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ABSTRACT. A group G is said to be n-central if the factor group G/Z(G)
is of exponent n. We improve a result of Gupta and Rhemtulla by
showing that every 4-central group is 16-abelian and every 6-central
group is 36-abelian. There are examples of finite groups which show that
these bounds are best possible. Consequently, we completely describe
the structure of exponent semigroups of free non-cyclic n-central groups
for n = 2,3,4,6. We obtain a characterization of metabelian p-central
groups and a classification of finitely generated 2-central groups. We
compute the nilpotency class of the free metabelian 4-central group of
arbitrary finite rank.

Keywords. group, finite exponent, central extension, n-abelian.

1. INTRODUCTION

The groups of finite exponent play a prominent role in group theory. Two
of the most important problems that occur in connection with these groups
are the so called Burnside problem and the restricted Burnside problem. For
a survey about these two problems the reader is refered to the M. Vaughan—
Lee’s book [18].

The purpose of this paper is the study of center-by-finite-exponent groups.
More precisely, a group G is said to be n-central if G/Z(G) is a group of
exponent n. This type of groups was initially considered by N. D. Gupta
and A. H. Rhemtulla [7]. In particular, they noted that if an integer n is
such that the free two-generator Burnside group B(2,n) of exponent n is
finite, then there exists an integer 1 < f(n) < |B(2,n)| such that the map
x — 27 is a group endomorphism of every n-central group. Saying that
a group G is k-abelian if (zy)* = 2¥y* for any z,y € G, we can state the
following question of [7]: Does there exist for a given positive integer n,
an integer f(n) > 1 such that every n-central group is f(n)-abelian? The
answer to this question is negative in general, as it was shown by S. I. Adjan
[1]. On the other hand, the answer is certainly positive for n = 2,3,4,6 by
the solution of Burnside problem for these exponents. Apart from the crude
bound f(n) = |B(2,n)|, the following result can be found in [7].

Theorem A ([7], Theorem 1).

(a) BEwvery 2-central group is 4-abelian.
(b) Ewvery 3-central group is 9-abelian.
(c) Every 4-central group is 32-abelian.

There is a question whether the bounds for f(2), f(3) and f(4) in Theorem
A are the best possible. It turns out that this is true for 2-central and 3-
central groups. However, the bound for 4-central groups can be improved.

Theorem 1.1. Every 4-central group is 16-abelian.

The result is best possible in a sense that there exists a 4-central group
(even finite and metabelian) which is not k-abelian for any 1 < k < 16.
2
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Beside that, there appears to be no reasonably good estimate for f(6) in [7]
or elsewhere. Using computer calculations, we are able to construct the free
two-generator 6-central group. This gives us the following result.

Theorem 1.2. Every 6-central group is 36-abelian.

Here it is worth mentioning that there exists a finite nilpotent 6-central
group which is not k-abelian for 1 < k < 36. By investigating the structure
of nilpotent 6-central groups in more detail, we also give a characterization
of nilpotent 6-central groups in terms of the powers of certain Engel words;
see Corollary 4.3.

In [19, 20] E. I. Zel’'manov solved the celebrated restricted Burnside prob-
lem by proving that there is a largest finite quotient R(r,n) of the free
r-generator group B(r,n) of exponent n. Now, let G be a locally soluble
or locally finite n-central group. Let a,b € G. Then (a,b)/Z({(a,b)) is a
homomorphic image of R(2,n), hence (a,b)’ is a finite group of exponent e
dividing |R(2,n)| by Schur’s theorem [16, Part 1, Theorem 4.12]. Now it is
easy to see that (ab)*® = a*b* for k = ne, therefore every locally soluble or
locally finite n-central group is g(n)-abelian for some g(n) > 1. Focusing on
n-central metabelian groups, we prove that every n-central metabelian group
is 2n2-abelian; if n is odd, then such a group is even n%-abelian (Proposition
2.8). This result is best possible at least in the case when n is an odd prime.
If h(n) > 1 is the least integer such that every metabelian n-central group is
h(n)-abelian, then one might conjecture that h(n) > n? for all n’s. However,
this fails to be true. Namely, it turns out that h(8) = 32; this is proved in
Section 5.

Dealing with soluble n-central groups, one can reduce the problem to a
consideration of finite soluble n-central groups; see Theorem 2.5. As a con-
sequence, we obtain the following characterization of metabelian p-central
groups.

Theorem 1.3. Let p be a prime and let G be a metabelian group. Then G
is p-central if and only if the exponent of G' divides p and G is nilpotent of
class < p.

This is an extension of Theorem 13 of [13] which gives a characterization
of metabelian p-central p-groups. It also generalizes the well-known result
of Meier-Wunderli [16, Part 2, pp. 50] that a metabelian group of exponent
p is nilpotent of class at most p. A similar result in this direction, Corollary
2.7, is a classification of finitely generated 2-central groups, which depends
on a classification of finite 2-central groups obtained in [5].

