with 6-central groups and metabelian 8-central groups. Using the
results of L.-C. Kappe [12], we completely describe the arithmetic structure
of exponent semigroups of free non-cyclic n-central groups in Section 6. We
also deal with the following generalization of n-central groups. Define a
group G to be (k, n)-central if the factor group G/Zk(G) is of exponent n.
The results obtained for n-central groups can be extended to the class of
(k, n)-central groups in a natural way. This is briefly mentioned in Section
7.

The notation is mainly taken from [16] and [18]. The standard commuta-
tor identities [16, Part 1, Section 2.1] will be used without further reference.

2. Soluble n-central groups

In the beginning we mention some well–known identities which hold in
metabelian groups; for a proof see [13].

Lemma 2.1. Let G be a metabelian group, x, y, z ∈ G and c, d ∈ G′. Then
we have:

(a) [c, x, y] = [c, y, x].
(b) [x, y, z] = [y, x, z]−1.
(c) [cd, x] = [c, x][d, x].
(d) [x, y, z][y, z, x][z, x, y] = 1 (Jacobi identity).
(e) [x, yn] =

∏
1≤i≤n

[x, iy](
n
i).

(f) (xy−1)n = xn ·
∏

0<i+j<n
[x, iy, jx](

n
i+j+1) · y−n.

Here is a basic characterization of n-central groups:

Lemma 2.2. Let G be a group. The following statements are equivalent.
(a) G is an n-central group.
(b) Gn ≤ Z(G).
(c) [xn, y] = 1 for any x, y ∈ G.
(d) (xy)n = (yx)n for any x, y ∈ G.

The proof of this lemma is elementary and will be omitted.
Our first result provides a starting point for the calculation of exponents

of terms of the lower central series in a metabelian n-central group.

Lemma 2.3. Let G be a metabelian n-central group. Then the exponent of
G′ divides n2 and γ3(G) is of exponent dividing n.

Proof. Let x, y ∈ G. Since [x, y]n belongs to the center of G, we have
[x, y, z]n = [[x, y]n, z] = 1 for any z ∈ G. Now we have

1 = [x, yn]n =
n∏

i=1

[x, iy]n(
n
i) = [x, y]n

2
,

hence the assertion is proved. �
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Corollary 2.4. Let G be a soluble n-central group. Then the derived sub-
group G′ has a finite exponent dividing n2(d−1), where d is the derived length
of G.

Proof. We prove this by induction on the derived length d of group G. By
Lemma 2.3 we may assume that d > 2. Since G(d−2) is metabelian, it follows
from Lemma 2.3 that expG(d−1) divides n2. By the assumption, the group
(G/G(d−1))′ = G′/G(d−1) also has a finite exponent dividing n2(d−2), hence
the exponent of G′ divides n2(d−1). �

The next result shows that the structure of finite soluble n-central groups
tells us the whole story about finitely generated soluble n-central groups.
More precisely, we have:

Theorem 2.5. Let G be a finitely generated soluble group of derived length
d and let n be a positive integer. The group G is n-central if and only if G
is isomorphic to a subgroup of the direct product of a finite soluble n-central
group of derived length ≤ d and a free abelian group of finite rank.

Proof. Let G be a finitely generated soluble n-central group. Then G/Z(G)
is finite, hence G′ is finite by Schur’s theorem [16, Part 1, Theorem 4.12].
Therefore the group G is an FC-group [17, Theorem 1.1]. From a proof
of a result of Černikov – see, for instance, [17, Theorem 1.7] – it follows
that there is a natural embedding of G into G/A × G/T , where T is the
torsion subgroup of group G and A is a maximal torsion–free subgroup of
G contained in the center of G. The group G/A is finite, soluble of derived
length ≤ d and n-central, whereas G/T is a free abelian group of finite rank;
see [17] for the details. The converse statement is obvious. �

Since every finite pk-central group is clearly nilpotent, we immediately
have the following.

Corollary 2.6. Let G be a finitely generated soluble group, let p be a prime
and let k be a positive integer. The group G is pk-central if and only if G is
isomorphic to a subgroup of the direct product of a finite soluble pk-central
p-group and an abelian group of finite rank.

