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Abstract. In this paper we find simple characterizations of completely simple

semigroups with H -classes nilpotent of class ≤ c, and of completely simple semi-

groups whose core has H -classes nilpotent of class ≤ c. The notion of w-marginal
completely regular semigroups is introduced, generalizing the concept of central

semigroups. A law characterizing [x1, x2, . . . , xc+1]-marginal completely simple

semigroups is obtained. Additionally, the least congruences corresponding to these
classes are described. Our results extend the corresponding results obtained by

Petrich and Reilly in the abelian case.

1. Introduction

The class C S of completely simple semigroups is a variety of unary semigroups, that
is, of semigroups with inversion. It is defined by the identities x = xx−1x, (x−1)−1 = x,
xx−1 = x−1x and xx−1 = (xyx)(xyx)−1. According to the Rees theorem [6, Theorem
III.2.6], every completely simple semigroup is isomorphic to a Rees matrix semigroup
M(I,G,Λ;P ), where I and Λ are nonempty sets, G is a group, and P = (pλi) is a Λ×I-
matrix with entries from G. This result suggests that the structure of a given completely
simple semigroup S heavily depends on the properties of its structure groupG, especially
since all H -classes of S are isomorphic to G. In [4], Petrich and Reilly characterized
completely simple semigroups with abelian structure groups, whereas Rasin [7] deter-
mined all varieties of completely simple semigroups with abelian H -classes. Petrich
and Reilly [5] also determined all varieties of central completely simple semigroups, i.e.,
completely simple semigroups in which the product of any two idempotents lies in the
center of the maximal subgroup containing it.

In this paper we consider the case when the H -classes of a given completely simple
semigroup are nilpotent of class ≤ c. It is known that if V is a variety of groups,
then the class C S HV of completely simple semigroups with H -classes in V is also a
variety whose laws can be described in terms of V . In general, these laws can be rather
complicated. We find here a nice law characterizing the class C S HNc, where Nc is
the variety of all groups that are nilpotent of class ≤ c. Our argument is based on the
fact that the variety Nc can be described by a semigroup law found by Neumann and
Taylor [3]. A similar procedure alllows us to find a law characterizing completely simple
semigroups S with the core C(S) in C S HNc.

In [1], Phillip Hall introduced the notion of the w-marginal subgroup w∗(G) of a
group G for a given word w. In a special case when w = x−1y−1xy, w∗(G) is precisely
the center of G. This leads to a generalization of central semigroups. Given a group
word w, we say that a completely regular semigroup S is w-marginal if the product of
any two idempotents of S belongs to the w-marginal subgroup of the H -class containing
it. First we obtain some general characterizations of w-marginal semigroups. Then we
treat a special case when w is the commutator word ωc = [x1, x2, . . . , xc+1], and obtain
a law characterizing completely simple ωc-marginal semigroups.
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Simple characterizations of the class C S HNc and the class of completely simple
ωc-marginal semigroups suggest that there should be a relatively easy treatment of the
lattices of varieties of C S HNc and completely simple ωc-marginal semigroups modulo
the subvarieties of Nc. For c = 1 this has already been done in [5] and [7]. However,
beyond this point relatively little is known. Note that the subvarieties of Nc are only
known for c ≤ 3 [2], and that the arguments of [5] and [7] heavily rely on the fact that
the groups in question are abelian. It is to be expected that our results would be a
first step towards determination of these lattices of varieties. This will be handled with
separately.

