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Abstract. Let G be a finite p-group. We prove that whenever the commuting
probability of G is greater than (2p2 + p− 2)/p5, the unramified Brauer group
of the field of G-invariant functions is trivial. Equivalently, all relations between
commutators in G are consequences of some universal ones. The bound is best
possible, and gives a global lower bound of 1/4 for all finite groups. The result
is attained by describing the structure of groups whose Bogomolov multipliers
are nontrivial, and Bogomolov multipliers of all of their proper subgroups and
quotients are trivial. Applications include a classification of p-groups of minimal
order that have nontrivial Bogomolov multipliers and are of nilpotency class 2,
a nonprobabilistic criterion for the vanishing of the Bogomolov multiplier, and
establishing a sequence of Bogomolov’s absolute γ-minimal factors which are
2-groups of arbitrarily large nilpotency class, thus providing counterexamples
to some of Bogomolov’s claims. In relation to this, we fill a gap in the proof of
triviality of Bogomolov multipliers of finite almost simple groups.

1. Introduction

Let G be a group and G ∧ G the group generated by the symbols x ∧ y, where
x, y ∈ G, subject to the following relations:

(1.1) xy ∧ z = (xy ∧ zy)(y ∧ z), x ∧ yz = (x ∧ z)(xz ∧ yz), x ∧ x = 1,

where x, y, z ∈ G. The group G ∧G is said to be the nonabelian exterior square of
G. There is a surjective homomorphism G ∧G→ [G,G] defined by x ∧ y 7→ [x, y].
Miller [23] showed that the kernel M(G) of this map is naturally isomorphic to the
Schur multiplier H2(G,Z) of G. In particular, this implies that the relations (1.1)
induce universal commutator identities that hold in a free group, and that M(G) is,
in a sense, a measure of how the commutator identities in G fail to follow from the
universal ones only.

Denote M0(G) = 〈x ∧ y | x, y ∈ G, [x, y] = 1〉 and B0(G) = M(G)/M0(G). On
one hand, B0(G) is an obstruction for the commutator identities of G to follow
from the universal commutator identities induced by (1.1) while considering the
symbols that generate M0(G) as redundant. In the group-theoretical framework,
B0(G) is accordingly the group of nonuniversal commutator relations rather than
identities that hold in G. On the other hand, it is shown in [24] that if G is a
finite group and V a faithful representation of G over C, then the dual of B0(G) is
naturally isomorphic to the unramified Brauer group H2

nr(C(V )G,Q/Z) introduced
by Artin and Mumford [1]. This invariant represents an obstruction to Noether’s
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problem [27] asking as to whether the field of G-invariant functions C(V )G is purely
transcendental over C. The crucial part of the proof of the above mentioned
result of [24] is based on the ground-breaking work of Bogomolov [2] who showed
that H2

nr(C(V )G,Q/Z) is naturally isomorphic to the intersection of the kernels
of restriction maps H2(G,Q/Z) → H2(A,Q/Z), where A runs through all (two-
generator) abelian subgroups of G. The latter group is also known as the Bogomolov
multiplier of G, cf. [20]. Throughout this paper, we use this terminology for B0(G),
thus considering the Bogomolov multiplier of G as the kernel of the commutator map
from G fG = (G ∧G)/M0(G) to [G,G]. This description of B0 is combinatorial
and enables efficient explicit calculations, see [4, 18, 24, 25] for further details. In
addition to that, it provides an easy proof [26] of the fact that Bogomolov multipliers
are invariant with respect to isoclinism, a notion defined by P. Hall in his seminal
paper [11] on classifying finite p-groups.

In this paper, we consider the problem of triviality of B0 from the probabilistic
point of view. As noted above, the structure of Bogomolov multipliers heavily
depends on the structure of commuting pairs of elements of a given group. Denote
SG = {(x, y) ∈ G × G | xy = yx}. Then the quotient cp(G) = |SG|/|G|2 is the
probability that a randomly chosen pair of elements of G commute. Erdös and
Turán [7] noted that cp(G) = k(G)/|G|, where k(G) is the number of conjugacy
classes of G. Gustafson [10] proved an amusing result that if cp(G) > 5/8, then G
is abelian, and hence B0(G) is trivial. We prove the following:

Theorem 1.1. Let G be a finite p-group. If cp(G) > (2p2 + p− 2)/p5, then B0(G)
is trivial.

Homological arguments then give a global bound applicable to all finite groups.

Corollary 1.2. Let G be a finite group. If cp(G) > 1/4, then B0(G) is trivial.

The stated bounds are all sharp. Namely, there exists a group G of order p7

such that cp(G) = (2p2 + p− 2)/p5 and B0(G) is not trivial. We also mention here
that the converse of Theorem 1.1 and Corollary 1.2 does not hold, nor is there an
upper bound on commuting probability ensuring nontriviality of the Bogomolov
multiplier. Examples, as well as some information on groups satisfying the condition
of Theorem 1.1, are provided in the following sections.

The proof of Theorem 1.1 essentially boils down to studying a minimal coun-
terexample. It suffices to consider only finite groups G with B0(G) nontrivial, and
for every proper subgroup H of G and every proper normal subgroup N of G, we
have B0(H) = B0(G/N) = 0. We call such groups B0-minimal groups. These are
a special type of absolute γ-minimal factors which were introduced by Bogomolov
[2]. In the context of nonuniversal commutator relations, B0-minimal groups are
precisely the minimal groups possessing such relations, and may in this way be
thought of as the building blocks of groups with nontrivial Bogomolov multipliers.
The B0-minimal groups are thus of independent interest, and the first part of the
paper is devoted to describing their structure. A part of this has already been inves-
tigated by Bogomolov [2] using cohomological methods; the alternative approach we
take via the exterior square provides new proofs and refines that work. Standard
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arguments show that B0-minimal groups are p-groups. We prove in Theorem 2.8
that they can be generated by at most four generators, have an abelian Frattini
subgroup, and that their Bogomolov multipliers are of prime exponent, see Corollary
2.7. In addition to that, we further explore the structure of B0-minimal 2-groups, cf.
Proposition 2.16.

We also consider B0-minimal groups with respect to isoclinism. We call an
isoclinism family to be a B0-minimal family if it contains a B0-minimal group. We
observe that all stem groups of a B0-minimal family are B0-minimal. The main result
in this direction is Theorem 2.13 which provides a classification of all B0-minimal
isoclinism families of class 2. It turns out that these families are always determined
by two stem groups whose presentations can be explicitly written down. Relying
on some recent results [13, 14, 4, 18] on Bogomolov multipliers of p-groups of small
orders, Theorem 2.13 in fact provides a classification of all p-groups of order p7 and
nilpotency class 2 with nontrivial Bogomolov multipliers.

In his work on absolute γ-minimal factors, Bogomolov claimed [2, Theorem 4.6]
that if a finite p-group is an absolute γ-minimal factor, then it is nilpotent of class at
most p. We use the structural results on B0-minimal groups we develop in Section
2, and also Corollary 1.2, to construct a sequence of B0-minimal 2-groups with
strictly growing nilpotency classes, cf. Example 4.2. This example contradicts the
above mentioned Bogomolov’s result. The existence of groups in Example 4.2 also
contradicts [2, Lemma 5.4], which has been used subsequently in proving triviality
of the Bogomolov multiplier of finite almost simple groups (linear and orthogonal
case) [20]. We patch up the argument using Corollary 1.2 in the final section.

2. B0-minimal groups

A finite group G is termed to be a B0-minimal group whenever B0(G) 6= 0 and for
every proper subgroup H of G and every proper normal subgroup N of G, we have
B0(H) = B0(G/N) = 0. The class of B0-minimal groups is a subclass of the class of
absolute γ-minimal factors defined by Bogomolov [2].

Recall the notion of isoclinism of groups introduced by P. Hall [11]. Two groups
G and H are isoclinic if there exists a pair of isomorphisms α : G/Z(G)→ H/Z(H)
and β : [G,G] → [H,H] with the property that whenever α(a1Z(G)) = a2Z(H)
and α(b1Z(G)) = b2Z(H), then β([a1, b1]) = [a2, b2] for a1, b1 ∈ G. Isoclinism is
an equivalence relation, denoted by the symbol ', and the equivalence classes are
called families. Hall proved that each family contains stem groups, that is, groups
G satisfying Z(G) ≤ [G,G]. Stem groups in a given family have the same order,
which is the minimal order of all groups in the family. When the stem groups are of
order pr for some r, we call r the rank of the family.

Example 2.1. Let G be the group〈
a, b, c

a2 = b2 = 1, c2 = [a, c],
[c, b] = [c, a, a], [b, a] central, class 3

〉
.

Another way of presenting G is by a polycyclic generating sequence gi with 1 ≤ i ≤ 6,
subject to the following relations: g2

1 = g2
2 = 1, g2

3 = g4g5, g2
4 = g5, g2

5 = g2
6 = 1,

[g2, g1] = g6, [g3, g1] = g4, [g3, g2] = g5, [g4, g1] = g5, and [gi, gj ] = 1 for other i > j.
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This is one of the stem groups of the family Γ16 of [12]. It follows from [5] that
B0(G) ∼= Z/2Z. Application of the algorithm developed in [24] shows that B0(G) is
generated by the element (g3 f g2)(g4 f g1) in GfG. The group G is one of the
groups of the smallest order that have a nontrivial Bogomolov multiplier [6, 5], so it
is also of minimal order amongst all B0-minimal groups.