By [13, Theorem 13], a metabelian p-group G is p-central if and only if
G′p = γp+1(G) = 1. We give a proof of Theorem 1.3 which shows that we
may leave out the assumption of being a p-group:

Proof of Theorem 1.3. For p = 2, this is proved in [13, Theorem 7], therefore
we may assume p > 2. Suppose that G is a metabelian p-central group. Let
x, y ∈ G. The 2-generator group 〈x, y〉 has a derived subgroup of exponent
dividing p by Corollary 2.6 and [13, Theorem 13], hence [x, y]p = 1 and
therefore G′p = 1. Let H be any p-generator subgroup of the group G.
Using Corollary 2.6 and [13, Theorem 13] once again, we conclude that H
is nilpotent of class ≤ p. By a well–known result of Heineken [11], G is
nilpotent of class ≤ p. The converse statement follows directly from the
identity (e) of Lemma 2.1. �

In [5], there is a classification of finite 2-central groups. Since every 2-
central group is metabelian [13, Theorem 7], there is a way to classify finitely
generated 2-central groups as follows.



6

Corollary 2.7. Let G be a finitely generated group. Then G is 2-central
if and only if G is isomorphic to a subgroup of A × B, where A is abelian
group of finite rank and B is a subgroup of the direct product of groups each
of which is the central product of some of the following groups: cyclic 2-
groups, Mn = 〈x, y | x2n−1

= y2 = 1, [x, y] = x2n−2〉 for various values of n
or the quaternion group of order 8.

Recall that every locally soluble n-central group is |R(2, n)|-abelian. In
case of metabelian groups, we can substantially improve this result.

Proposition 2.8. Let G be a metabelian n-central group. Then G is 2n2-
abelian. If n is odd, then G is also an n2-abelian group.

Proof. Let x, y ∈ G. Then we have

(xy−1)n = xny−n[x, y](
n
2) ·

∏
1<i+j<n

[x, iy, jx](
n

i+j+1).

Since Gn ≤ Z(G) and 2n
(
n
2

)
is divisible by n2, we obtain (xy−1)2n2

=
x2n2

y−2n2
by Lemma 2.3. If we further assume that n is odd, then n divides(

n
2

)
, so we get, using Lemma 2.3, (xy−1)n2

= xn2
y−n2

, hence G is n2-abelian.
�

When p is a prime, there exist finite metabelian p-central groups which
are not k-abelian for any 1 < k < p2. To see this, set F = Cp ∗ Cp and let
G = F/F ′pF ′′γp+1(F ). This is a finite metabelian p-group of exponent p2.
By Theorem 1.3, G is a p-central group. If G were p-abelian, it would also
be (p− 1)-Engel by [13, Theorem 11], but this is not the case.

3. 4-central groups

Every 4-central group is 32-abelian by Theorem A. The proof of this result
in [7] does not rely on the solution of the Burnside problem for exponent
four. Using the information about the structure of groups of exponent 4, we
prove that every 4-central group is 16-abelian.

Proof of Theorem 1.1. Let G be a 4-central group and let a, b ∈ G. The
group 〈a, b〉/Z(〈a, b〉) is a homomorphic image of B(2, 4), hence 〈a, b〉 is
nilpotent of class 6 at most [18]. Pick w, x, y, z ∈ {a, b}. Using the class
restriction, we get 1 = [[w, x, y]4, z] = [w, x, y, z]4, hence

γ4(〈a, b〉)4 = 1. (1)

From [18, Section 6.3] it also follows that [a, b]2 ∈ γ4(G)Z(G), hence [[a, b]2, c] ∈
γ5(G) for any c ∈ G. Since [[a, b]2, c] = [a, b, c]2[a, b, c, [a, b]], we get

[a, b, c]2 ∈ γ5(G) (2)

for any a, b, c ∈ G. Now, let xi ∈ {a, b}, i = 1, . . . , 5. Because of the class
restriction for 〈a, b〉 and (2) we obtain

[x1, x2, x3, x4, x5]2 = [[x1, x2, x3]2, x4, x5] = 1,

hence
γ5(〈a, b〉)2 = 1. (3)
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The group 〈a, b〉/γ5(〈a, b〉) is metabelian. Using (1) and (2), we get

1 = [a, b4] ≡ [a, b]4 mod γ5(〈a, b〉).
Observing (3), we obtain [a, b]8 = 1. Since 〈a, b〉 is nilpotent of class ≤ 6,
the commutator collection process [9, pp. 65–66] gives

(ab)16 ≡ a16b16[b, a](
16
2 )[b, a, a](

16
3 )[b, a, b](

16
2 )+2(16

3 ) mod γ4(〈a, b〉)4.
Using (1), (2) and (3), we get (ab)16 = a16b16, hence G is 16-abelian. �

Turning our attention to 4-central metabelian groups, we first determine
the exponents of terms of the lower central series for such a group.