Another question arising in the study of metabelian n-central groups is
the following. Suppose that F; is the free metabelian 4-central group of rank
r. What is the nilpotency class of F,.? From a result of [8] it follows directly
that F,. is of class < r+ 3 when r = 2,3, and is of class < r 4+ 2 when r > 3.
Lifting the identities, which hold in the free r-generator group of exponent
four, to F; and using some commutator calculations, we compute the exact
class of Fi.

Theorem 1.4. Let r > 1 and let F, be the r-generator free metabelian 4-
central group. Then F,. is nilpotent and the class of F,. is 5 when r = 2,3,
and is v + 1 when r > 3.



The paper is organized as follows. In Section 2 we derive some general
properties of soluble n-central groups. Section 3 is devoted to 4-central
groups. There we prove Theorem 1.1 and Theorem 1.4. In sections 4 and
5 we deal with 6-central groups and metabelian 8-central groups. Using the
results of L.-C. Kappe [12], we completely describe the arithmetic structure
of exponent semigroups of free non-cyclic n-central groups in Section 6. We
also deal with the following generalization of n-central groups. Define a
group G to be (k,n)-central if the factor group G/Z;(G) is of exponent n.
The results obtained for n-central groups can be extended to the class of
(k,n)-central groups in a natural way. This is briefly mentioned in Section
7.

The notation is mainly taken from [16] and [18]. The standard commuta-
tor identities [16, Part 1, Section 2.1] will be used without further reference.

2. SOLUBLE n-CENTRAL GROUPS

In the beginning we mention some well-known identities which hold in
metabelian groups; for a proof see [13].

Lemma 2.1. Let G be a metabelian group, x,y,z € G and c,d € G'. Then
we have:

(a) [C,l’,y] - [C7y7$]

(b) [z,y,2] = [y,z,2] "

(C) [C 7'%'] = [Ca x} [d7 .T]

(d) [x,y, 2]y, z, 2] [z,m,y]n: 1 (Jacobi identity).

(@ [o,9"] = 11 [, 1y)(%)

() @y =am T [w,,ja)le) o,
0<it+j<n

Here is a basic characterization of n-central groups:

Lemma 2.2. Let G be a group. The following statements are equivalent.

(a) G is an n-central group.
(b) G" < Z(G).
(¢) [z™,y] =1 for any z,y € G.
(d) (zy)" = (yz)" for any z,y € G.
The proof of this lemma is elementary and will be omitted.

Our first result provides a starting point for the calculation of exponents
of terms of the lower central series in a metabelian n-central group.

Lemma 2.3. Let G be a metabelian n-central group. Then the exponent of
G’ divides n* and v3(G) is of exponent dividing n.
Proof. Let z,y € G. Since [z,y]"™ belongs to the center of G, we have
[x,y, 2]" = [[z,y]™, 2] =1 for any z € G. Now we have
n
1= [x7yn]n = H[xwy]n(?) = [x7y]n2’
i=1

hence the assertion is proved. O
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Corollary 2.4. Let G be a soluble n-central group. Then the derived sub-
group G’ has a finite exponent dividing n* @) where d is the derived length
of G.

Proof. We prove this by induction on the derived length d of group G. By
Lemma 2.3 we may assume that d > 2. Since G(?~2) is metabelian, it follows
from Lemma 2.3 that exp G4~ divides n?. By the assumption, the group
(G/G@=D) = @' /G4 also has a finite exponent dividing n*(@~2), hence

the exponent of G’ divides n2(d=1), O

The next result shows that the structure of finite soluble n-central groups
tells us the whole story about finitely generated soluble n-central groups.
More precisely, we have:

Theorem 2.5. Let G be a finitely generated soluble group of derived length
d and let n be a positive integer. The group G is n-central if and only if G
1s i.somorphic to a subgroup of the direct product of a finite soluble n-central
group of derived length < d and a free abelian group of finite rank.

Proof. Let G be a finitely generated soluble n-central group. Then G/Z(G)
is finite, hence G’ is finite by Schur’s theorem [16, Part 1, Theorem 4.12].
Therefore the group G is an FC-group [17, Theorem 1.1]. From a proof
of a result of Cernikov — see, for instance, [17, Theorem 1.7] — it follows
that there is a natural embedding of G into G/A x G/T, where T is the
torsion subgroup of group G and A is a maximal torsion—free subgroup of
G contained in the center of G. The group G/A is finite, soluble of derived
length < d and n-central, whereas G /T is a free abelian group of finite rank;
see [17] for the details. The converse statement is obvious. (]

Since every finite p*-central group is clearly nilpotent, we immediately
have the following.

Corollary 2.6. Let G be a finitely generated soluble group, let p be a prime
and let k be a positive integer. The group G is pF-central if and only if G is
isomorphic to a subgroup of the direct product of a finite soluble p*-central
p-group and an abelian group of finite rank.