The notion of isoclinism is closely related to Bogomolov multipliers. It is shown
in [26] that whenever G and H are isoclinic groups, we have B0(G) ∼= B0(H), i.e.
the Bogomolov multiplier is a family invariant. A family that contains at least one
B0-minimal group is correspondingly called a B0-minimal family. Note that not
every group in a B0-minimal family is itself B0-minimal. For example, one may take
a B0-minimal group G, a nontrivial abelian group A, and form their direct product
G×A ' G. This group is clearly not B0 minimal. We show, however, that the stem
groups of B0-minimal families are themselves B0-minimal.

Proposition 2.2. In a B0-minimal family, every group possesses a B0-minimal
section. In particular, the stem groups in the family are all B0-minimal.

Proof. Let G be a B0-minimal member of the given isoclinism family and H ' G a
group that is not a B0-minimal group. Since B0(H) ∼= B0(G) 6= 0, the group H has
either a subgroup or a quotient, say K, with a nontrivial Bogomolov multiplier. By
[11], the subgroups and quotients of H belong to the same isoclinism families as the
subgroups and quotients of G. It follows from B0-minimality of G that the group
K must be isoclinic to H. As |K| < |H|, repeating the process with K instead of
H yields a section S of H that is B0-minimal and isoclinic to H. In particular, the
stem groups in a B0-minimal family must be B0-minimal, since they are groups of
minimal order in the family. �

Note also that not all B0-minimal groups in a given family need be stem, as the
following example shows.

Example 2.3. Let G be the group generated by elements gi with 1 ≤ i ≤ 8, subject
to the following relations: g2

1 = g5, g2
2 = g2

3 = 1, g2
4 = g6, g2

5 = g7, g2
6 = 1, g2

7 = g8,
g2

8 = 1, [g2, g1] = g4, [g3, g1] = g8, [g3, g2] = g6g8, [g4, g1] = g6, [g4, g2] = g6, and
[gi, gj ] = 1 for other i > j. Using the algorithm developed in [24], we see that
G is a B0-minimal group. Its Bogomolov multiplier is generated by the element
(g3 f g2)(g4 f g2)(g3 f g1) of order 2 in GfG. Since g7 belongs to the center Z(G)
but not to the derived subgroup [G,G], the group G is not a stem group. In fact,
G is isoclinic to the group given in Example 2.1, both the isoclinism isomorphisms
stemming from interchanging the generators g2 and g3.

Applying standard homological arguments, we quickly observe that B0-minimal
groups are p-groups:

Proposition 2.4. A B0-minimal group is a p-group.

Proof. Let G be a B0-minimal group. Suppose p is a prime dividing the order of
G. By [3, Lemma 2.6], the p-part of B0(G) embeds into B0(S), where S is a Sylow
p-subgroup of G. It thus follows from B0-minimality that G is a p-group. �
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Hence B0-minimal families are determined by their stem p-groups. Making use of
recent results on Bogomolov multipliers of p-groups of small orders [13, 14, 5, 6, 4, 18],
we determine the B0-minimal families of rank at most 6 for odd primes p, and those
of rank at most 7 for p = 2. In stating the proposition, the classifications [16, 17]
are used.

Proposition 2.5. The B0-minimal isoclinism families of p-groups with p an odd
prime and of rank at most 6 are precisely the families Φi with i ∈ {10, 18, 20, 21, 36}
of [16]. The B0-minimal isoclinism families of 2-groups of rank at most 7 are
precisely the families Φi with i ∈ {16, 30, 31, 37, 39, 80} of [17].

Proof. Suppose first that p is odd. If the rank of the family is at most 4, we have
B0(G) = 0 by [2]. Next, if the rank equals 5, stem groups of the family have
nontrivial Bogomolov multipliers if and only if they belong to the family Φ10 by
[13, 14, 25]. Further, if the rank is 6, then it follows from [4] that stem groups of
the family have nontrivial Bogomolov multipliers if and only if they belong to one of
the isoclinism families Φi with i ∈ {18, 20, 21, 36, 38, 39}. Note that the families Φ38

and Φ39 only exist when p > 3. The groups in the families Φ18, Φ20 and Φ21 are
of nilpotency class at most 3, so none of their proper quotients and subgroups can
belong to the isoclinism family Φ10. Hence these families are indeed B0-minimal.
Central quotients of stem groups in the families Φ38 and Φ39 belong to the family
Φ10, so these groups are not B0-minimal. On the other hand, the center of the stem
groups of the family Φ36 is of order p and the central quotients of these groups
belong to the family Φ9, so this family is B0-minimal.

Now let p = 2. It is shown in [6, 5] that the groups of minimal order having
nontrivial Bogomolov multipliers are exactly the groups forming the stem of the
isoclinism family Γ16 of [12], so this family is B0-minimal. In the notation of [17], it
corresponds to Φ16. Now consider the isoclinism families of rank 7. Their Bogomolov
multipliers have been determined in [18]. The families whose multipliers are nontriv-
ial are precisely the families Φi with i ∈ {30, 31, 37, 39, 43, 58, 60, 80, 106, 114}. It
remains to filter out the B0-minimal families from this list. Making use of the presen-
tations of representative groups of these families as given in [18], it is straightforward
that stem groups of the families Φ43, Φ106 and Φ114 contain a maximal subgroup
belonging to the family Φ16, which implies that these families are not B0-minimal.
Similarly, stem groups of the families Φ58 and Φ60 possess maximal quotient groups
belonging to Φ16, so these families are also not B0-minimal. On the other hand, it
is readily verified that stem groups of the families Φi with i ∈ {30, 31, 37, 39, 80}
have no maximal subgroups or quotients belonging to the family Φ16, implying that
these families are B0-minimal. �

We now turn our attention to the structure of general B0-minimal groups. The
upcoming lemma is of key importance in our approach, and will be used repeatedly
throughout the paper.

Lemma 2.6. Let G be a B0-minimal p-group and z =
∏
i∈I [xi, yi] a central element

of order p in G. Then there exist elements a, b ∈ G satisfying

G = 〈a, b, xi, yi ; i ∈ I〉, [a, b] = z, af b 6=
∏
i∈I(xi f yi).
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Proof. Let w be a nontrivial element of B0(G) and put N = 〈z〉. The canonical
projection G→ G/N induces a homomorphism GfG→ G/N fG/N ∼= (GfG)/J ,
where J = 〈a f b | [a, b] ∈ N〉 by [24, Proposition 4.1]. By B0-minimality of G,
the element w is in the kernel of this homomorphism, so it must belong to J .
Suppose first that J is cyclic. Then there exist elements x, y ∈ G with [x, y] = z

and J = 〈xf y〉. Since w ∈ J , we have w = (xf y)n for some integer n. Applying
the commutator mapping, we obtain 1 = [x, y]n = zn, so n must be divisible by p.
But then w = (x f y)n = xn f y = 1, since z is central in G. This shows that J
cannot be cyclic. Hence there exist elements ã, b ∈ G with

∏
i∈I(xi f yi) /∈ 〈ãf b〉

and 1 6= [ã, b] ∈ N . The latter implies [ã, b] = zm for some integer m coprime to p.
Let µ be the multiplicative inverse of m modulo p and put a = ãµ. The product∏
i∈I(xi f yi)(af b)−1 is then a nontrivial element of B0(G), since [a, b] = zmµ = z.

By B0-minimality of G, the subgroup generated by a, b, xi, yi, i ∈ I, must equal the
whole of G. �

The above proof immediately implies the following result which can be compared
with [2, Theorem 4.6].

Corollary 2.7. The Bogomolov multiplier of a B0-minimal group is of prime
exponent.

Proof. Let G be a B0-minimal p-group and w a nontrivial element of B0(G). For
any central element z in G of order p, we have w ∈ Jz = 〈a f b | [a, b] ∈ 〈z〉〉 by
B0-minimality, thus wp = 1, as required. �

We apply Lemma 2.6 to some special central elements of prime order in a B0-
minimal group. In this way, some severe restrictions on the structure of B0-minimal
groups are obtained. Recall that the Frattini rank of a group G is the cardinality of
the smallest generating set of G.

Theorem 2.8. A B0-minimal group has an abelian Frattini subgroup and is of
Frattini rank at most 4. Moreover, when the group is of nilpotency class at least 3,
it is of Frattini rank at most 3.

Proof. Let G be a B0-minimal group and Φ(G) its Frattini subgroup. Suppose that
[Φ(G),Φ(G)] 6= 1. Since G is a p-group, we have [Φ(G),Φ(G)] ∩ Z(G) 6= 1, so there
exists a central element z of order p in [Φ(G),Φ(G)]. Expand it as z =

∏
i[xi, yi]

with xi, yi ∈ Φ(G). By Lemma 2.6, there exist a, b ∈ G so that the group G may
be generated by the elements a, b, xi, yi, i ∈ I. Since the generators xi, yi belong to
Φ(G), they may be omitted, and so G = 〈a, b〉. As the commutator [a, b] is central
in G, we have [G,G] = 〈[a, b]〉 ∼= Z/pZ. It follows from here that the exponent of
G/Z(G) equals p, so we finally have Φ(G) = Gp[G,G] ≤ Z(G), a contradiction. This
shows that the Frattini subgroup of G is indeed abelian. To show that the group G
is of Frattini rank at most 4, pick any x ∈ γc−1(G) and let z = [x, y] ∈ γc(G) be an
element of order p in G. By Lemma 2.6, there exist a, b ∈ G so that the group G
may be generated by a, b, x, y. Hence G is of Frattini rank at most 4. When the
nilpotency class of G is at least 3, we have x ∈ γc−1(G) ≤ [G,G], so the element x
is a nongenerator of G. This implies that G is of Frattini rank at most 3 in this
case. �
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Note that in particular, Theorem 2.8 implies that a B0-minimal group is metabelian,
as was already shown in [2, Theorem 4.6].