2. Preliminaries and notations

In this section we briefly collect some facts on completely simple semigroups. A
reference for this is for instance [6]. Recall that S = M(I,G,Λ;P ) stands for a Rees
matrix semigroup over the group G with Λ × I sandwich matrix P = (pλi). Elements
of this semigroup are triples (i, g, λ), where i ∈ I, g ∈ G, λ ∈ Λ, and the multiplication
is given by (i, g, λ)(j, h, µ) = (i, gpλjh, µ). Moreover, P may be taken to be normalized,
i.e., there exist 1 ∈ I and 1 ∈ Λ such that p1i = pλ1 = e for all i ∈ I, λ ∈ Λ; here e
is the identity element of G. For x ∈ S let x0 be the idempotent belonging to the H -
class Hx containing x, and x−1 denotes the inverse of x in the maximal subgroup Hx. If
x = (i, g, λ), then Hx = {(i, h, λ) : h ∈ G}, x0 = (i, p−1

λi , λ) and x−1 = (i, p−1
λi g
−1p−1

λi , λ).
With ρ(r,N,π) we denote the congruence on S corresponding to the admissible triple
(r,N, π); see [6] for details. Semilattices S = (Y ;Sα) of completely simple semigroups
Sα are said to be completely regular semigroups.

Let G be a group. For x1, x2, . . . , xn ∈ G we define the commutator [x1, x2, . . . , xn]
inductively by [x1, x2] = x−1

1 x−1
2 x1x2 and [x1, x2, . . . , xn] = [[x1, x2, . . . , xn−1], xn] for

n > 2. Define the sequence (γi(G))i of subgroups of G by γ1(G) = G and γn+1(G) =
[γn(G), G] = 〈[a, b] : a ∈ γn(G), b ∈ G〉 for n ≥ 1. A group G is said to be nilpotent of
class c if c is the smallest integer with the property that γc+1(G) = {e}.

For other unexplained notations we refer to [6] and [8].

3. General results

Lemma 3.1. Let w(x1, . . . xn) be a word in the free group of rank n over {x1, . . . , xn}.
Let S = M(I,G,Λ;P ) and choose i ∈ I and λ ∈ Λ. Then

w((i, g1, λ), . . . , (i, gn, λ)) = (i, p−1
λi w(pλig1, . . . , pλign), λ)

for all g1, . . . , gn ∈ G.

Proof. This follows from the equalities (i, g, λ)(i, h, λ) = (i, p−1
λi (pλig)(pλih), λ) and

(i, g, λ)(i, h, λ)−1 = (i, g, λ)(i, p−1
λi h

−1p−1
λi , λ) = (i, p−1

λi (pλig)(pλih)−1, λ), using induc-
tion on the length of w. �

Let X be a group theoretical class. A completely regular semigroup S is said to
be an over-X semigroup if every H -class of S belongs to X . Denote by C RHX the
class of all completely regular over-X semigroups, and by C S HX the class of all com-
pletely simple over-X semigroups. If V is a variety of groups determined by the laws
uσ(x1, . . . , xiσ ) = vσ(x1, . . . , xiσ ), σ ∈ Σ, then C RHV is a variety of completely regular
semigroups determined by the laws uσ(eσx1eσ, . . . , eσxiσeσ) = vσ(eσx1eσ, . . . , eσxiσeσ),
where σ ∈ Σ and eσ = (x1 . . . xiσ )0 [6, Proposition II.7.2]. Similarly, [6, Theorem
VIII.5.5] shows that C S HV is a variety of completely simple semigroups determined
by the laws of the form uσ(a0x1a

0, . . . , a0xiσa
0) = vσ(a0x1a

0, . . . , a0xiσa
0), where σ ∈ Σ

and a /∈ ∪σ∈ac(uσvσ). Our first remark shows that we can choose another set of laws
defining C S HV without changing the content of the laws of V .

Proposition 3.2. Let V be a variety of groups characterized by the laws

uσ(x1, x2, . . . , xnσ ) = vσ(x1, x2, . . . , xnσ ),
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where σ ∈ Σ. Then a completely simple semigroup S is an over-V semigroup if and
only if it satisfies the laws uσ(x1, x

0
1x2x

0
1, . . . , x

0
1xnσx

0
1) = vσ(x1, x

0
1x2x

0
1, . . . , x

0
1xnσx

0
1),

σ ∈ Σ.

Proof. Suppose first that the H -classes of S belong to the variety V . Let xi ∈ S.
Then x1 H x0

1xix
0
1 for all i, hence S satisfies the laws uσ(x1, x

0
1x2x

0
1, . . . , x

0
1xnσx

0
1) =

vσ(x1, x
0
1x2x

0
1, . . . , x

0
1xnσx

0
1) for all σ ∈ Σ.