Proposition 3.1. Let G be a metabelian 4-central group. Then G′8 =
γ3(G)4 = γ4(G)2 = 1.

Proof. Since every 4-central group satisfies the law [x, y]8 = 1 (see the
proof of Theorem 1.1), we have G′8 = 1. By Lemma 2.3 we also get
γ3(G)4 = 1. Since G/Z(G) is a metabelian group of exponent 4, we ob-
tain γ3(G/Z(G))2 = 1 by [8]. This implies γ4(G)2 = 1. �

Corollary 3.2. Let G be a metabelian group. The following assertions are
equivalent:

(a) G is a 4-central group.
(b) G′8 = γ3(G)4 = γ4(G)2 = 1 and [x, y]4[x, y, y]2[x, y, y, y, y] = 1 for

all x, y ∈ G.
(c) [x, y, y]4 = [x, y, y, y]2 = [x, y]4[x, y, y]2[x, y, y, y, y] = 1 for all x, y ∈

G.

Proof. This follows from Proposition 3.1 and from the identity [x, y4] =
[x, y]4[x, y, y]6[x, y, y, y]4[x, y, y, y, y]. �

Next, we give an example of a finite metabelian 4-central group with
two generators, which is nilpotent of class 5 and is not k-abelian for any
1 < k < 16.

Example 3.3. Let D be the largest abelian quotient of the group

F = 〈x, y1, y2, z1, z2, z3, w1, w2, w3, w4 |
x4 = w2w3, y

2
1 = w1w2w3, y

2
2 = w2w3w4, z

2
i = w2

j = 1〉.
The group D may be viewed as a group generated by the commuting gener-
ators x, y1, y2, z1, z2, z3, w1, w2, w3, w4 and the remaining relations in D are
just those inherited from F . Let A = [D]〈a〉 be the semidirect product of
the group D by the cyclic group of order 16, where the action of a on the
generators of D is given as follows.

[x, a] = y1, [yi, a] = zi, [zj , a] = wj , [wk, a] = 1. (1)

The relations of A are those of D, (1) and a16 = 1. Next we form the split
extension G = [A]〈b〉 generated by the element b of order 16 which induces
the following action on A.

[x, b] = y2, [yi, b] = zi+1, [zj , b] = wj+1, [wk, b] = 1, [a, b] = x−1. (2)

The relations of G are those of A, (2) and b16 = 1. We observe that G =
〈a, b〉, |G| = 219, G is metabelian and nilpotent of class 5 and exp(G) = 16.
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It is straightforward to prove that G is 4-central, yet it is not k-abelian for
any 1 < k < 16.

Now we begin with preparations for computing the nilpotency class of
the free r-generator metabelian 4-central group Fr. The previous example,
together with [8], shows that F2 is nilpotent of class 5. Next we deal with
the three-generator case.

Proposition 3.4. The free three-generator metabelian 4-central group is
nilpotent of class 5.

Proof. Let G = 〈a, b, c〉 be a 3-generator metabelian 4-central group. By [8],
G is nilpotent of class ≤ 6. In order to prove that the class of G is 5 at
most, we have to prove that all the commutators of the form [a, ib, ja, kc],
where i > 0, j, k ≥ 0, i + j + k = 5, are trivial. Using the fact that the class
of 〈a, b〉 is ≤ 5, we only have to deal with the following cases.

c1 = [a, b, c, c, c, c] c6 = [a, b, b, a, c, c]
c2 = [a, b, a, c, c, c] c7 = [a, b, b, a, a, c]
c3 = [a, b, a, a, c, c] c8 = [a, b, b, b, c, c]
c4 = [a, b, a, a, a, c] c9 = [a, b, b, b, a, c]
c5 = [a, b, b, c, c, c] c10 = [a, b, b, b, b, c]

Using Proposition 3.1, we have

1 = [a, b, c4] = [a, b, c]4[a, b, c, c]6[a, b, c, c, c]4[a, b, c, c, c, c] = [a, b, c, c, c, c],

hence c1 = 1. Similarly, from [a, b4, c] = 1 we get c4 = c10 = 1. Using the
fact that G/Z(G) is metabelian of exponent four, the following identities
follow directly from [8, Lemma 3]:

[y, z, x, x, x, w] = 1. (1)

[x, y, y, y, z, w] = [x, y2, z2, w]. (2)
[x, y, z]2 = [x, y, x, y, z][x, y, y, y, z][y, x, x, x, z]. (3)