Corollary 2.9. The exponent of the center of a stem B0-minimal group divides p2.

Proof. Let G be a stem B0-minimal group. Then Z(G) ≤ [G,G], and it follows
from [24, Proposition 3.12] that Z(G) may be generated by central commutators.
For any x, y ∈ G with [x, y] ∈ Z(G), we have [xp, yp] = 1 by Theorem 2.8, which
reduces to [x, y]p2 = 1 as the commutator [x, y] is central in G. This completes the
proof. �

Corollary 2.9 does not apply when the B0-minimal group is not stem. The group
given in Example 2.3 is B0-minimal and its center is isomorphic to Z/2Z⊕ Z/8Z.
The exponents of the upper central factors are, however, always bounded by p. This
follows from the more general succeeding proposition. We use the notation Zi(G)
for the i-th center of G, see [15, Seite 259].

Proposition 2.10. Let G be a B0-minimal group. Then Z2(G) centralizes Φ(G).

Proof. By Proposition 2.4, the group G is a p-group for some prime p. Suppose
that [Z2(G),Φ(G)] 6= 1. Then there exists elements x ∈ Z2(G) and y ∈ Φ(G) with
[x, y] 6= 1. By replacing y with its proper power, we may assume that the commutator
[x, y] is of order p. Invoking Lemma 2.6, we conclude that there exist elements
a, b ∈ G with [x, y] = [a, b] and xf y 6= af b. Hence G = 〈a, b, x〉 by B0-minimality.
As y ∈ Φ(G), we have y =

∏
i w

p
i for some elements wi ∈ G. Since x ∈ Z2(G), this

implies [x, y] =
∏
i[x,wi]p and xf y =

∏
i(xfwi)p. Moreover, we may consider the

wi’s modulo [G,G], since x commutes with [G,G]. Putting wi = xγiaαibβi for some
integers αi, βi, γi, we have [x,wi] = [x, aαibβi ] and similarly for the curly wedge. By
collecting the factors, we obtain [x, y] = [x, apαbpβ ] for some integers α, β. Suppose
first that p divides α. Then [x, apα] = [x, aα]p = [xp, aα] = 1 by Theorem 2.8. This
implies [x, y] = [x, bpβ ]. By an analogous argument, the prime p cannot divide β,
since the commutator [x, y] is not trivial. Let β̄ be the multiplicative inverse of β
modulo p and put ã = aβ̄ , b̃ = bβ . Then we have [ã, b̃] = [x, y] = [x, b̃p] = [xp, b̃] and
similarly ãf b̃ = af b 6= xf y = xp f b̃. By B0-minimality, this implies G = 〈ã, b̃〉
with the commutator [ã, b̃] being central of order p in G. Hence the group G is of
nilpotency class 2. We now have [ãp, b] = [ã, b]p = 1 and similarly [b̃p, a] = 1, so
the Frattini subgroup Φ(G) is contained in the center of G. This is a contradiction
with [x, y] 6= 1. Hence the prime p cannot divide α, and the same argument shows
that p cannot divide β. Let ᾱ be the multiplicative inverse of α modulo p. Put
ã = aα, b̃ = bᾱ. This gives [x, y] = [x, ãp, b̃pβ̃ ] for some integer β̃, hence we may
assume that α = 1. Now put ã = ab. We get [x, y] = [x, ãpbp(β−1)]. By continuing
in this manner, we degrade the exponent at the generator b to β = 0, reaching a
final contradiction. �

Corollary 2.11. Let G be a B0-minimal group. Then expZi(G)/Zi−1(G) = p for
all i ≥ 2.

Proof. It is a classical result [15, Satz III.2.13] that the exponent of Zi+1(G)/Zi(G)
divides the exponent of Zi(G)/Zi−1(G) for all i. Thus it suffices to prove that
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expZ2(G)/Z(G) = p. To this end, let x ∈ Z2(G). For any y ∈ G, we have
[xp, y] = [x, y]p = [x, yp] = 1 by the preceding proposition. Hence xp ∈ Z(G) and
the proof is complete. �

Corollary 2.9 can, however, be improved when the group is of small enough
nilpotency class.

Corollary 2.12. The center of a stem B0-minimal group of nilpotency class 2 is
of prime exponent.

Proof. Let G be a stem B0-minimal p-group of nilpotency class 2. We therefore
have Z(G) = [G,G]. For any commutator [x, y] ∈ G, Proposition 2.10 gives
[x, y]p = [xp, y] = 1, as required. �

Using Corollary 2.12 together with Corollary 2.11, we classify all the B0-minimal
isoclinism families of nilpotency class 2. For later use, we also determine commuting
probabilities of their stem group during the course of the proof.

Theorem 2.13. A B0-minimal isoclinism family of nilpotency class 2 is determined
by one of the following two stem p-groups:

G1 =
〈
a, b, c, d

ap = bp = cp = dp = 1,
[a, b] = [c, d], [b, d] = [a, b]ε[a, c]ω, [a, d] = 1, class 2

〉
,

G2 =
〈
a, b, c, d

ap = bp = cp = dp = 1,
[a, b] = [c, d], [a, c] = [a, d] = 1, class 2

〉
,

where ε = 1 for p = 2 and ε = 0 for odd primes p, and ω is a generator of the group
(Z/pZ)×. The groups G1 and G2 are of order p7, their Bogomolov multipliers are
B0(G1) ∼= Z/pZ⊕ Z/pZ, B0(G2) ∼= Z/pZ, and their commuting probabilities equal
cp(G1) = (p3 + 2p2 − p− 1)/p6, cp(G2) = (2p2 + p− 2)/p5.

Before stating the proof, a word on the method we use. Studying Bogomolov
multipliers of p-groups of nilpotency class 2 and exponent p (p > 2) can be translated
into a problem in linear algebra over finite fields as follows (cf. [2]).

Suppose that such a group G is of Frattini rank d, so that G/[G,G] ∼= Fdp.
The structure of G is then completely determined by the set of relations between
commutators. These may be thought of as elements of the vector space Fdp ∧ Fdp
via the correspondence [x, y] ≡ x ∧ y. Selecting a basis {zi | 1 ≤ i ≤ d} of Fdp
gives a basis {zi ∧ zj | 1 ≤ i < j ≤ d} of Fdp ∧ Fdp. The set of all relations between
commutators in G forms a certain linear subspace R in Fdp ∧ Fdp. In this sense,
commuting pairs in G correspond to decomposable elements of R, i.e. elements
of the form x ∧ y for some x, y ∈ Fp. Such elements of the ambient vector space
Fdp∧Fdp are precisely the points on the algebraic variety P determined by the Plücker
relations. In the case d = 4, these form a single equation

Z12Z34 + Z13Z42 + Z14Z23 = 0,

where the coordinate Zij in F4
p ∧ F4

p represents the coordinate of the vector zi ∧ zj
of the fixed basis from above. The group G is thus given by selecting a subspace
R in the 6-dimensional vector space F4

p ∧ F4
p, and its Bogomolov multiplier may be
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identified as
B0(G) = R

〈P ∩R〉
.

To determine the intersection P ∩R, we parametrize elements of R with a suitable
basis and thus determine the quadratic form obtained by restricting P to R. Deter-
mining whether B0(G) is trivial then amounts to finding out if the solutions of the
quadratic form P|R span the whole R.

Proof of Theorem 2.13. Following Proposition 2.2 and Proposition 2.4, we may
restrict ourselves to studying a stem B0-minimal p-group G of nilpotency class 2.
This immediately implies Z(G) = [G,G], and it follows from Theorem 2.8 that the
group G may be generated by 4 elements, say a, b, c, d, satisfying [a, b] = [c, d]. By
Corollary 2.11 and Corollary 2.12, the exponents of both [G,G] and G/[G,G] equal
to p. Furthermore, the derived subgroup of G is of rank at most

(4
2
)
− 1 = 5, and

G/[G,G] is of rank at most 4. The order of the group G is therefore at most p9.
Proposition 2.5 shows that no B0-minimal isoclinism families of rank at most

6 are of nilpotency class 2. Hence G is of order at least p7. Together with the
above reasoning, this shows that G must be of Frattini rank precisely 4. Moreover,
by possibly replacing G by a group isoclinic to it, we may assume without loss of
generality that ap = bp = cp = dp = 1. The group G may therefore be regarded as a
quotient of the group

K = 〈a, b, c, d | ap = bp = cp = dp = 1, [a, b] = [c, d], class 2〉 ,

which is of order p9, nilpotency class 2, exponent p when p is odd, and has precisely
one commutator relation. In the language of vector spaces from above, the cosets of
elements {a, b, c, d} form a basis of G/[G,G], and G is determined by a subspace R
of F4

p ∧ F4
p with the additional requirement z1 ∧ z2 − z3 ∧ z4 ∈ R.