By [13, Theorem 13|, a metabelian p-group G is p-central if and only if
G'? = v,11(G) = 1. We give a proof of Theorem 1.3 which shows that we
may leave out the assumption of being a p-group:

Proof of Theorem 1.3. For p = 2, this is proved in [13, Theorem 7], therefore
we may assume p > 2. Suppose that G is a metabelian p-central group. Let
x,y € G. The 2-generator group (x,y) has a derived subgroup of exponent
dividing p by Corollary 2.6 and [13, Theorem 13], hence [z,y|’ = 1 and
therefore G’ = 1. Let H be any p-generator subgroup of the group G.
Using Corollary 2.6 and [13, Theorem 13] once again, we conclude that H
is nilpotent of class < p. By a well-known result of Heineken [11], G is
nilpotent of class < p. The converse statement follows directly from the
identity (e) of Lemma 2.1. O

In [5], there is a classification of finite 2-central groups. Since every 2-
central group is metabelian [13, Theorem 7], there is a way to classify finitely
generated 2-central groups as follows.
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Corollary 2.7. Let G be a finitely generated group. Then G is 2-central

if and only if G is isomorphic to a subgroup of A x B, where A is abelian

group of finite rank and B is a subgroup of the direct product of groups each

of which is the central product of some of the following groups: cyclic 2-
2n—1 2 2n—2 .

groups, M, = (x,y | = =y* =1, [z,y] =% ) for various values of n

or the quaternion group of order 8.

Recall that every locally soluble n-central group is |R(2,n)|-abelian. In
case of metabelian groups, we can substantially improve this result.

Proposition 2.8. Let G be a metabelian n-central group. Then G is 2n?-
abelian. If n is odd, then G is also an n?-abelian group.

Proof. Let x,y € G. Then we have

(xy )" = 2"y ") B[] [y, ja) (e,
1<itj<n

Since G" < Z(G) and 2n(}) is divisible by n?, we obtain (zy~ )2 =
2 y*2”2 by Lemma 2.3. If we further assume that n is odd, then n divides
(g), so we get, using Lemma 2.3, (xy_l)”2 = " y_"2, hence G is n?-abelian.

0

When p is a prime, there exist finite metabelian p-central groups which
are not k-abelian for any 1 < k < p?. To see this, set F = Cp * Cp and let
G = F/F'PF"~,;1(F). This is a finite metabelian p-group of exponent p?.
By Theorem 1.3, G is a p-central group. If G were p-abelian, it would also
be (p — 1)-Engel by [13, Theorem 11], but this is not the case.

3. 4-CENTRAL GROUPS

Every 4-central group is 32-abelian by Theorem A. The proof of this result
in [7] does not rely on the solution of the Burnside problem for exponent
four. Using the information about the structure of groups of exponent 4, we
prove that every 4-central group is 16-abelian.

Proof of Theorem 1.1. Let G be a 4-central group and let a,b € G. The
group (a,b)/Z({a,b)) is a homomorphic image of B(2,4), hence (a,b) is
nilpotent of class 6 at most [18]. Pick w,z,y,z € {a,b}. Using the class
restriction, we get 1 = [[w, z, y]*, 2] = [w, z,y, 2]*, hence

7({a, b)) = 1. (1)
From [18, Section 6.3] it also follows that [a, b]?> € v4(G)Z(G), hence [[a, b]?, c]
75(G) for any ¢ € G. Since [[a, b]?, c] = [a, b, c]*[a, b, ¢, [a, b]], we get

[a,b,c)? € 75(G) (2)
for any a,b,c € G. Now, let x; € {a,b}, i = 1,...,5. Because of the class

restriction for (a,b) and (2) we obtain

(21, 29, 23, 24, 25)% = [[x1, T, 23)%, 24, 25] = 1,

hence

75((a,0))? = 1. (3)



The group (a, b)/v5({a, b)) is metabelian. Using (1) and (2), we get
1= [CL, b4] = [CL, b]4 mod ’}/5(<6L, b))

Observing (3), we obtain [a,b]® = 1. Since (a,b) is nilpotent of class < 6,
the commutator collection process [9, pp. 65-66] gives

(ab)'® = a''%b, a] () b, a, a) () b, @, 8] () +2(5) mod 4a((a, b)™.
Using (1), (2) and (3), we get (ab)'® = a'b!® hence G is 16-abelian. O

Turning our attention to 4-central metabelian groups, we first determine
the exponents of terms of the lower central series for such a group.

Proposition 3.1. Let G be a metabelian 4-central group. Then G =
13(G) = u(G)? = 1.