Using Proposition 3.1, we get [x, y2, z2] = [x, y, z2]2[x, y, y, z2] = [x, y, y, z, z],
hence we can rewrite (2) as

[x, y, y, y, z, w] = [x, y, y, z, z, w]. (4)

The identity (1) implies c2 = c5 = 1, whereas (4) implies c8 = c5 = 1,
hence also c3 = 1. Commuting (3) with w and using Proposition 3.1, we
get [x, y, x, y, z, w][x, y, y, y, z, w][y, x, x, x, z, w] = 1. In particular, we get
c6 = 1. Replacing a with ca in [a, b, b, a, c, c] = 1, we obtain [c, b, b, a, c, c] =
1, which implies c7 = 1, hence also c9 = 1. This completes the proof that
the nilpotency class of G does not exceed 5. On the other hand, the free 3-
generator metabelian group of exponent four is a homomorphic image of the
free 3-generator metabelian 4-central group F , hence the nilpotency class of
F is at least 5 by [8]. This proves the result. �

It is noted in [4] that if G is a soluble group of exponent four, then the
subgroup G2 is nilpotent of class depending only on the derived length of G.
A direct consequence of this result is that if G is a soluble 4-central group
of derived length d, then G2 is nilpotent of class depending only on d. In
case of 4-central metabelian groups, we have the following.
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Proposition 3.5. Let G be a 4-central metabelian group. Then the subgroup
G2 is nilpotent of class ≤ 2.

Proof. Let a, b, c ∈ G. Then we have [a2, b2, c2] = [a2, b, c2]2[a2, b, b, c2] =
[a, b, c2]4[a, b, a, c2]2[a, b, b, c2]2[a, b, a, b, c2]. Using Proposition 3.1, we obtain
[a2, b2, c2] = [a, b, a, b, c2] = [a, b, a, b, c]2[a, b, a, b, c, c] = [a, b, a, b, c, c], which
is trivial by Proposition 3.4. Since G is metabelian, we have [x, y, z] = 1 for
any x, y, z ∈ G2, hence the result. �

Proof of Theorem 1.4. First of all, the results of [8] imply that the class of
Fr is ≤ r + 3 when r = 2, 3, and is of class ≤ r + 2 when r > 3. From
the Example 3.3 and Proposition 3.4 it follows that the assertion is already
proved for r = 2, 3. Furthermore, every 4-central metabelian group, being a
center-by-exponent-four group, satisfies the following identities [8]:

[y, z, x, x, x, w] = 1. (1)

[x, y, y, y, z, w] = [x, y2, z2, w] = [x, y, y, z, z, w] = [z, y, y, x, x, w]. (2)

[x, y, x, y, z, w][x, y, y, z, z, w][y, x, x, z, z, w] = 1. (3)

[x, y, z, z, u, v, w] = 1. (4)

Now, let H be a four-generator 4-central metabelian group. By [8], we have
to prove that all the commutators of weight 6 are trivial. Because of the
class restriction of F3 and (1)–(4), it is enough to consider the following
commutators.

c1 = [x, y, z, z, w, w],
c2 = [x, y, x, y, z, w],
c3 = [x, y, y, z, z, w].

At first we notice that c1 = [x, y, z2, w2] ∈ [H ′,H2,H2] ≤ γ3(H2) = 1
by Proposition 3.5. For the remaining cases we make a use of the iden-
tity [x, y, y, z, z][x, y, x, y, z] = [x, z, y, y, y][z, x, x, y, y] which holds in every
metabelian 4-central group and can be proved by a routine expansion in
F3 (see also the remark at the end of the proof). Commuting this identity
with w and using (2) and (3), we obtain [y, x, x, z, z, w] = [x, y, x, y, z, w].
Observing (3) once again yields c3 = 1, hence also c2 = 1. This, together
with the fact that there are 4-generator metabelian groups of exponent 4
and class 5 [8], implies that the class of F4 is 5.