Suppose first that G is of order precisely p7. When p = 2, we invoke Proposition
2.5 to conclude that G belongs to either the family Φ30 or Φ31 due to the nilpotency
class restriction. It is readily verified using the classification [17] that the groups
G1 and G2 given in the statement of the theorem are stem groups of these two
families, respectively. Suppose now that p is odd. The p-groups of order p7 have
been classified by O’Brien and Vaughan-Lee [28], the detailed notes on such groups
of exponent p are available at [29]. Following these, we see that the only stem groups
of Frattini rank 4 and nilpotency class 2 are the groups whose corresponding Lie
algebras are labeled as (7.16) to (7.20) in [29]. In the groups arising from (7.16) and
(7.17), the nontrivial commutators in the polycyclic presentations are all different
elements of the polycyclic generating sequence. It follows from [25] that these groups
have trivial Bogomolov multipliers. The remaining groups, arising from the algebras
(7.18) to (7.20), are the following:

G18 =
〈
a, b, c, d

ap = bp = cp = dp = 1,
[a, c] = [a, d] = 1, [a, b] = [c, d], class 2

〉
,

G19 =
〈
a, b, c, d

ap = bp = cp = dp = 1,
[a, d] = 1, [b, c] = [c, d], [b, d] = [a, c], class 2

〉
,

G20 =
〈
a, b, c, d

ap = bp = cp = dp = 1,
[a, d] = 1, [a, b] = [c, d], [b, d] = [a, c]ω, class 2

〉
,
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where ω is a generator of the multiplicative group of units of Z/pZ.
Let us first show that B0(G19) is trivial. To this end, alter the presentation of

G19 by replacing b with bd, which allows to assume [b, c] = 1. Translating the set
of relations to F4

p ∧ F4
p, the subspace of relations R consists of vectors of the form

α1(z1 ∧ z4) + α2(z2 ∧ z3) + α3(z2 ∧ z4 − z1 ∧ z3) for some α1, α2, α3 ∈ Fp. Plugging
these into Plückers formula, we obtain the relation −α2

3 = α1α2. The solutions of
this equation span the space F3

p, take for example the three independent solutions
(α1, α2, α3) ∈ {(1, 0, 0), (0, 1, 0), (−1, 1, 1)}. It follows that 〈P ∩ R〉 = R, and so
B0(G) = 0, as required.

We now turn to the group G18 and show that B0(G18) ∼= Z/pZ. As there are
no groups of nilpotency class 2 and order at most p6 with a nontrivial Bogomolov
multiplier, this alone will immediately imply that G18 is a B0-minimal group.
Translating the set of relations to F4

p ∧ F4
p, the subspace R consists of vectors of

the form α1(z1 ∧ z3) + α2(z1 ∧ z4) + α3(z1 ∧ z2 − z3 ∧ z4) for some α1, α2, α3 ∈ Fp.
Plugging these into Plückers formula, we obtain the relation α2

3 = 0. The solutions
of this equation form a subspace of the space F3

p of dimension 2. It follows that
B0(G18) = R/〈P∩R〉 ∼= Z/pZ. It is also readily verified that k(G18) = 2p4+p3−2p2.
In the statement of the theorem, the group G18 corresponds to G2.

At last, we deal with the group G20. Translating the set of relations to F4
p ∧ F4

p,
the subspace R consists of vectors of the form α1(z1 ∧ z4) + α2(z1 ∧ z2 − z3 ∧ z4) +
α3(z2∧z4−ωz1∧z3) for some α1, α2, α3 ∈ Fp. Plugging these into Plückers formula,
we obtain the relation α2

2 = ωα2
3. Since ω is a generator of the group of units of Fp,

it is not a square, and so the solutions of this equation form subspace of the space
F3
p of dimension 1. It follows that B0(G18) = R/〈P ∩R〉 ∼= Z/pZ⊕ Z/pZ. It is also

readily verified that k(G20) = p4 + 2p3 − p2 − p. In the statement of the theorem,
the group G20 corresponds to G1.

So far, we have dealt with the case when the B0-minimal group G is of order at
most p7. Were G of order p9, it would be isomorphic to the group K. By what we
have shown so far, this group is not B0-minimal, since it possesses proper quotients
with nontrivial Bogomolov multipliers, namely both the groups G1 and G2. The
only remaining option is for the group G to be of order p8. Regarding G as a
quotient of K, this amounts to precisely one additional commutator relation being
imposed in K, i.e., one of the commutators in G may be expanded by the rest. By
possibly permuting the generators, we may assume that this is the commutator
[b, d], so

[b, d] = [a, b]α[a, c]β [a, d]γ [b, c]δ

for some integers α, β, γ, δ. Replacing b by ba−γ and d by dc−δ, we may further
assume γ = δ = 0.

For p = 2, the above expansion reduces to only 4 possibilities. When α = β = 0,
interchanging a with b and c with d shows that the group G possesses a proper
quotient isomorphic to G2. Next, when α = β = 0, the group G possesses a proper
quotient isomorphic to G1. In the case α = 1, β = 0, replacing c by b−1c and a
by ad enables us to rewrite the commutator relations to [a, b] = [c, d] = 1. There
are thus no commutator relations between the nontrivial commutators in G, so the
Bogomolov multiplier of G is trivial by [25]. Finally, when α = 0, β = 1, use [17]
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to see that the group G/〈[a, d]〉 belongs to the isoclinism family Φ31, thus having
a nontrivial Bogomolov multiplier by Proposition 2.5. This shows that G is not a
B0-minimal group in neither of these cases.

Now let p be odd. Translating the set of relations to F4
p ∧ F4

p, the subspace R
consists of vectors of the form α1(z1∧z2−z3∧z4)+α2(z2∧z4−αz1∧z2−βz1∧z3) for
some α1, α2 ∈ Fp. Note that R is contained in the subspace {Z14 = Z23 = 0}. Now
consider the space R̃ = R⊕Fp(z1∧z4). Observe that an element of R̃ belongs to P if
and only if its projection to R belongs to P. Hence 〈R̃∩P〉 = 〈R∩P〉⊕Fp(z1 ∧ z4).
Translating this equality back to the level of G, we have that B0(G) ∼= B0(G/〈[a, d]〉).
Therefore G can not be a B0-minimal group. The proof is complete. �

Note that Theorem 2.13 shows, in particular, that there exist B0-minimal groups
with noncyclic Bogomolov multipliers. We also record a corollary following from
the proof of Theorem 2.13 here.

Corollary 2.14. Let G be a p-group of order p7 and nilpotency class 2. Then
B0(G) is nontrivial if and only if G belongs to one of the two isoclinism families
given by Theorem 2.13. Moreover, the stem groups of these families are precisely
the groups of minimal order that have nontrivial Bogomolov multipliers and are of
nilpotency class 2.

In general, there is no upper bound on the nilpotency class of a stem B0-minimal
group. We show this by means of constructing a stem B0-minimal 2-group of order
2n and nilpotency class n− 3 for any n ≥ 6. Note that since the nilpotency class is
an isoclinism invariant, this gives an infinite number of isoclinism families whose
Bogomolov multipliers are all nontrivial. As we use Corollary 1.2 to do this, the
example is provided in Section 4. On the other hand, the bound on the exponent
of the center provided by Corollary 2.9 together with the bound on the number of
generators given by Theorem 2.8 show that fixing the nilpotency class restricts the
number of B0-minimal isoclinism families.

Corollary 2.15. Given a prime p and nonnegative integer c, there are only finitely
many B0-minimal isoclinism families containing a p-group of nilpotency class c.

Proof. The exponent of a B0-minimal p-group of class at most c is bounded above
by pc+1 using Corollary 2.9 and Corollary 2.11. Since B0-minimal groups may
be generated by at most 4 elements by Theorem 2.8, each one is an epimorphic
image of the c-nilpotent quotient of the free 4-generator Burnside group B(4, pc+1)
of exponent pc+1, which is a finite group. As a B0-minimal isoclinism family is
determined by its stem groups, the result follows. �

Lastly, we say something about the fact that the Frattini subgroup of a B0-
minimal group G is abelian. The centralizer C = CG(Φ(G)) is of particular interest,
as a classical result of Thompson, cf. [8], states that C is a critical group. The
elements of G whose centralizer is a maximal subgroup of G are certainly contained
in C. These elements have been studied by Mann in [22], where they are termed
to have minimal breadth. We follow Mann in denoting byM(G) the subgroup of
G generated by the elements of minimal breadth. Later on, we will be dealing
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separately with 2-groups. It is shown in [22, Theorem 5] that in this case, the
nilpotency class of M(G) does not exceed 2, and that the group M(G)/Z(G) is
abelian. We show that for B0-minimal groups, the groupM(G) is actually abelian.

Proposition 2.16. Let G be a B0-minimal 2-group. ThenM(G) is abelian.