Proof. Since every 4-central group satisfies the law [z,4]® = 1 (see the
proof of Theorem 1.1), we have G’®* = 1. By Lemma 2.3 we also get
73(G)* = 1. Since G/Z(G) is a metabelian group of exponent 4, we ob-
tain v3(G/Z(G))? = 1 by [8]. This implies v4(G)? = 1. O
Corollary 3.2. Let G be a metabelian group. The following assertions are
equivalent:

(a) G is a 4-central group.
(b) G = 13(G)* = (G)? = 1 and [z,y]*[z,y, Y[z, v, y,y,y] = 1 for

all z,y € G.
(C) [xayayrl = [x7y7y7y]2 = [mvy]4[$7yay]2[xayvy7yay] =1 fO?" all T,y €
G.
Proof. This follows from Proposition 3.1 and from the identity [z,v*] =
[z, 91 2,9, 9%z, v, 9, v 2, 9, 9, v, 9. O

Next, we give an example of a finite metabelian 4-central group with
two generators, which is nilpotent of class 5 and is not k-abelian for any
1 <k <16.

Ezxample 3.3. Let D be the largest abelian quotient of the group
F = (2, 91,92, 21, 22, 23, W1, W2, w3, Wy |
334 = wgwg,y% = w1w2w3,y§ = WaW3W4, Z’ZZ = wJQ- = 1>.
The group D may be viewed as a group generated by the commuting gener-
ators x,y1, Y2, 21, 22, 23, W1, W2, w3, w4 and the remaining relations in D are
just those inherited from F. Let A = [D](a) be the semidirect product of
the group D by the cyclic group of order 16, where the action of a on the
generators of D is given as follows.
[z, a] = w1, [yi,a] = 2, [2),a] = wj, [wg,a] = 1. (1)

The relations of A are those of D, (1) and a'® = 1. Next we form the split
extension G = [A](b) generated by the element b of order 16 which induces
the following action on A.

[xab] = Y2, [yivb] = Zi+1, [Zjvb] = Wj+1, [wkvb] =1, [a’ b] = x_l' (2)
The relations of G are those of A, (2) and b'® = 1. We observe that G =
{a,b), |G| =29, G is metabelian and nilpotent of class 5 and exp(G) = 16.
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It is straightforward to prove that G is 4-central, yet it is not k-abelian for
any 1 < k < 16.

Now we begin with preparations for computing the nilpotency class of
the free r-generator metabelian 4-central group F,. The previous example,
together with [8], shows that F5 is nilpotent of class 5. Next we deal with
the three-generator case.

Proposition 3.4. The free three-generator metabelian 4-central group is
nilpotent of class 5.

Proof. Let G = (a, b, c) be a 3-generator metabelian 4-central group. By [§],
G is nilpotent of class < 6. In order to prove that the class of G is 5 at
most, we have to prove that all the commutators of the form [a, b, ja, ic],
where ¢ > 0, 5,k >0, i+ 5+ k = 5, are trivial. Using the fact that the class
of {(a,b) is < 5, we only have to deal with the following cases.

c1 = [a,b,c,c e, ] ce = [a,b,b,a,c,c]
¢y = [a,b,a,c,c,c| ¢y = [a,b,b,a,a,c]
c3 = [a,b,a,a,c,c| cg = [a,b,b,b,c, ]
¢y = [a,b,a,a,a,c| co = [a,b,b,b,a,c]
c5 = [a,b,b, ¢, c, ] c10 = [a,b,b,b,b, c]
Using Proposition 3.1, we have
1 =[a,b,c' = [a,b,d]*a, b, c,]%a, b, ¢, ¢, ]*[a, b, ¢, ¢, ¢, c] = [a, b, c,c, e d,

hence ¢; = 1. Similarly, from [a,b*,¢] = 1 we get ¢4 = c19 = 1. Using the
fact that G/Z(G) is metabelian of exponent four, the following identities
follow directly from [8, Lemma 3]:

[ya Z,I’,l‘,SE,U]] =1. (1)
[, 9,9, y, 2, w] = [z, 9%, 2%, w]. (2)
[x73/72]2 = [%3/7337317Z][%yyyayaz][%xﬁcaxvz}- (3)

Using Proposition 3.1, we get [,y 2%] = [z,y, ][, y, y, 2°] = [2,y,y, 2, 2],
hence we can rewrite (2) as

[, 9,9, 9, 2, w] = [2, 9, y, 2, 2, W] (4)
The identity (1) implies ca = ¢5 = 1, whereas (4) implies cg = ¢5 = 1,
hence also ¢3 = 1. Commuting (3) with w and using Proposition 3.1, we
get [z,y,z,y,z,w][x,y,y,y, z,w|[y, z,x,x, z,w] = 1. In particular, we get
¢ = 1. Replacing a with ca in [a, b, b, a, c,c] = 1, we obtain [¢,b,b,a,c,c] =
1, which implies ¢; = 1, hence also ¢g = 1. This completes the proof that
the nilpotency class of G does not exceed 5. On the other hand, the free 3-
generator metabelian group of exponent four is a homomorphic image of the
free 3-generator metabelian 4-central group F', hence the nilpotency class of
F is at least 5 by [8]. This proves the result. O

It is noted in [4] that if G is a soluble group of exponent four, then the
subgroup G? is nilpotent of class depending only on the derived length of G.
A direct consequence of this result is that if G is a soluble 4-central group
of derived length d, then G? is nilpotent of class depending only on d. In
case of 4-central metabelian groups, we have the following.
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Proposition 3.5. Let G be a 4-central metabelian group. Then the subgroup
G? is nilpotent of class < 2.