Conversely, let S satisfy uσ(x1, x
0
1x2x

0
1, . . . , x

0
1xnσx

0
1) = vσ(x1, x

0
1x2x

0
1, . . . , x

0
1xnσx

0
1),

where σ ∈ Σ. Suppose that S = M(I,G,Λ;P ) with P normalized, and choose xi =
(1, gi, 1), where gi ∈ G. Then we obtain uσ(g1, g2, . . . , gnσ ) = vσ(g1, g2, . . . , gnσ ) for all
σ ∈ Σ and gi ∈ G, whence G ∈ V . This concludes the proof. �

For a group G and a word w(x1, . . . , xn) in a free group of rank n, denote by w(G)
the subgroup of G generated by all w(g1, . . . , gn), where g1, . . . , gn ∈ G. According to
[1], the group w(G) is said to be the verbal subgroup of G corresponding to the word w.
It is evident that w(G) is a fully invariant subgroup of G.

Proposition 3.3. Let V = [w = 1] be a variety of groups and let S = M(I,G,Λ;P )
with P normalized. Then the admissible triple (ε, w(G), ε) corresponds to the least
C S HV -congruence on S.

Proof. Let ρ = ρ(ε,w(G),ε). Then the structure group of S/ρ is isomorphic to G/w(G),
hence S/ρ ∈ C S HV . Let τ = ρ(r,N,π) be another C S HV -congruence on S. Then
w((1, g1, 1), . . . , (1, gn, 1)) τ (1, e, 1) for all g1, . . . , gn ∈ G, therefore we conclude that
(1, w(g1, . . . , gn), 1) τ (1, e, 1) for all g1, . . . , gn ∈ G. By definition of an admissible triple
it follows that w(g1, . . . , gn) ∈ N for all g1, . . . , gn ∈ G, hence w(G) ≤ N . This shows
that ρ is the least C S HV -congruence on S. �

For a variety of groups V , let C S CHV be the class of all completely simple semi-
groups with C(S) ∈ C S HV . It is not difficult to see that S = M(I,G,Λ;P ) is in
C S CHV if and only if the group 〈P 〉 belongs to V . Our next result describes the least
C S CHV -congruence on a given completely simple semigroup. For a given subgroup K
of G denote by KG the normal closure of K in G. The result can be stated as follows.

Corollary 3.4. Let V = [w = 1] be a variety of groups and let S = M(I,G,Λ;P )
with P normalized. Then the admissible triple (ε, w(〈P 〉)G, ε) corresponds to the least
C S CHV -congruence on S.

Proof. Let ρ = ρ(ε,w(〈P 〉)G,ε). Then S/ρ ∼= M(I,G/w(〈P 〉)G,Λ; P̄ ), where P̄ is the
Λ× I-matrix with (λ, i)-entry equal to pλiw(〈P 〉)G [6, Theorem III.4.6]. By [6, Lemma
III.2.10] we have that C(S/ρ) is isomorphic to M(I, 〈P̄ 〉,Λ; P̄ ), hence S/ρ is a C S CHV -
semigroup. To prove that ρ is the least C S CHV -congruence on S, let τ = ρ(r,N,π) be
an arbitrary C S CHV -congruence on S. For every p1, . . . , pn in 〈P 〉 we have that
(1, w(p1, . . . , pn), 1) τ (1, e, 1), whence w(〈P 〉) ≤ N . As N is a normal subgroup of G,
we also have that w(〈P 〉)G ≤ N . This concludes the proof. �

Suppose w is a group word in n variables and let G be a group. Then the set of all
a ∈ G satisfying

w(g1, . . . , gi−1, gia, gi+1, . . . , gn) = w(g1, . . . , gi−1, gi, gi+1, . . . , gn)

for all gj ∈ G, i = 1, . . . , n is a characteristic subgroup w∗(G) of G. According to Hall
[1], w∗(G) is said to be the w-marginal subgroup of G. Clearly, G belongs to the variety
of groups satisfying the law w = 1 if and only if w∗(G) = G. For example, when
w = ωc = [x1, . . . , xc, xc+1], the marginal subgroup w∗(G) is equal to Zc(G), the c-th
term of the upper central series of G [1].