Now we may assume that r ≥ 5. By [8] we only need to prove that the class
of Fr is ≤ r + 1. Let x1, x2, . . . , xr be the generators of Fr and consider the
commutator c = [a, b, y1, . . . , yr], where a, b, yi ∈ {x1, x2, . . . , xr}. If yi = yj

for some i 6= j, then c = 1 by (4), thus the only form to be considered is c =
[a, b, a, b, y3, . . . , yr], where y3, . . . , yr are pairwise distinct. By (3) and (4)
we have [a, b, a, b, y3, y4, . . . yr] = [a, 3b, y3, y4, . . . , yr][b, 3a, y3, y4, . . . , yr] = 1,
which completes the proof. �

Remark. The nilpotency class of Fr, where r is small enough, can be calcu-
lated using the Nilpotent Quotient Algorithm [15] which is implemented as
a package for GAP [6]. In this way one can also check the identities used in
the proof of Theorem 1.4.
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4. 6-central groups

If G is a 6-central group, then it is k-abelian, where k = |B(2, 6)| = 228325.
A better bound for k can be achieved using Corollary 2.4. Namely, if G is
a two-generator 6-central group, then G/Z(G) is a homomorphic image of
B(2, 6). It can be read off from a power–commutator presentation of B(2, 6)
(see [10]) that this group is soluble with the derived length 3, which yields
that G is soluble of derived length ≤ 4, hence expG′ divides 66. It follows
from here that every 6-central group is 67-abelian. However, even this bound
is far from the best one. It turns out that every 6-central group is 36-abelian.
We sketch here computer calculations which lead to the proof of this fact.

Proof of Theorem 1.2. Let F be the free group of rank 2. Then F/[F 6, F ]
is isomorphic to the free 6-central group of rank two. Since F/F 6 ∼= B(2, 6)
is polycyclic, F/[F 6, F ] is also polycyclic. The polycyclic presentation of
B(2, 6) is given in [10]. Suppose that this presentation is given as F/F 6 =
〈x1, . . . , xk|r1 = s1, . . . , rl = sl〉. Then F/[F 6, F ] has a presentation of the
form F/[F 6, F ] = 〈x1, . . . , xk, y1, . . . , yl|r1 = s1y1, . . . , rl = slyl, [xi, yj ] = 1〉.
Now the consistency check yields a polycyclic presentation for F/[F 6, F ]; the
computational tools for doing this are implemented in GAP [6] by W. Nickel
(personal communication). Let G = F/[F 6, F ] and let a, b ∈ G. Since G is
6-central, we have (ab)6 ≡ a6b6 mod (G′ ∩ Z(G)). The group G′ ∩ Z(G) is
finite and abelian. Computations with GAP show that G′∩Z(G) ∼= C4

3×C14
6 ,

which yields (ab)36 = a36b36, hence G is 36-abelian. �

Now we determine the structure of nilpotent 6-central groups. We need
the following technical result concerning nilpotent groups of exponent 6.

Lemma 4.1. Let G be a nilpotent group of exponent 6. Then G is metabelian
and nilpotent of class ≤ 3 and every two-generator subgroup is nilpotent of
class ≤ 2. The derived subgroup G′ is of exponent dividing three.

Proof. Let a, b ∈ G and let H = 〈a, b〉. We may assume that H is nilpotent
of class ≤ 3. In order to show that H is nilpotent of class ≤ 2, we have to
prove that [a, b, b] = [a, b, a] = 1.

By the assumption, H is metabelian. Hence we have 1 = [a, b6] =
[a, b]6[a, b, b]15 = [a, b, b]3. By the symmetry we also have [a, b, a]3 = 1. Now,
1 = (ab−1)6 = [a, b]15[a, b, a]20[a, b, b]20 = [a, b]3[a, b, a]2[a, b, b]2. Similarly,
we have 1 = (ab−1)12 = [a, b]66[a, b, a]220[a, b, b]220 = [a, b, a][a, b, b], which
implies [a, b]3 = 1. Replacing a by ba in the identity [a, b, a][a, b, b] = 1, we
get [a, b, a][a, b, b]a[a, b, b] = 1, hence [a, b, b] = 1 and therefore [a, b, a] = 1.

Since every two-generator subgroup of G is nilpotent of class ≤ 2, this
implies that G is nilpotent of class ≤ 3; see [16, Part 2, Theorem 7.15].
Hence G is metabelian and the identity [a, b]3 = 1 implies G′3 = 1. �

Now we have:

Corollary 4.2. Let G be a nilpotent 6-central group.
(a) G is nilpotent of class ≤ 4.
(b) Every two-generator subgroup is metabelian and nilpotent of class

three at most.
(c) γ3(G)3 = 1.



11

(d) G satisfies the law [x, y]6 = 1.