Proof. Let a,b,c € G. Then we have [a?,b% c?] = [a®,b,c?]?[a?,b,b,c?] =
[a,b,c*]*[a, b, a,c?]?[a,b,b, c?|?[a, b, a, b, c?]. Using Proposition 3.1, we obtain
[a%,b%, c?] = [a,b,a,b,c?] = [a,b,a,b,c]*[a,b,a,b,c,c] = [a,b,a,b,c,c|, which
is trivial by Proposition 3.4. Since G is metabelian, we have [z,y, z] = 1 for
any z,v,z € G2, hence the result. O

Proof of Theorem 1.4. First of all, the results of [8] imply that the class of
F,.is < r+ 3 when r = 2,3, and is of class < r + 2 when r > 3. From
the Example 3.3 and Proposition 3.4 it follows that the assertion is already
proved for r = 2,3. Furthermore, every 4-central metabelian group, being a
center-by-exponent-four group, satisfies the following identities [8]:

1)

(
(2,9, 9,9, 2, w] = [2,9°%, 2%, 0] = [v,9,y, 2, z,0] = [2,y,y,z,2,0].  (2)
(3)

[y’ Z? l’? ;E? :L" w] = 1'

I:x7 y? x? y’ z7 w] I:x7 y’ y? Z7 z7 w] [y7 x? x’ 'Z7 z’ w} = 1'
[x,y, 2, z,u,v,w] = 1. (4)

Now, let H be a four-generator 4-central metabelian group. By [8], we have
to prove that all the commutators of weight 6 are trivial. Because of the
class restriction of F3 and (1)—(4), it is enough to consider the following
commutators.

1 = [$7yyzazaw’w]a
C2 = [fE,y,l’,y,Z,UJ],
3 = [x7y’yv'zasz]'

At first we notice that ¢1 = [z,y,2%,w?] € [H',H? H?] < v3(H?) =1
by Proposition 3.5. For the remaining cases we make a use of the iden-
tity [z, y,y, 2, 2][z,y, z,y, 2] = [z, 2,y,v,9][2z, z, z,y,y] which holds in every
metabelian 4-central group and can be proved by a routine expansion in
F3 (see also the remark at the end of the proof). Commuting this identity
with w and using (2) and (3), we obtain [y, z,z, z, z,w] = [z,y,z,y, 2, w].
Observing (3) once again yields cs = 1, hence also co = 1. This, together
with the fact that there are 4-generator metabelian groups of exponent 4
and class 5 [8], implies that the class of Fy is 5.

Now we may assume that » > 5. By [8] we only need to prove that the class
of F. is <r+1. Let 1,9, ..., %, be the generators of F;. and consider the
commutator ¢ = [a,b,y1,...,yr], where a,b,y; € {z1,22,...,2,}. If y; = y;
for some i # j, then ¢ = 1 by (4), thus the only form to be considered is ¢ =
[a,b,a,b,ys3,...,y.], where ys,...,y, are pairwise distinct. By (3) and (4)
we have [CL, b,a,b,y3, ya, . .. yT] = [CL, 30,93, Y4, - - - 7y7“][ba 34, Y3,Y4s - -+ 797‘] =1,
which completes the proof. U

Remark. The nilpotency class of Fj., where r is small enough, can be calcu-
lated using the Nilpotent Quotient Algorithm [15] which is implemented as
a package for GAP [6]. In this way one can also check the identities used in
the proof of Theorem 1.4.
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4. 6-CENTRAL GROUPS

If G is a 6-central group, then it is k-abelian, where k = |B(2,6)| = 228325,
A better bound for k£ can be achieved using Corollary 2.4. Namely, if G is
a two-generator 6-central group, then G/Z(G) is a homomorphic image of
B(2,6). It can be read off from a power—commutator presentation of B(2,6)
(see [10]) that this group is soluble with the derived length 3, which yields
that G is soluble of derived length < 4, hence exp G’ divides 6°. It follows
from here that every 6-central group is 6”-abelian. However, even this bound
is far from the best one. It turns out that every 6-central group is 36-abelian.
We sketch here computer calculations which lead to the proof of this fact.

Proof of Theorem 1.2. Let F be the free group of rank 2. Then F/[FS, F]
is isomorphic to the free 6-central group of rank two. Since F//F% = B(2,6)
is polycyclic, F/[FS, F] is also polycyclic. The polycyclic presentation of
B(2,6) is given in [10]. Suppose that this presentation is given as F//F¢ =
(w1,...,2|r1 = 51,...,7 = 57). Then F/[FS F] has a presentation of the
form F/[FC F] = (x1,..., Tk, Y1, -, Y171 = 8191, - - -, 71 = Sy, [xi,y;) = 1).
Now the consistency check yields a polycyclic presentation for F/[F°, F]; the
computational tools for doing this are implemented in GAP [6] by W. Nickel
(personal communication). Let G = F/[F% F] and let a,b € G. Since G is
6-central, we have (ab)® = a5 mod (G’ N Z(G)). The group G' N Z(G) is
finite and abelian. Computations with GAP show that G'NZ(G) = O3 x C¢4,
which yields (ab)36 = a?6036, hence G is 36-abelian. O

Now we determine the structure of nilpotent 6-central groups. We need
the following technical result concerning nilpotent groups of exponent 6.