Let w be a group word. A completely regular semigroup S is said to be w-marginal if
the product of any two idempotents of S belongs to the w-marginal subgroup of the H -
class containing it. In particular, when w = [x, y], the class of w-marginal semigroups
is precisely the class of central semigroups.
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Proposition 3.5. Let S = (Y ;Sα) be a completely regular semigroup and w a word in
a free group. The following assertions are equivalent.

(a) S is w-marginal.
(b) Sα is w-marginal for all α ∈ Y .
(c) C(S) ∩He ≤ w∗(He) for all e ∈ E(S).

Proof. Clearly (a) implies (b). To see that (b) implies (a), let e, f ∈ E(S) and put x =
(ef)0. By [6, Lemma II.6.3] there exist e1, . . . , en ∈ E(Rx) and f1, . . . , fn ∈ E(Lx) such
that eifi ∈ Hx for i = 1, . . . , n, and ef =

∏
1≤i≤n(eifi)εi , where εi ∈ {−1, 1}. Clearly

eifi ∈ Dx = Jx, hence also (eifi)εi ∈ Jx for all i = 1, . . . , n. This shows that (eifi)εi all
belong to the same semilattice component Sα. By hypothesis, (eifi)εi ∈ w∗(Hx), hence
also ef ∈ w∗(Hx).

Next we prove that (b) implies (c). Let e ∈ E(S) and a ∈ C(S) ∩ He. Applying
[6, Lemma II.6.3] again, we can write a =

∏
1≤i≤n(eifi)εi , where e1, . . . , en ∈ E(Re),

f1, . . . , fn ∈ E(Le) and εi ∈ {−1, 1}. As (eifi)εi all belong to the same semilattice
component Sα, we have that (eifi)εi ∈ w∗(He), hence a ∈ w∗(He).

Finally, if e, f ∈ E(S), then ef ∈ H(ef)0 ∩ C(S), hence (c) clearly implies (b). �

The above result shows that w-marginality is essentially a property of completely
simple semigroups. In this case, the following additional characterization is obtained.

Theorem 3.6. Let S = M(I,G,Λ;P ) with P normalized and let w be a group word.
Then S is w-marginal if and only if 〈P 〉 ≤ w∗(G).

Proof. Let S be w-marginal and let a = (i, e, 1) and b = (1, e, µ). Then ab = (i, e, µ)
belongs to the w-marginal subgroup of the group Hiµ = {(i, g, µ) : g ∈ G}. By Lemma
3.1 we conclude that the equation w(pµig1, . . . , pµigt−1, pµigtpµi, pµigt+1, . . . , pµign) =
w(pµig1, . . . , pµigt−1, pµigt, pµigt+1, . . . , pµign) holds for all g1, . . . , gn ∈ G and all t =
1, . . . , n. Replacing gj by p−1

µi gj for all j = 1, . . . , n, we get that the above condition is
equivalent to w(g1, . . . , gt−1, gtpµi, gt+1, . . . , gn) = w(g1, . . . , gt−1, gt, gt+1, . . . , gn). This
implies that pµi ∈ w∗(G), thus also 〈P 〉 ≤ w∗(G).

Conversely, let a = (i, p−1
λi , λ) and b = (j, p−1

µj , µ) be arbitrary idempotents of S.
Then ab = (i, p−1

λi pλjp
−1
µj , µ). By the assumption we have that p−1

λi pλjp
−1
µj ∈ w∗(G).