Proof. Applying Lemma 4.1 to the group G/Z(G), we obtain (a), (b) and
(c). Let x, y ∈ G. Observing 1 = [x, y6] = [x, y]6[x, y, y]15 = [x, y]6, we get
(d). �

Corollary 4.3. Let G be a nilpotent group. Then G is 6-central if and only
if [x, y]6 = [x, y, y]3 = [x, y, y, y] = 1 for any x, y ∈ G.

Example 4.4. Let D = 〈x〉 × 〈y〉 × 〈z〉, where x is of order 6 and y and z
are of order 3. Let A = [D]〈a〉 be the semidirect product of the group D by
the cyclic group of order 36, where the action of a on the generators of D is
given as follows.

[x, a] = z, [y, a] = [z, a] = 1.

Let G = [A]〈b〉, where b is an element of order 36 acting on A in the following
way.

[x, b] = y, [y, b] = [z, b] = 1, [a, b] = x.

The group G is metabelian of class 3 and order 25 · 37, the exponent of G
is 36. It is easy to check that G is 6-central and is not k-abelian for any
1 < k < 36.

5. Metabelian 8-central groups

By Proposition 2.8, every 8-central metabelian group is 128-abelian. Yet
this estimate can be improved. Using a detailed analysis of metabelian
groups of exponent eight in [3], we shall prove that every 8-central metabelian
group is 32-abelian. Starting as usual, we prove the following lemma.

Lemma 5.1. Let G be a metabelian 8-central group and let H ≤ G be
a two-generator subgroup. Then γ6(H)4 = γ10(H)2 = γ14(H) = 1 and
G′16 = γ3(G)8 = 1.

Proof. The equality γ3(G)8 = 1 follows from Lemma 2.3. Since H/Z(H) is
a 2-generator metabelian group of exponent 8, we have γ5(H/Z(H))4 =
γ9(H/Z(H))2 = γ13(H/Z(H)) = 1 by [3], hence γ6(H)4 = γ10(H)2 =
γ14(H) = 1. So we are left with the proof that G′16 = 1. Let a, b ∈ G.
First we note that [a, b, b4]4 = [a, b, b]16[a, 3b]24[a, 4b]16[a, 5b]4 = 1, therefore
[a, b]4 commutes with b4. Since G is 13-Engel, we have

1 = [a, 13b]
= [a, b](−1+b)12

= [a, b]1−12b+66b2−220b3+495b4−792b5+924b6−792b7+495b8−220b9+66b10−12b11+b12 .

By 8-centrality this yields 1 = [a, b]1576+4b2+4b6 . Using Lemma 2.3 and
[a, b]4b6 = [a, b]4b2 , we get [a, b]48 = 1. On the other hand, we know that
[a, b]64 = 1 by Lemma 2.3, hence [a, b]16 = 1 and the lemma is proved. �

Corollary 5.2. Every metabelian 8-central group is 32-abelian.

Proof. This follows from Lemma 5.1 and the expansion

(ab)32 = ((ab)8)4 = a32b32 ·
∏

0<i+j<8

[a, ib
−1, ja]4(

8
i+j+1) = a32b32.

�
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Example 5.3. Let D be a group generated by the mutually commuting
generators x, y1, . . . , y6, z1, . . . , z6, w1, w2, w3 and xij , where 1 ≤ i ≤ 8,
1 ≤ j ≤ i + 1. The generators x8i, yj , zk and wl are involutions and
we have the following additional relations:

x8 = c x2
43 = x83x85x87y3y4z5 x2

64 = z3

x4
11 = x2

31x71w1c x2
44 = x84x86x88y3y4z5 x2

65 = z4

x4
12 = x2

34x78w3c x2
45 = x85x87x89y4y5z3z5z6 x2

66 = z5

x4
21 = x83x85y2y3z1 x2

51 = y1w1 x2
67 = z6

x4
22 = x84x86y3y4z5 x2

52 = y2w2 x2
71 = w1

x4
23 = x85x87y4y5z3z5z6 x2

53 = y3z2z3w2 x2
72 = w2

x4
31 = w1 x2

54 = y4w2 x2
73 = w2

x4
32 = w2 x2

55 = y5w2 x2
74 = w2

x4
33 = w2 x2

56 = y6w3 x2
75 = w2

x4
34 = w3 x2

61 = z1 x2
76 = w2

x2
41 = x81x83x85y2y3z1 x2

62 = z2 x2
77 = w2

x2
42 = x82x84x86y3y4z5 x2

63 = z4 x2
78 = w3

Here we use the abbreviation c = x2
32x

2
33x72x73x74x75x76x77. Let A = [D]〈a〉

be the semidirect product of D with a cyclic group 〈a〉 where a induces the
following automorphism of order 32 on D: [x, a] = x11, [wk, a] = 1 for
1 ≤ k ≤ 3, [xij , a] = xi+1,j for 1 ≤ i ≤ 7, 1 ≤ j ≤ i + 1 and