Lemma 4.1. Let G be a nilpotent group of exponent 6. Then G is metabelian
and nilpotent of class < 3 and every two-generator subgroup is nilpotent of
class < 2. The derived subgroup G’ is of exponent dividing three.

Proof. Let a,b € G and let H = (a,b). We may assume that H is nilpotent
of class < 3. In order to show that H is nilpotent of class < 2, we have to
prove that [a, b, b] = [a,b,a] = 1.

By the assumption, H is metabelian. Hence we have 1 = [a,b5] =
[a,b]%[a,b,b]'® = [a,b,b]®. By the symmetry we also have [a,b,a]3 = 1. Now,
1 = (ab™1)® = [a,b]"[a,b,a]?[a, b, b]*° = [a,b]?[a, b, a]?[a,b,b]?. Similarly,
we have 1 = (ab™1)12 = [a,b]%[a, b, a]**°[a,b,b)**° = [a,b,a][a,b,b], which
implies [a,b]?> = 1. Replacing a by ba in the identity [a, b, a][a, b, b] = 1, we
get [a, b, alla,b,b]*[a,b,b] =1, hence [a,b,b] =1 and therefore [a,b,a] = 1.

Since every two-generator subgroup of G is nilpotent of class < 2, this
implies that G is nilpotent of class < 3; see [16, Part 2, Theorem 7.15].
Hence G is metabelian and the identity [a,b]® = 1 implies G = 1. O

Now we have:

Corollary 4.2. Let G be a nilpotent 6-central group.

(a) G is nilpotent of class < 4.
(b) Every two-generator subgroup is metabelian and nilpotent of class
three at most.

(c) 13(G)* =1.
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(d) G satisfies the law [z,y]® = 1.

Proof. Applying Lemma 4.1 to the group G/Z(G), we obtain (a), (b) and
(c). Let x,y € G. Observing 1 = [z,y%] = [z,y]%[x,y,y]*® = [z,9]%, we get
(d). O

Corollary 4.3. Let G be a nilpotent group. Then G is 6-central if and only
if [2,9]° =[x,y 9> = [2,9,9.9] = 1 for any 2,y € G.
Ezample 4.4. Let D = (z) x (y) x (z), where z is of order 6 and y and z
are of order 3. Let A = [D](a) be the semidirect product of the group D by
the cyclic group of order 36, where the action of a on the generators of D is
given as follows.
[x,a] = z, [y,a] = [z,a] = 1.

Let G = [A](b), where b is an element of order 36 acting on A in the following
way.

[z,0] =y, [y,0] = [2,0] = 1, [a,b] = =.
The group G is metabelian of class 3 and order 2° - 37, the exponent of G

is 36. It is easy to check that G is 6-central and is not k-abelian for any
1<k < 36.

5. METABELIAN 8-CENTRAL GROUPS

By Proposition 2.8, every 8-central metabelian group is 128-abelian. Yet
this estimate can be improved. Using a detailed analysis of metabelian
groups of exponent eight in [3], we shall prove that every 8-central metabelian
group is 32-abelian. Starting as usual, we prove the following lemma.

Lemma 5.1. Let G be a metabelian 8-central group and let H < G be
a two-generator subgroup. Then v6(H)* = v10(H)? = y14(H) = 1 and
GllG = ’)/3(G)8 =1.

Proof. The equality v3(G)® = 1 follows from Lemma 2.3. Since H/Z(H) is
a 2-generator metabelian group of exponent 8, we have v5(H/Z(H))* =
v9(H/Z(H))* = m3(H/Z(H)) = 1 by [3], hence v6(H)* = y10(H)? =
y14(H) = 1. So we are left with the proof that G’' = 1. Let a,b € G.
First we note that [a, b, b*]* = [a, b, b]'%[a, 30]**[a, 4b]'6[a, 5b]* = 1, therefore
[a,b]* commutes with b*. Since G is 13-Engel, we have
1 = [a,13b]
= [a, b0

(a b]1—12b+66b2—220b3+495b4—792b5+924b6—792b7+49568—220b9+66b10—12b11+b12_

By 8-centrality this yields 1 = [a, 1576-+4b%+4b° Using Lemma 2.3 and

0]
[a, )" = [a,b]*", we get [a,b]*® = 1. On the other hand, we know that
[a,b]%* = 1 by Lemma 2.3, hence [a, ]! = 1 and the lemma is proved. [