Proof. Suppose that there exist elements g, h ∈ G of minimal breadth with [g, h] 6= 1.
Since the group M(G)/Z(G) is abelian, we have [g, h] ∈ Z(G). Without loss of
generality, we may assume that [g, h] is of order 2, otherwise replace g by its power.
Putting z = [g, h] and applying Lemma 2.6, there exist elements a, b ∈ G such
that G = 〈g, h, a, b〉 and a f b 6= g f h and [a, b] = z. Suppose that [g, a] 6= 1 and
[g, b] 6= 1. Since g is of minimal breadth, we have [g, a] = [g, b] and so the element
ã = b−1a centralizes g. This gives z = [a, b] = [ã, b] and similarly ã f b = a f b.
By B0-minimality, it follows that G = 〈g, h, ã, b〉 with [g, ã] = 1. We may thus
a priori assume that [g, a] = 1. Now suppose [g, b] 6= 1. Since g is of minimal
breadth, we have [g, b] = [g, h] and so the element hb−1 centralizes g. This gives
g f h = g f (hb−1)b = g f b. The product (g f b)(a f b)−1 is thus a nontrivial
element of B0(G). By B0-minimality, it follows that G = 〈g, a, b〉 with [g, a] = 1
and [g, b] = [a, b] ∈ Z(G). Putting g̃ = ga−1, we have [g̃, a] = 1 and [g̃, b] = 1 with
G = 〈g̃, a, b〉. This implies [G,G] = 〈[a, b]〉 ≤ Z(G), so G is of nilpotency class
2. Therefore G belongs to one of the two families given in Theorem 2.13. The
groups in both of these families have their derived subgroups isomorphic to (Z/2Z)3.
This is a contradiction, so we must have [g, b] = 1. Hence G = 〈g, h, a, b〉 with
[g, a] = [g, b] = 1 and [g, h] = z ∈ Z(G). By the same arguments applied to h
instead of g, we also have [h, a] = [h, b] = 1. This implies [G,G] = 〈[a, b]〉 ≤ Z(G),
so G is again of class 2, giving a final contradiction. �

3. Commuting probability

This section is devoted to proving Theorem 1.1. The restrictions on the structure of
B0-minimal groups, for the most part Theorem 2.8, are used to reduce the claim
to groups belonging to isoclinism families of smallish rank. These special cases are
dealt with in the following lemma.

Lemma 3.1. Let G be a finite p-group belonging to an isoclinism family of rank at
most 6 for odd p, or at most 7 for p = 2. If cp(G) > (2p2 + p− 2)/p5, then B0(G)
is trivial.

Proof. Both commuting probability and the Bogomolov multiplier are isoclinism
invariants, see [21, 26]. It thus suffices to verify the lemma for the isoclinism families
of groups with nontrivial multipliers given in [18, 4]. For odd primes, commuting
probabilities of such families are given in [16, Table 4.1]. The bound (2p2 +p−2)/p5

is attained with the families Φ10, Φ18 and Φ20, while the rest of them have smaller
commuting probabilities. Similarly, commuting probabilities of such families of
2-groups of rank at most 7 are given in [17, Table II]. The bound 1/4 is attained
with the families Φ16 and Φ31, while the rest indeed all have smaller commuting
probabilities. This proves the lemma. �



BOGOMOLOV MULTIPLIERS AND COMMUTING PROBABILITY 13

Proof of Theorem 1.1. Assume that G is a p-group of the smallest possible order
satisfying cp(G) > (2p2 + p− 2)/p5 and B0(G) 6= 0. As both commuting probability
and the Bogomolov multiplier are isoclinism invariants, we can assume without loss
of generality that G is a stem group. By [9], commuting probability of a subgroup
or a quotient of G exceeds (2p2 + p− 2)/p5, so all proper subgroups and quotients
of G have a trivial multiplier by minimality of G. This implies that G is a stem
B0-minimal group. By Lemma 3.1, we may additionally assume that G is of order
at least p7 for odd primes p, and 28 for p = 2.

Suppose first that G is of nilpotency class 2. By Theorem 2.13, G belongs to one
of the isoclinism families given by the two stem groups in the theorem. The groups
in both of these families have commuting probability at most (2p2 +p−2)/p5, which
is in conflict with the restriction on cp(G). So we may assume from now on that the
group G is of nilpotency class at least 3. Hence G has an abelian Frattini subgroup
of index at most p3 by Theorem 2.8. Note also that |G : Φ(G)| ≥ p2, as G is not
cyclic. We split the rest of the proof according to whether the minimal number of
generators of G equals three or two.

I. (|G : Φ(G)| = p3) In light of Lemma 2.6, the generators g1, g2, g3 of G may be
chosen in such a way that the commutator [g1, f ] = [g3, g2] is central and of order p
for some f ∈ γc−1(G) ≤ Φ(G). Put

z = min{|G : CG(gk1φ)| | 0 < k < p, φ ∈ 〈g2, g3,Φ(G)〉}

and let (k1, φ1) be the pair at which the minimum is attained. We have φ1 ≡ gα2
2 gα3

3
modulo Φ(G) for some 0 ≤ α2, α3 < p. After possibly replacing g2 by gα2

2 gα3
3 , we

may assume that not both α2, α3 are nonzero, hence α2 = 0 and α3 = 1 without
loss of generality. Replacing g1 by g̃1 = gk1

1 g3, f by f̃ = fk1 , and g2 by g̃2 = gk1
2 f̃ ,

we still have G = 〈g̃1, g̃2, g3〉 and [g̃1, f̃ ] = [g1, f ]k1 [g3, f̃ ] = [g3, g
k1
2 ][g3, f̃ ] = [g3, g̃2]

since f ∈ γc−1(G). The minimum min{|G : CG(g̃1φ)| | φ ∈ 〈g̃2, g3,Φ(G)〉} is,
however, now attained at (1, g−1

3 φ1) with g−1
3 φ1 ∈ Φ(G). We may therefore assume

that k1 = 1 and φ1 ∈ Φ(G). Moreover, replacing g1 by g̃1 = g1φ1, we have
both [g̃1, f ] = [g1, f ] = [g3, g2] and |G : CG(g̃1)| = z, so we may actually assume
that φ1 = 1. Next, put x = min{|G : CG(φ)| | φ ∈ 〈g2, g3,Φ(G)〉\Φ(G)} with
the minimum being attained at the pair gα2 g

β
3φ0 with φ0 ∈ Φ(G). Replace the

generators g2, g3 by setting g̃3 = gα2 g
β
3 and choosing an element g̃2 arbitrarily as long

as 〈g2, g3,Φ(G)〉 = 〈g̃2, g̃3,Φ(G)〉 and [g3, g2] = [g1, f
κ] for some κ. This enables

us to assume that the minimum min{|G : CG(φ)| | φ ∈ 〈g2, g3,Φ(G)〉\Φ(G)} is
attained at g3φ0 for some φ0 ∈ Φ(G). Lastly, put

y = min{|G : CG(gk2φ)| | 0 < k < p, φ ∈ 〈g3,Φ(G)〉}

with the minimum being attained at the pair (k2, φ2). Writing φ2 ≡ gα3
3 modulo

Φ(G) and then replacing g2 by g̃2 = gk2
2 gα3

3 and f by f̃ = fk2 yields G = 〈g1, g̃2, g3〉
and [g1, f̃ ] = [g3, g2]k2 = [g3, g̃2]. We may thus a priori assume that k2 = 1 and
φ2 ∈ Φ(G). Note also that

x = min{|G : CG(gk3φ)| | 0 < k < p, φ ∈ Φ(G)}

and the minimum is attained at (1, φ0). Moreover, by the very construction of g3,
we have x ≤ y.
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When any of the numbers x, y, z equals p, the centralizer of the corresponding
element is a maximal subgroup of G, and thus contains Φ(G). In the case z = p, this
implies [g1, f ] = 1, which is impossible, so we must have z ≥ p2. As a consequence,
M(G) ≤ 〈g2, g3,Φ(G)〉. When p = 2, the group M(G) is abelian by Proposition
2.16, and so the factor group G/M(G) is not cyclic [2]. This implies that not both
g2 and g3 belong toM(G) in this case.

Let us first show that the case z = p2 is only possible for groups of small orders,
which have been dealt with at the beginning of the proof.

Lemma. If z = p2, then |G| ≤ p6 for odd p, and |G| ≤ 27 for p = 2.

Proof. We first show that the assumption z = p2 implies that G is of nilpotency
class 3. Observe that |[g1, G]| = p2. As the group G is of nilpotency class at least
3, not both the commutators [g2, g1] and [g3, g1] belong to γ3(G). By possibly
replacing g2 by g3 (note that by doing so, we lose the assumption x ≤ y, but we
will not be needing it in this step), we may assume that [g3, g1] /∈ γ3(G). Hence
[g1, G] = {[g1, g

α
3 f

β ] | 0 ≤ α, β < p}. It now follows that for any g ∈ γ2(G), we
have [g1, g] ∈ {[g1, f

β ] | 0 ≤ β < p}, because the commutator [g1, g] itself belongs to
γ3(G). This implies [g1, γ2(G), G] = 1. If the nilpotency class of G it at least 4, we
have [γc−1(G), g1] = [γc−2(G), G, g1] = [γc−2(G), g1, G] as the group G is metabelian
by Theorem 2.8. This gives [γc−1(G), g1] ≤ [g1, γ2(G), G] = 1, a contradiction with
[g1, f ] 6= 1. Hence G must be of nilpotency class 3.