Let hk = (i, gk, µ) be arbitrary elements of Hiµ = {(i, g, µ) : g ∈ G}. Using Lemma
3.1, we get w(h1, . . . , ht−1, htab, ht+1, . . . , hn) = w(h1, . . . , ht−1, ht, ht+1, . . . , hn) for all
t = 1, . . . , n, hence ab ∈ w∗(Hiµ). Thus S is w-marginal. �

Corollary 3.7. Let S = M(I,G,Λ;P ) with P normalized and let w(x1, . . . , xn) be a
group word. Then the least w-marginal congruence on S corresponds to the admissible
triple (ε,N, ε) where N is the normal closure in G of the subgroup of G generated by all

w(g1, . . . , gt−1, gtpλi, gt+1, . . . , gn) · w(g1, . . . , gt−1, gt, gt+1, . . . , gn)−1,

where i ∈ I, λ ∈ Λ, g1, . . . , gn ∈ G, t = 1, . . . , n.

Proof. Let ρ = ρ(ε,N,ε), where N is as above. By definition we have that

w(g1, . . . , gt−1, gtpλi, gt+1, . . . , gn) ρ w(g1, . . . , gt−1, gt, gt+1, . . . , gn)

for all i ∈ I, λ ∈ Λ, g1, . . . , gn ∈ G, t = 1, . . . , n. This shows that S/ρ is w-marginal.
If τ = ρ(r,M,π) is an arbitrary w-marginal congruence on S, then a similar argument
as in the proof of Proposition 3.3 shows that N ≤ M , hence ρ is the least w-marginal
congruence on S. �

4. Nilpotency

Let M be a free monoid of countable rank. For x, y, z0, z1, . . . in M define a sequence
of words qn(x, y, z0, . . . , zn−1) by q0(x, y) = x and

qn+1(x, y, z0, . . . , zn) = qn(x, y, z0, . . . , zn−1)znqn(y, x, z0, . . . , zn−1)
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for n ≥ 0. A semigroup S is said to be nilpotent of class c if it satisfies the identity
qc(x, y, z0, . . . , zc−1) = qc(y, x, z0, . . . , zc−1) for all x, y ∈ S, zi ∈ S1, and c is the least
positive integer with this property. The notion of a nilpotent semigroup was introduced
by Neumann and Taylor [3]. They showed that a group is nilpotent of class ≤ c in
the classical sense [8, Part 1, p. 49] if and only if it satisfies the above identity. Thus
Proposition 3.2 provides a law characterizing completely simple over-Nc semigroups.
Furthermore, that law can be replaced by a simpler one, as the following result shows.

Proposition 4.1. Let S be a completely simple semigroup. Then S is over-Nc if and
only if qc(a0, a, x0, . . . , xc−1) = qc(a, a0, x0, . . . , xc−1) for all a, x0, . . . , xc−1 ∈ S.

Proof. Suppose first that the H -classes of S are nilpotent of class ≤ c. Let a and
x0, x1, . . . , xc−1 be arbitrary elements of S. Then a, a0 and a0xia

0, where i = 0, . . . , c−1,
belong to the same H -class. Thus we have that qc(a, a0, a0x0a

0, . . . , a0xc−1a
0) =

qc(a0, a, a0x0a
0, . . . , a0xc−1a

0). Note that q1(a, a0, a0x0a
0) = ax0a

0 = q1(a, a0, x0)
and q1(a0, a, a0x0a

0) = a0x0a = q1(a0, a, x0). An induction argument now yields
that qc(a, a0, a0x0a

0, . . . , a0xc−1a
0) = qc(a0, a, x0, . . . , xc−1), and similarly we also have

qc(a0, a, a0x0a
0, . . . , a0xc−1a

0) = qc(a0, a, x0, . . . , xc−1) for all a, x0, . . . , xc−1 ∈ S.
Conversely, suppose that a semigroup S satisfies the law qc(a0, a, x0, . . . , xc−1) =

qc(a, a0, x0, . . . , xc−1). Let S = M(I,G,Λ;P ) with P normalized. Choosing a = (1, g, 1)
and xi = (1, gi, 1) for i = 0, . . . , c−1, we see thatG satisfies the law qc(e, g, g0, . . . , gc−1) =
qc(g, e, g0, . . . , gc−1). We show by induction on c that G is nilpotent of class ≤ c. For
c = 1 this is obvious, so assume that our claim holds true for some c ≥ 1. Let now G be
a group satisfying the law qc+1(e, g, g0, . . . , gc−1, gc) = qc+1(g, e, g0, . . . , gc−1, gc). this
can be rewritten as

qc(e, g, g0, . . . , gc−1)gcqc(g, e, g0, . . . , gc−1) = qc(g, e, g0, . . . , gc−1)gcqc(e, g, g0, . . . , gc−1).