Corollary 5.2. Every metabelian 8-central group is 32-abelian.
Proof. This follows from Lemma 5.1 and the expansion

(ab)®2 = ((ab)®)* = 03232 . H [a,ib_l,ja]4(i+?+1> — 3232
0<i+j<8
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Ezxample 5.3. Let D be a group generated by the mutually commuting
generators x,y1,...,¥6, 21, ..., 26, W1, w2, w3 and z;;, where 1 < 7 < §,
1 < j < i+ 1 The generators xg;, y;, 2, and w; are involutions and
we have the following additional relations:

¥ =c L33 = T3TR5LETY3Y425 x3, = 23
(L'jlil = 1‘%11'7111116 .%214 = T84T86T88Y3Y425 xéS =2z
37}12 = L34 L78W3C 9635 = X85X87L8IY4Y5232526 xgﬁ = 25
xil = Tg3T85Y2Y3%1 xgl = yjw1 ;1;97 = 24
$;12 = T84T86Y3Y4%5 :Egz = YoWsy 9551 = w;
9333 = I85X87Y4Y52325%6 9633 = Y32923W2 xgz = w9
93;11 =w 9524 = Yaw2 9553 = wo
$§12 = w2 ‘L‘gs = YsW2 1‘54 = wo
T3 = W2 56 = Yo 5 = w2
T3q = W3 T = 21 125 = Wy
904211 = T81T83L85Y2Y321 wgg = 29 1%7 = wy
564212 = X82X84L86Y3Y4%5 x?;g =24 x%s = ws

Here we use the abbreviation ¢ = x§2x§3x7gx73x74x75x76x77. Let A = [D](a)
be the semidirect product of D with a cyclic group (a) where a induces the
following automorphism of order 32 on D: [z,a] = zi1, [wk,a] = 1 for
1<k <3, [xij,a]:a:HLj for1<i<7,1<j5<i+1and

[z81,a] = 1 [zg8,a] =ya [y6,0a] = 25
[T82,a] = yo [z89,0] = y5 [21,a] = w1
[83,a] = y3z223 [y1,a] =21 [22,a] = wo
(T84, 0] = yaz3zs [y2,a] = 20 [23,a] = wo
(285, 0] = y3z324  [y3,0] = 24 24, a] = w2
[x86,a] = yaz425 [ya,a] = (25, a] = w2
[x87,a] = y3 [ys,a] = 26, a] = wa

Let G = [A](b), where b is an element of order 32 acting on A in the following
way: [a,b] = 271, [2,b] = 219, [wg,b] = 1 for 1 < k <3, [245,b] = Tit1+1
for1<i<7,1<j<i+1and

[281,0] = y2 [rs8,b] = y5  [v6,b] = 26
[r82,b] = y32223 [789,0] = y6 [21,b] = wo
[xsg, b] = Y423%25 [yl, b] = 29 [ZQ, b] = W2
[#84,0] = y32z324 [y2,b] =24 [23,b] = wo
[a:85, b] = Y424%5 [yg, b] = Z3 [Z4, b] = W2
(286, 0] = y3 [y4,0] = 24 [25,b] = w2
[287,b] = ya [ys,0] = 25 [26,b] = w3

We notice that G' = (a,b) is metabelian and nilpotent of class 13, |G| = 28!
and G32 = 1. One can check that G is 8-central and that (ab)* # a*b* for
any 1 < k < 32.

6. EXPONENT SEMIGROUPS OF n-CENTRAL GROUPS FOR n = 2,3,4,6
For a group G define
EG)={n€eZ : (xy)" =a"y" for all z,y € G}.
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These sets are semigroups under multiplication and they always contain zero.
According to [12], the set £(G) is called the exponent semigroup of the group
G. One of the results in [12] is an arithmetic characterization of the sets
E(Q) for an arbitrary group G. It is shown there that each of these sets
always forms a so-called Levi system, which is, roughly speaking, a union of
idempotent residue classes modulo a certain integer m, which depends on
G. More precisely, let g1,qo,...,q be integers, ¢; > 1 and ged(gi,q;) = 1
for i # j. Let B(q1,q2,--.,q) be the set of integers which is the union of
2! residue classes modulo g; satisfying each a system of congruences m = &;
mod ¢;, where i = 1,...,¢t and §; € {0,1}. It is proved in [12] that each of
the sets £(G) is equal either to Z, {0,1} or to some B(q1,q2,...,q) with
@; > 2. This enables us to formulate the following result:

Theorem 6.1. Let n € {2,3,4,6} and let G be a free n-central group with
two or more generators. Then £(G) = B(n?).