Consider the case when p = 2 first. As the Frattini subgroup of G is abelian, we
have [g2

1 , g
2
3 ] = 1, which in turn gives [g4

1 , g3] = [g1, g3]4[g1, g3, g1]2 = 1, and similarly
[g4

1 , g2] = [g4
3 , g1] = 1. Hence g4

1 , g4
2 , g4

3 are all central in G, and therefore belong to
[G,G] as the group G is stem. The factor group γ2(G)/γ3(G) is generated by the
commutator [g3, g1], and we either have [g2, g1] = [g3, g1] or [g2, g1] ∈ γ3(G), since
|[g1, G]| = z = 4 and thus [g1, G] = {1, [g1, f ], [g1, g3], [g1, g3f ]}. Moreover, we can
assume that f = [g3, g1]. Note that [g2

3 , g1] ∈ γ3(G), implying [g3, g1]2 ∈ γ3(G) and
therefore |γ2(G)/γ3(G)| = 2. The group γ3(G) is generated by the commutators
[g3, g1, g1], [g3, g1, g2] and [g3, g1, g3], all being of order at most 2. If [g2, g1] ∈ γ3(G),
we have [g3, g1, g2] = [g3, g1]−1[gg2

3 , g
g2
1 ] = 1, and if [g2, g1] /∈ γ3(G), then we

have [g3, g1]g2 = [g3, g1[g1, g2]] = [g3, g1[g3, g1]] = [g3, g1][g3, g1, g3], which gives
[g3, g1, g2] = [g3, g1, g3]. Replacing g2 by g̃2 = g2g3 therefore enables us to assume
[g3, g1, g2] = 1. This shows that γ3(G) is of order at most 4, and the Hall-Witt
identity [15, Satz III.1.4] gives [g2, g1, g3] = 1. Note that [g2

3 , g1] ∈ γ3(G) gives
[g2

3 , g1] = [g3, g1, g1]k for some k ∈ {0, 1}, hence g2
3 [g3, g1]−k is central inG. Therefore

g2
3 ∈ [G,G] as G is a stem group. The same reasoning shows that [g2

2 [g3, g1]k, g1] = 1
for some k ∈ {0, 1}. If k = 0, then g2

2 is central in G and hence belongs to [G,G].
This gives |G| ≤ 27, a contradiction. Hence k = 1 and we have [g2

2 , g1] = [g3, g1, g1].
This further implies [g2

2 , g1] = [g2, g1]2[g2, g1, g2] = [g3, g1]2[g3, g1, g2] = [g3, g1]2,
hence [g3, g

2
1 ] = [g3, g1]2[g3, g1, g1] = [g3, g1]2[g2

2 , g1] = 1. It follows from here that
[g2, g

2
1 ] = [g2, g1]2[g2, g1, g1] = [g3, g1]2[g3, g1, g1] = [g3, g

2
1 ] = 1, and so g2

1 is central
in G. This finally gives |G| ≤ 27.

Suppose now that p is odd. Commutators and powers relate to give the equality
[gp3 , g1] = [g3, g1]p[g3, g1, g3](

p
2) = [g3, g1]p = [g3, g

p
1 ]. Assuming gp3 fg1 6= g3fg

p
1 and
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invoking B0-minimality implies G = 〈g1, g3〉, a contradiction. Hence gp3fg1 = g3fg
p
1 .

Note that [g3, g1]p belongs to γ3(G), so we must have [g3, g1]p = [g1, f
k] for some k.

Assuming gp3fg1 6= g1ffk and invoking B0-minimality gives G = 〈g1, g
p
3 , f

k〉 = 〈g1〉,
which is impossible. Hence we also have gp3 f g1 = g1 f fk. Recall, however, that
g1 f f 6= g3 f g2, which gives g3 f g

p
1 6= gk3 f g2 whenever k > 0. Referring to B0-

minimality, a contradiction is obtained, showing that k = 0 and hence [g3, g1]p = 1.
An analogous argument shows that [g2, g1]p = 1. The elements gp1 , g

p
2 , g

p
3 are

therefore all central in G, which implies that |G/[G,G]| = p3 as G is a stem group.
Now consider the commutator [g2, g1]. Should it belong to γ3(G), we have γ2(G) =
〈[g3, g1], [g3, g1, g1], [g3, g1, g3]〉, since [g3, g1, g2] = 1 by the Hall-Witt identity. The
latter gives the bound |G| = |G/[G,G]| · |[G,G]| ≤ p6, a contradiction. Now assume
that [g2, g1] does not belong to γ3(G). By the restriction |[g1, G]| = p2, we must
have [g2, g1] ≡ [gk3 , g1] modulo γ3(G) for some k > 0. Hence |γ2(G)/γ3(G)| = p and
γ3(G) = 〈[g3, g1, g1], [g3, g1, g2], [g3, g1, g3]〉 . As in the case when p = 2, we now have
[g3, g1]g2 = [g3, g1[g1, g2]] = [g3, g1[g1, g

k
3 ]] = [g3, g1, g3]−k[g3, g1], which furthermore

gives [g3, g1, g2] = [g3, g1, g3]−k. All-in-all, we obtain the bound |γ3(G)| ≤ p2 and
therefore |G| ≤ p6. �

Assume now that z ≥ p3. Applying the restriction on commuting probability of
G reduces our claim to just one special case.

Lemma. We have x = p, y = p2, z = p3.

Proof. We count the number of conjugacy classes in G with respect to the generating
set g1, g2, g3. The central elements Z(G) are of class size 1, and the remaining
elements of Φ(G) are of class size at least p. Any other element of G may be written
as a product of powers of g1, g2, g3 and an element belonging to Φ(G). These are
of class size at least x, y, z, depending on the first nontrivial appearance of one of
the generators. Summing up, we have

k(G) ≤ |Z(G)|+(|Φ(G)|− |Z(G)|)/p+((p−1)/x+p(p−1)/y+p2(p−1)/z)|Φ(G)|.

Note that since G is a 3-generated stem group of nilpotency class at least 3, we
have |G/Z(G)| = |G/[G,G]| · |[G,G]/Z(G)| ≥ p4. Applying this inequality, the
commuting probability bound (2p2 + p − 2)/p5 < cp(G) = k(G)/|G|, and the
information on the number of generators |G : Φ(G)| = p3, we obtain

(3.1) (2p+ 1)/p4 < 1/p2x+ 1/py + 1/z.

Assume first that x ≥ p2. We thus also have y ≥ p2, and inequality (3.1) gives
z < p3, which is impossible. So we must have x = p. In particular, the generator
g3 centralizes Φ(G). We may thus replace g2 by g̃2 = g2φ2 and henceforth assume
that |[g2, G]| = y. When p = 2, not both g2 and g3 belong toM(G), so we have
y ≥ 4 in this case. For odd primes p, assuming y = p makes it possible to replace
g3 by g3φ3 and hence assume |G : CG(g3)| = p. This implies that the commutators
[g1, g2], [g3, g1] and [g3, g2] all belong to γc(G), which restricts the nilpotency class
of G to at most 2, a contradiction. We therefore have y = |[g2, G]| ≥ p2. Inequality
(3.1) now gives z < p4, which is only possible for z = p3. Plugging this value in
(3.1), we obtain y < p3, so we must also have y = p2. �
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We are thus left with the case x = p, y = |[g2, G]| = p2, and z = |[g1, G]| = p3.
These restrictions give a good bound on the nilpotency class of G.

Lemma. The nilpotency class of G is at most 4.

Proof. The commutator [g3, g2] is central in G, and we have [g3, g1, g2] = 1 by the
Hall-Witt identity. This implies that [g3, g1, g1]g2 = [g3, g1, g1[g1, g2]] = [g3, g1, g1],
hence [g3, g1, g1, g2] = 1. The same reasoning gives [g3, g1, g1, g1, g2] = 1. Note
that we must have [g3, g1, g1, g1, g1] = 1 since |[g1, G]| = p3. The commuta-
tor [g3, g1, g1, g1] is therefore central in G, and the same argument applies to
[g2, g1, g1, g1]. Note also that since |[g2, G]| = p2, the commutator [g2, g1, g2] is equal
to a power of [g3, g2], hence central in G. All together, this shows that all basic
commutators of length 4 are central in G, which implies that G is of nilpotency
class at most 4. �

We will also require the following result.

Lemma. The element gp1 is central in G.

Proof. The restriction |[g2, G]| = p2 implies that [g2, g
p
1 ] = [g3, g2]k for some k.

Assuming g2 f g
p
1 6= gk3 f g2 and invoking B0-minimality gives G = 〈g2, g3〉, which

is impossible. Hence g2 f g
p
1 = gk3 f g2. When k > 0, this gives g2 f g

p
1 6= gk1 f f ,

hence G = 〈g2, g1〉, a contradiction. Therefore k = 0 and we conclude [g2, g
p
1 ] = 1,

so gp1 is central in G. �

The final step of the proof is based on whether or not the commutator [g2, g1]
belongs to γ3(G). In both cases, we reduce the claim to groups of smallish orders
that have been considered above.

Lemma. If [g2, g1] ∈ γ3(G), then |G| ≤ p6 for odd p, and |G| ≤ 27 for p = 2.

Proof. Suppose [g2, g1] ∈ γ3(G). When p is odd, this restriction is used to obtain
[gp2 , g1] = [g2, g1]p[g2, g1, g2](

p
2) = [g2, g1]p = [g2, g

p
1 ] = 1, showing that the element

gp2 is central in G. Furthermore, we have γ2(G)/γ3(G) = 〈[g3, g1]〉, γ3(G)/γ4(G) =
〈[g3, g1, g1]〉, and γ4(G) = 〈[g3, g1, g1, g1]〉, with all of the factor group being of order p.
When the nilpotency class of G equals 3, we thus obtain the bound |G| = |G/[G,G]| ·
|γ2(G)/γ3(G)|·|γ3(G)| ≤ p6 for odd p and |G| ≤ 27 for p = 2. Now let [g3, g1, g1, g1] 6=
1 and consider the commutator [gp3 , g1]. Since |[g1, G]| = p3, we have [g1, g

p
3 ] =

[[g3, g1]k[g3, g1, g1]l, g1] for some k, l. This shows that gp3 [g3, g1]−k[g3, g1, g1]−l is
central in G. Since G is a stem group, we conclude that |G/[G,G]| = p3 when p is
odd, and |G/[G,G]| ≤ 24 when p = 2. Applying the same bound as above gives
|G| ≤ p6 for odd p and |G| ≤ 27 for p = 2. �

Lemma. If [g2, g1] /∈ γ3(G), then |G| ≤ p6.