[x81, a] = y1 [x88, a] = y4 [y6, a] = z5

[x82, a] = y2 [x89, a] = y5 [z1, a] = w1

[x83, a] = y3z2z3 [y1, a] = z1 [z2, a] = w2

[x84, a] = y4z3z5 [y2, a] = z2 [z3, a] = w2

[x85, a] = y3z3z4 [y3, a] = z4 [z4, a] = w2

[x86, a] = y4z4z5 [y4, a] = z3 [z5, a] = w2

[x87, a] = y3 [y5, a] = z4 [z6, a] = w2

Let G = [A]〈b〉, where b is an element of order 32 acting on A in the following
way: [a, b] = x−1, [x, b] = x12, [wk, b] = 1 for 1 ≤ k ≤ 3, [xij , b] = xi+1,j+1

for 1 ≤ i ≤ 7, 1 ≤ j ≤ i + 1 and

[x81, b] = y2 [x88, b] = y5 [y6, b] = z6

[x82, b] = y3z2z3 [x89, b] = y6 [z1, b] = w2

[x83, b] = y4z3z5 [y1, b] = z2 [z2, b] = w2

[x84, b] = y3z3z4 [y2, b] = z4 [z3, b] = w2

[x85, b] = y4z4z5 [y3, b] = z3 [z4, b] = w2

[x86, b] = y3 [y4, b] = z4 [z5, b] = w2

[x87, b] = y4 [y5, b] = z5 [z6, b] = w3

We notice that G = 〈a, b〉 is metabelian and nilpotent of class 13, |G| = 281

and G32 = 1. One can check that G is 8-central and that (ab)k 6= akbk for
any 1 < k < 32.

6. Exponent semigroups of n-central groups for n = 2, 3, 4, 6

For a group G define

E(G) = {n ∈ Z : (xy)n = xnyn for all x, y ∈ G}.
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These sets are semigroups under multiplication and they always contain zero.
According to [12], the set E(G) is called the exponent semigroup of the group
G. One of the results in [12] is an arithmetic characterization of the sets
E(G) for an arbitrary group G. It is shown there that each of these sets
always forms a so-called Levi system, which is, roughly speaking, a union of
idempotent residue classes modulo a certain integer m, which depends on
G. More precisely, let q1, q2, . . . , qt be integers, qi > 1 and gcd(qi, qj) = 1
for i 6= j. Let B(q1, q2, . . . , qt) be the set of integers which is the union of
2t residue classes modulo qi satisfying each a system of congruences m ≡ δi

mod qi, where i = 1, . . . , t and δi ∈ {0, 1}. It is proved in [12] that each of
the sets E(G) is equal either to Z, {0, 1} or to some B(q1, q2, . . . , qt) with
qi > 2. This enables us to formulate the following result:

Theorem 6.1. Let n ∈ {2, 3, 4, 6} and let G be a free n-central group with
two or more generators. Then E(G) = B(n2).

Proof. Let G be the free 2-central group with r > 1 generators. Then m = 4
is the smallest element of E(G). It follows from [12] that k2 ≡ k mod 4,
hence either k ≡ 0 mod 4 or k ≡ 1 mod 4, which implies E(G) ⊆ B(4).
Conversely, let t be any integer and x, y ∈ G. Then we have (xy)4t = x4ty4t

and (xy)4t+1 = x4t+1y4t+1 which shows that B(4) ⊆ E(G). This proves our
theorem for n = 2. For other n’s the proof is very similar. There is only
a slight difference in the case n = 6, since the congruence equation k2 ≡ k
mod 36 has the following solutions: k ≡ 0 mod 36, k ≡ 1 mod 36, k ≡ 9
mod 36 and k ≡ 28 mod 36. But since there are 6-central groups which are
neither 9-abelian nor 28-abelian (see Example 4.4), we can exclude the last
two solutions. �

7. (k, n)-central groups

A group G is said to be (k, n)-central if G/Zk(G) is of exponent n, that
is, G satisfies the law [xn

1 , x2, . . . , xk+1] = 1. It is clear that (0, n)-central
groups are precisely the groups of exponent n, (1, n)-central groups are just
n-central groups and the class of (k, 1)-central groups coincides with the
class of all nilpotent groups of class ≤ k. We have already noticed that n-
central groups are very closely related to m-abelian groups. The situation is
very similar for (k, n)-central groups, where the so called m-nilpotent groups
[2] play an important role. For a given integer m and two group elements
x, y define an m-commutator [14] of x and y by [x, y]m = (xy)my−mx−m.
There is a connection between commutators and m-commutators given by
the identity

[x, y]m = [y, x]y
−1x−2

[y2, x]y
−2x−3 · · · [ym−1, x]y

1−mx−m
.