Proof. Let G be the free 2-central group with » > 1 generators. Then m = 4
is the smallest element of £(G). It follows from [12] that k? = k mod 4,
hence either k¥ = 0 mod 4 or k¥ = 1 mod 4, which implies £(G) C B(4).
Conversely, let t be any integer and z,y € G. Then we have (zy)* = x4y*
and (zy)#+! = 24 +1y4+1 which shows that B(4) C £(G). This proves our
theorem for n = 2. For other n’s the proof is very similar. There is only
a slight difference in the case n = 6, since the congruence equation k? = k
mod 36 has the following solutions: k¥ = 0 mod 36, k =1 mod 36, k = 9
mod 36 and £ = 28 mod 36. But since there are 6-central groups which are
neither 9-abelian nor 28-abelian (see Example 4.4), we can exclude the last
two solutions. O

7. (k,n)-CENTRAL GROUPS

A group G is said to be (k,n)-central if G/Z;(G) is of exponent n, that
is, G satisfies the law [z}, z2,...,zk41] = 1. It is clear that (0,n)-central
groups are precisely the groups of exponent n, (1,n)-central groups are just
n-central groups and the class of (k,1)-central groups coincides with the
class of all nilpotent groups of class < k. We have already noticed that n-
central groups are very closely related to m-abelian groups. The situation is
very similar for (k,n)-central groups, where the so called m-nilpotent groups
[2] play an important role. For a given integer m and two group elements
x,y define an m-commutator [14] of x and y by [z,y]m = (zy)"y "a™ ™.
There is a connection between commutators and m-commutators given by
the identity

—-2,-3

(@, = [y, e
For a group G define the m-center [2] by Z(G;m) = {c € G : [g,c]m =
[c,glm = 1lforevery g € G}. It is easily seen that Z(G;m) is a char-
acteristic subgroup of G. The upper m-center chain Z;(G;m) is defined
inductively by the following rules: Zo(G;m) = 1, Ziy1(G;m)/Zi(G;m) =
Z(G/Z;i(G;m);m). A group G is said to be m-nilpotent of class < k if
Zi(G;m) = G. Tt is not difficult to see that a group G is m-nilpotent of class
< kifand only if ... [[z1, 2]m, Z3]my - - - s Tkt1]m = Lforall 21,29, ...,z €
G. Suppose now that G is a (k,n)-central group. For any x1,z2 € G we

—1 m—1 ]yl—mx—m
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have [z1,x2], € G"™ < Zi(G), hence G is n-nilpotent of class < k + 1. As
in [7], we can ask the following question: If G is a (k,n)-central group, is
there an integer f(n) such that G is f(n)-nilpotent of class < k7 Let €
be a class of groups closed with respect to the homomorphic images and
suppose that every m-central group from € is f(n)-abelian. Let G be a
(k,n)-central group belonging to €. Then G/Z;_1(G) is n-central, hence
it is f(n)-abelian. Let m = f(n). We have [z1,22]m € Zk—1(G), hence
[...[[z1, x2)m, x3]ms - - -, Tht1]m = 1. It follows that every (k,n)-central
group from € is f(n)-nilpotent of class < k. The results of the previous
sections now yield:

Corollary 7.1.
(a) If n € {2,3,4,6}, then every (k,n)-central group is n*-nilpotent of
class < k.
(b) Every metabelian (k,n)-central group is 2n*-nilpotent of class < k;
if n is odd, then we can replace 2n? with n?.
(c) Every metabelian (k,8)-central group is 32-nilpotent of class < k.

In determining an explicit bound for f(n) in some other cases, the follow-
ing assertion is of some help:

Proposition 7.2. Let G be a (k,n)-central group. If expyr11(G) = m < oo,
then G is mn-nilpotent of class < k.

Proof. Let x1,xa,...,x541 € Gand put a = [...[z1, Z2]mn, T3]mns - - - s Th|mn-
Clearly a € v;(G). In particular, we have [a, xg4+1])" = 1, since vi4+1(G) is
of exponent m. As G is (k,n)-central, it follows [z1, Z2]mn € Zi(G), hence
a € Z3(G). This means that [[a, Zg11]n, a"]m € [G', Z2(G)] = 1. We also
have [[a, Zpy1]na", T} 1 |m € [W(G), Zk(G)] = 1. But then

[CL, xk—i—l]mn - [[a,xk+1]na”, xzb-{-l]m : [[a7xk+1]n,a"]m . [a)xk-‘rl]zn - 17

hence the proposition is proved. O
Finally, we give a version of Theorem 1.3 for (k, p)-central groups:

Theorem 7.3. Let G be a metabelian group and p a prime. Then G is
(k,p)-central if and only if Yip11(G)?P = Yi4p(G) = 1.

Proof. Suppose that G is (k,p)-central. Then G/Z;_1(G) is p-central, so
we may apply Theorem 1.3 to obtain v44,(G) = 1 and G? < Z;_1(G),

which further yields [z1,z9,...,2p11]P = [[z1,22]P,...,2k+1] = 1, hence
’)/]H_l(G)p =1.

Conversely, suppose that v,41(G)? = Y44p(G) = 1 and let zg, z1,..., 21 €
G. Using Lemma 2.1, we get [0, 1, . . ., xx] = [[7_; [@1, w0, x2, . . ., 2k] D) =
1 and the theorem is proved. O
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