Proof. Assume that [g2, g1] /∈ γ3(G). Consider the commutator [g2, g] for some
g ∈ γ2(G). Since |[g2, G]| = p2 and [g2, g] ∈ γ3(G), we have [g2, g] = [g3, g2]k for
some k. Assuming g2 f g 6= gk3 f g2 and invoking B0-minimality gives G = 〈g2, g3〉,
a contradiction. Hence g2 f g = gk3 f g2, implying g2 f g 6= gk1 f f whenever
k > 0, and it follows from here by B0-minimality that G = 〈g2, g1〉, another
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contradiction. We therefore have [g2, g] = 1, that is [g2, γ2(G)] = 1. Now consider
the commutator [gp2 , g1]. Since [gp2 , g1] ≡ [g2, g1]p ≡ [g2, g

p
1 ] ≡ 1 modulo γ3(G), we

have [gp2 , g1] = [g, g1] for some g ∈ [G,G]. As G is a stem group, this implies that
gp2 ∈ [G,G]. The same reasoning applied to g3 shows that gp3 ∈ [G,G]. Hence
|G/[G,G]| = p3. At the same time, the derived subgroup [G,G] is generated by the
commutators [g3, g1], [g2, g1], [g3, g1, g1], [g2, g1, g1], [g3, g1, g1, g1], [g2, g1, g1, g1]. By
[g2, γ2(G)] = 1, we have [G,G] = [g1, G] and therefore |[G,G]| = p3. All together,
the bound |G| ≤ p6 is obtained. �

II. (|G : Φ(G)| = p2) Let g1 and g2 be the two generators of G, satisfying
[g1, f ] = [g3, g2] for some f ∈ γc−1(G). As before, put y = min{|G : CG(φ)| | φ ∈
〈g1, g2,Φ(G)〉\Φ(G)}. After possible replacing the generators, we may assume

y = min{|G : CG(gk2φ)| | 0 < k < p, φ ∈ Φ(G)} = |G : CG(g2)|.

Additionally put

z = min{|G : CG(gk1φ)| | 0 < k < p, φ ∈ 〈g2,Φ(G)〉}

with the minimum being attained at the pair (1, 1) after possibly replacing g1 and g3

just as in the case when |G : Φ(G)| = p3. Note that we have y ≤ z by construction.
When y = p, the subgroup 〈g2,Φ(G)〉 is a maximal abelian subgroup of G, which
implies B0(G) = 0 by [2], a contradiction. Hence z, y ≥ p2.

Applying the restriction on commuting probability of G again reduces our claim
to a special case.

Lemma. We have y = p2 and z ≤ p3.

Proof. We count the number of conjugacy classes in G. In doing so, we may
assume |G/Z(G)| ≥ p4. To see this, suppose for the sake of contradiction that
|G/Z(G)| ≤ p3. As the nilpotency class of G is at least 3, its central quotient
G/Z(G) must therefore be nonabelian of order p3. Since G is a 2-generated stem
group, we thus have |G/[G,G]| = p2. Furthermore, the derived subgroup of G
is equal to 〈[g1, g2], [g1, g2, g1], [g1, g2, g2]〉 with [g1, g2, g1] and [g1, g2, g2] of order
dividing p. We thus obtain the bound |G| = |G/γ2(G)| · |γ2(G)/γ3(G)| · |γ3(G)| ≤ p5,
a contradiction. Applying the inequality |G/Z(G)| ≥ p4, the commuting probability
bound and the information on the number of generators, the degree equation yields

(3.2) (p+ 1)/p4 < 1/py + 1/z.

Assuming y ≥ p3, we also have z ≥ p3, which is in conflict with inequality (3.2).
Hence y = p2, and inequality (3.2) additionally gives z ≤ p3. �

As in the case when |G : Φ(G)| = p3, the bound z ≤ p3 restricts the nilpotency
class of G to at most 4. Note that the commutator [g2, g1, g2] is either trivial or equals
a power of [g3, g2] since |[g2, G]| = p2. We therefore have γ2(G)/γ3(G) = 〈[g2, g1]〉,
γ3(G)/γ4(G) = 〈[g2, g1, g1]〉, and γ4(G) = 〈[g2, g1, g1, g1]〉 with all the groups being
of order p. Moreover, both gp

2

1 and gp
2

2 are central in G as the Frattini subgroup is
abelian. When p = 2, this already gives |G| ≤ 24+3 = 27, a contradiction. Similarly,
if the group G is of nilpotency class 3, we obtain |G| ≤ p6, another contradiction.
The remaining case is dealt with in the following lemma.
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Lemma. If p is odd and G is of nilpotency class 4, then |G| ≤ p6.

Proof. Note that we have [g2, g
p
1 ] = [g3, g2]k for some k. This in turn gives [gp2 , g1] =

[g2, g1]p[g2, g1, g2](
p
2) = [g2, g1]p. We also have [g2, g

p
1 ] = [g2, g1]p[g, g1] for some

g ∈ [G,G] that satisfies [g2, g] = 1. Combining the two, we obtain [gp2 , g1] =
[g2, g

p
1 ][g−1, g1][g2, g1, g2](

p
2) = [g1, f ]k[g−1, g1] = [h, g1] for some h ∈ [G,G]. Since

f ∈ γ3(G), we also have [g2, h] = 1. This shows that gp2h−1 ∈ Z(G). As the group G
is stem, we therefore have |G/[G,G]| ≤ p3. Hence |G| = |G/[G,G]|·|γ2(G)| ≤ p6. �

The proof of Theorem 1.1 is thus complete. �

We use Theorem 1.1 to obtain a global bound on commuting probability that
applies to all finite groups.

Proof of Corollary 1.2. Let p be a prime dividing the order of G. By [3, Lemma
2.6], the p-part of B0(G) embeds into B0(S), where S is a Sylow p-subgroup of G.
At the same time, we have cp(S) ≥ cp(G) > 1/4 by [9], which gives B0(S) = 0 by
Theorem 1.1. Hence B0(G) = 0. �

The bound given by both Theorem 1.1 and Corollary 1.2 is sharp, as shown by
the existence of groups given in Theorem 2.13 with commuting probability equal to
(2p2 +p−2)/p5 and a nontrivial Bogomolov multiplier. We also note that no sensible
inverse of neither Theorem 1.1 nor Corollary 1.2 holds. As an example, let G be
a noncommutative group with B0(G) = 0, and take Gn to be the direct product
of n copies of G. It is clear that cp(Gn) = cp(G)n, which tends to 0 with large n,
and B0(G) = 0 by [19]. So there exist groups with arbitrarily small commuting
probabilities yet trivial Bogomolov multipliers.

4. Applications

Using Theorem 1.1, a nonprobabilistic criterion for the vanishing of the Bogomolov
multiplier is first established.

Corollary 4.1. Let G be a finite group. If |[G,G]| is cubefree, then B0(G) is trivial.

Proof. Let S a nonabelian Sylow p-subgroup of G. By counting only the linear
characters of S, we obtain the bound k(S) > |S : [S, S]| ≥ |S|/p2, which further
gives cp(S) > 1/p2 ≥ (2p2 + p − 2)/p5. Theorem 1.1 implies B0(S) = 0. As the
p-part of B0(G) embeds into B0(S) [3, Lemma 2.6], we conclude B0(G) = 0. �

The restriction to third powers of primes in Corollary 4.1 is best possible, as
shown by the B0-minimal groups given in Theorem 2.13, whose derived subgroups
are of order p3. We remark that another way of stating Corollary 4.1 is by saying
that the Bogomolov multiplier of a finite extension of a group of cubefree order by
an abelian group is trivial. This may be compared with [2, Lemma 4.9].

We now apply Corollary 1.2 to provide some curious examples of B0-minimal
isoclinism families, determined by their stem groups. These in particular show that
there is indeed no upper bound on the nilpotency class of a B0-minimal group. To
prove that the Bogomolov multiplier of a given group is trivial, we essentially use the
technique developed in [25]. Showing nontriviality of B0(G) is usually more difficult.
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One can use cohomological methods, see, for example, [13, 14]. Here, we apply
the concept of B0-pairings developed in [24], which essentially reduces the problem
to a combinatorial one. This enables us to explicitly determine the generators of
B0(G). A B0-pairing is a map φ : G×G→ H satisfying φ(xy, z) = φ(xy, zy)φ(y, z),
φ(x, yz) = φ(x, z)φ(xz, yz) for all x, y, z ∈ G, and φ(a, b) = 1 for all a, b ∈ G with
[a, b] = 1. In this case, φ determines a unique homomorphism φ∗ : GfG→ H such
that φ∗(x ∧ y) = φ(x, y) for all x, y ∈ G, see [24]. In order to prove that a certain
element w =

∏
i(ai f bi) of B0(G) is nontrivial, it therefore suffices to find a group

H and a B0-pairing φ : G×G→ H such that
∏
i φ(ai, bi) 6= 1.

Example 4.2. For every n ≥ 6, consider the group

Gn =
〈
a, b, c

a2 = b2 = 1, c2 = [a, c],
[c, b] = [c, n−1a], [b, a] central, class n

〉
.