For a group G define the m-center [2] by Z(G;m) = {c ∈ G : [g, c]m =
[c, g]m = 1 for every g ∈ G}. It is easily seen that Z(G;m) is a char-
acteristic subgroup of G. The upper m-center chain Zi(G;m) is defined
inductively by the following rules: Z0(G;m) = 1, Zi+1(G;m)/Zi(G;m) =
Z(G/Zi(G;m);m). A group G is said to be m-nilpotent of class ≤ k if
Zk(G;m) = G. It is not difficult to see that a group G is m-nilpotent of class
≤ k if and only if [. . . [[x1, x2]m, x3]m, . . . , xk+1]m = 1 for all x1, x2, . . . , xk+1 ∈
G. Suppose now that G is a (k, n)-central group. For any x1, x2 ∈ G we
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have [x1, x2]n ∈ Gn ≤ Zk(G), hence G is n-nilpotent of class ≤ k + 1. As
in [7], we can ask the following question: If G is a (k, n)-central group, is
there an integer f(n) such that G is f(n)-nilpotent of class ≤ k? Let C
be a class of groups closed with respect to the homomorphic images and
suppose that every n-central group from C is f(n)-abelian. Let G be a
(k, n)-central group belonging to C. Then G/Zk−1(G) is n-central, hence
it is f(n)-abelian. Let m = f(n). We have [x1, x2]m ∈ Zk−1(G), hence
[. . . [[x1, x2]m, x3]m, . . . , xk+1]m = 1. It follows that every (k, n)-central
group from C is f(n)-nilpotent of class ≤ k. The results of the previous
sections now yield:

Corollary 7.1.
(a) If n ∈ {2, 3, 4, 6}, then every (k, n)-central group is n2-nilpotent of

class ≤ k.
(b) Every metabelian (k, n)-central group is 2n2-nilpotent of class ≤ k;

if n is odd, then we can replace 2n2 with n2.
(c) Every metabelian (k, 8)-central group is 32-nilpotent of class ≤ k.

In determining an explicit bound for f(n) in some other cases, the follow-
ing assertion is of some help:

Proposition 7.2. Let G be a (k, n)-central group. If exp γk+1(G) = m < ∞,
then G is mn-nilpotent of class ≤ k.

Proof. Let x1, x2, . . . , xk+1 ∈ G and put a = [. . . [x1, x2]mn, x3]mn, . . . , xk]mn.
Clearly a ∈ γk(G). In particular, we have [a, xk+1]mn = 1, since γk+1(G) is
of exponent m. As G is (k, n)-central, it follows [x1, x2]mn ∈ Zk(G), hence
a ∈ Z2(G). This means that [[a, xk+1]n, an]m ∈ [G′, Z2(G)] = 1. We also
have [[a, xk+1]nan, xn

k+1]m ∈ [γk(G), Zk(G)] = 1. But then

[a, xk+1]mn = [[a, xk+1]nan, xn
k+1]m · [[a, xk+1]n, an]m · [a, xk+1]mn = 1,

hence the proposition is proved. �

Finally, we give a version of Theorem 1.3 for (k, p)-central groups:

Theorem 7.3. Let G be a metabelian group and p a prime. Then G is
(k, p)-central if and only if γk+1(G)p = γk+p(G) = 1.

Proof. Suppose that G is (k, p)-central. Then G/Zk−1(G) is p-central, so
we may apply Theorem 1.3 to obtain γk+p(G) = 1 and G′p ≤ Zk−1(G),
which further yields [x1, x2, . . . , xk+1]p = [[x1, x2]p, . . . , xk+1] = 1, hence
γk+1(G)p = 1.

Conversely, suppose that γk+1(G)p = γk+p(G) = 1 and let x0, x1, . . . , xk ∈
G. Using Lemma 2.1, we get [xp

0, x1, . . . , xk] =
∏p

i=1[x1, ix0, x2, . . . , xk]−(p
i) =

1 and the theorem is proved. �
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