Another way of presenting Gn is by a polycyclic generating sequence gi, 1 ≤ i ≤ n,
subject to the following relations: g2

1 = g2
2 = 1, g2

i = gi+1gi+2 for 2 < i < n − 2,
g2
n−2 = gn−1, g2

n−1 = g2
n = 1, [g2, g1] = gn, [gi, g1] = gi+1 for 2 < i < n − 1,

[gn−1, g1] = [gn, g1] = 1, [g3, g2] = gn−1, and all the nonspecified commutators
are trivial. Note that the group G6 is the group given in Example 2.1. For any
n ≥ 6, the group Gn is a group of order 2n and of nilpotency class n− 3, generated
by g1, g2, g3. It is readily verified that Z(Gn) = 〈gn−1, gn〉 ∼= Z/2Z × Z/2Z and
[Gn, Gn] = 〈g4, gn〉 ∼= Z/2n−4Z× Z/2Z, whence Gn is a stem group. We claim that
the group Gn is in fact a B0-minimal group.

As we will be using Corollary 1.2, let us first inspect the conjugacy classes of
Gn. It is straightforward that centralizers of noncentral elements of Φ(Gn) are
all equal to the maximal subgroup 〈g2, g3〉Φ(Gn) of Gn. Furthermore, whenever
the normal form of an element g ∈ Gn\Φ(G) with respect to the above polycyclic
generating sequence does not contain g1, we have CGn

(g) = 〈g〉Φ(Gn), and when
the element g does have g1 in its normal form, we have CGn

(g) = 〈g〉Z(Gn). Having
determined the centralizers, we count the number of conjugacy classes in Gn. The
central elements all form orbits of size 1. The elements belonging to Φ(G)\Z(G)
all have orbits of size 2n/2n−1 = 2 and there are 2n−3 − 4 of them, which gives
2n−4 − 2 conjugacy classes. Next, the elements not belonging to Φ(G) and not
having g1 in their normal form have orbits of size 2n/2n−2 = 4 and there are 3 · 2n−3

of them, which gives 2n−5 conjugacy classes. Finally, the elements that do have
g1 in their normal form each contribute one conjugacy class depending on the
representative modulo Φ(G), which gives four conjugacy classes all together. Thus
k(Gn) = 2n−4 + 3 · 2n−5 + 6, and hence cp(Gn) = 1/24 + 3/25 + 6/2n.

We now show that B0(Gn) ∼= Z/2Z. First of all, we find the generator of
B0(Gn). The curly exterior square Gn fGn is generated by the elements g3 f g2

and gi f g1 for 2 ≤ i ≤ n − 2. As Gn is metabelian, the group Gn f Gn is
itself abelian. Any element w ∈ Gn f Gn may therefore be written in the form
w = (g3 f g2)β

∏n−2
i=2 (gi f g1)αi for some integers β, αi. Note that w belongs to

B0(Gn) precisely when [g3, g2]β
∏n−2
i=2 [gi, g1]αi is trivial. The latter product may be

written in terms of the given polycyclic generating sequence as
∏n−2
i=3 g

αi
i+1g

β
n−1g

α2
n .

This implies αi = 0 for all 2 ≤ i < n − 2 and αn−2 + β ≡ 0 modulo 2. Note that
we have (gn−2 f g1)2 = gn−2 f g2

1 = 1 and similarly (g3 f g2)2 = 1. Denoting
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v = (g3 f g2)(g1 f gn−2)−1, we thus have B0(Gn) = 〈v〉 with v of order dividing 2.
Let us now show that the element v is in fact nontrivial in GnfGn. To this end, we
construct a certain B0-pairing φ : Gn×Gn → Z/2Z. We define this pairing on tuples
of elements of Gn, written in normal form. For g =

∏n
i=1 g

ai
i and h =

∏n
i=1 g

bi
i , put

φ(g, h) =
∣∣ a2 b2
a3 b3

∣∣+ 2Z.

We now show that φ is indeed a B0-pairing. It is straightforward that φ is bilinear
and depends only on representatives modulo Φ(Gn). Suppose now that [x, y] = 1
for some x, y ∈ Gn. If x ∈ Φ(Gn), then clearly φ(x, y) = 2Z. On the other hand,
if x /∈ Φ(Gn), then we must have y ∈ CGn(x) ≤ 〈x〉Φ(Gn) by above, from which
it follows that φ(x, y) = φ(x, x) = 2Z. We have thus shown that the mapping
φ is a B0-pairing. Therefore φ determines a unique homomorphism of groups
φ∗ : Gn f Gn → Z/2Z such that φ∗(g f h) = φ(g, h) for all g, h ∈ Gn. As we
have φ∗(v) = φ(g3, g2)− φ(g1, gn−2) = 1 + 2Z, the element v is nontrivial. Hence
B0(Gn) = 〈v〉 ∼= Z/2Z, as required.

The above determination of centralizers also enables us to show that every
subgroup of Gn has commuting probability greater than 1/4. Note that it suffices
to prove this only for maximal subgroups of Gn. To this end, let M be a maximal
subgroup of Gn. Being of index 2 in Gn, M contains at least one of the elements
g3, g2, g2g3. If it contains two of these, then we have M = 〈g2, g3〉Φ(G) and so
M/Z(M) = Z/2Z×Z/2Z. By [10], this implies cp(M) = 5/8 and we are done. Now
assume that M contains exactly one of the elements g3, g2, g2g3. The centralizer
of any element in M not belonging to Φ(G) is, by above, of index 2n−1/2n−2 = 2
in M . There are 2n−3 of these elements, hence contributing 2n−4 to the number
of conjugacy classes in M . Similarly, the elements belonging to Φ(G)\Z(G) all
have their centralizer of index 2n−1/2n−2 = 2 in M and there are 2n−3 − 4 of
these elements, hence contributing 2n−4 − 2 conjugacy classes in M . This gives
k(M) > 4 + 2n−4 + (2n−4 − 2) > 2n−3 and therefore cp(M) > 1/4. It now follows
from Corollary 1.2 that every proper subgroup of Gn has a trivial Bogomolov
multiplier.

Lastly, we verify that Bogomolov multipliers of proper quotients of Gn are all
trivial. To this end, let N be a proper normal subgroup of Gn. If gn−1 ∈ N , then
the elements g2 and g3 commute in Gn/N . The group 〈g2, g3〉Φ(Gn)N is therefore
a maximal abelian subgroup of Gn/N , and it follows from [2] that B0(Gn/N) = 0.
Suppose now that gn−1 /∈ N . Note that we have Gn/N ' Gn/([Gn, Gn]∩N) by [11].
Since the Bogomolov multiplier is an isoclinism invariant, we may assume that N is
contained in [Gn, Gn] = 〈g4, gn〉 ∼= Z/2n−4Z× Z/2Z . As gn−1 is the only element
of order 2 in 〈g4〉 and gn−1 /∈ N , we must have either N = 〈gn〉 or N = 〈gn−1gn〉.
Suppose first that N = 〈gn〉 and consider the factor group H = Gn/N . Denoting
v = (g3 f g2)(g1 f gn−2), we show as above that B0(H) = 〈v〉. Note that we have
g2gn−2fg1g3 = (g2fg3)(g2fg1)(gn−2fg3)(gn−2fg1) = v in H, which implies that
v is trivial in HfH, whence B0(H) = 0. Now consider the case when N = 〈gn−1gn〉
and put H = Gn/N . Denoting v1 = (g3fg2)(g1fg2) and v2 = (gn−2fg1)(g1fg2),
we have B0(H) = 〈v1, v2〉. Note that g1 f g2gn−2 = v1 and g2 f g1g3 = v2 in H,
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which implies that v1 and v2 are both trivial in H fH, whence B0(H) = 0. This
completes the proof of the fact that Gn is a B0-minimal group.

As stated in the introduction, these examples contradict a part of the statement
of [2, Theorem 4.6] and [2, Lemma 5.4]. We found that the latter has been used in
proving triviality of Bogomolov multipliers of finite almost simple groups [20]. The
claim is reduced to showing B0(Out(L)) to be trivial for all finite simple groups
L. Standard arguments from [2] are then used to further reduce this to the case
when L is of type An(q) or D2m+1(q). These two cases are dealt with using the
above erroneous claim. With some minor adjustments, the argument of [20] can
be saved as follows. First note that the linear groups An(q) have been treated
separately in [3]. We remark that the argument for the exceptional case n = 2, q = 9
uses a consequence of the above statements, see also [13]. The result remains
valid, since the Sylow 3-subgroup is abelian in this case. As for orthogonal groups
D2m+1(q), note that the derived subgroup of Out(D2m+1(q)) is a subgroup of the
group of outer-diagonal automorphisms, which is isomorphic to Z/(4, q − 1)Z, see
[30]. Corollary 4.1 now gives the desired result.

Lastly, we say something about groups of small orders to which Theorem 1.1 may
be applied. Given an odd prime p, it is readily verified using [16] that among all
isoclinism families of rank at most 5, only the family Φ10 has commuting probability
lower or equal than (2p3 + p − 2)/p5. Theorem 1.1 therefore provides a unified
explanation of the known result that Bogomolov multipliers of groups of order at
most p5 are trivial except for the groups belonging to the family Φ10 [13, 25]. Next,
consider the groups of order p6. Out of a total of 43 isoclinism families, 19 of them
have commuting probabilities exceeding the above bound. This includes all groups of
nilpotency class 2. For 2-groups, use the classification [17] to see that all commuting
probabilities of groups of order at most 32 are all greater than 1/4. With groups of
order 64, there are 237 groups with the same property out of a total of 267 groups.
Again, this may be compared with known results [5]. Finally, one may use Theorem
1.1 on the Sylow subgroups of a given group rather than using Corollary 1.2 directly,
thus potentially obtaining a better bound on commuting probability that ensures
triviality of the Bogomolov multiplier.
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