Replacing the variable gc by the expression gcqc(g, e, g0, . . . , gc−1)−1, we conclude that
the latter law is equivalent to the law qc(g, e, g0, . . . , gc−1)−1qc(e, g, g0, . . . , gc−1)gc =
gcqc(g, e, g0, . . . , gc−1)−1qc(e, g, g0, . . . , gc−1). From here it follows directly that the el-
ement qc(g, e, g0, . . . , gc−1)−1qc(e, g, g0, . . . , gc−1) belongs to Z(G), whence the factor
group G/Z(G) satisfies the law qc(e, g, g0, . . . , gc−1) = qc(g, e, g0, . . . , gc−1). By induc-
tion assumption, G/Z(G) is nilpotent of class ≤ c, therefore G is nilpotent of class
≤ c+ 1, as required. �

Note that it is proved in [4] that the variety of completely simple over-abelian semi-
groups is characterized by the law a0xa = axa0, thus Proposition 4.1 is a generalization
of this result. It is also shown in [4] that the class of completely simple semigroups with
over-abelian core is characterized by the law ax0a0y0a = ay0a0x0a. Our next result
generalizes this to the nilpotent case.

Theorem 4.2. Let S be a completely simple semigroup. Then C(S) is over-Nc if and
only if aqc(x0, y0, a0x0

0a
0, . . . , a0x0

c−1a
0)a = aqc(y0, x0, a0x0

0a
0, . . . , a0x0

c−1a
0)a for all

a, x, y, x0 . . . , xc−1 ∈ S.

Proof. Suppose that the H -classes of C(S) are nilpotent of class ≤ c. Let a, x, y
and x0, . . . , xc−1 be elements of S. Then a0x0a0, a0y0a0 and a0x0

i a
0, where i =

0, . . . , c−1 are all elements of C(S) and belong to the same H -class. Thus it follows that
qc(a0x0a0, a0y0a0, a0x0

0a
0, . . . , a0x0

c−1a
0) = qc(a0y0a0, a0x0a0, a0x0

0a
0, . . . , a0x0

c−1a
0). It

is straightforward to see that this is equivalent to aqc(x0, y0, a0x0
0a

0, . . . , a0x0
c−1a

0)a =
aqc(y0, x0, a0x0

0a
0, . . . , a0x0

c−1a
0)a.

Conversely assume that S satisfies the law

aqc(x0, y0, a0x0
0a

0, . . . , a0x0
c−1a

0)a = aqc(y0, x0, a0x0
0a

0, . . . , a0x0
c−1a

0)a.

As we have seen in the first part of the proof, this law is equivalent to the law
qc(a0x0a0, a0y0a0, a0x0

0a
0, . . . , a0x0

c−1a
0) = qc(a0y0a0, a0x0a0, a0x0

0a
0, . . . , a0x0

c−1a
0). Su-

ppose S = M(I,G,Λ;P ) with P normalized and choose a = (1, e, 1), x = (i, g, λ),
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y = (j, h, µ) and xk = (ik, gk, λk) for k = 0, . . . , c − 1. Using Lemma 3.1, we get
qc(p−1

λi , p
−1
µj , p

−1
λ0i0

, . . . , p−1
λc−1ic−1

) = qc(p−1
µj , p

−1
λi , p

−1
λ0i0

, . . . , p−1
λc−1ic−1

). It follows that a
generating set {p−1

λi : i ∈ I, λ ∈ Λ} of 〈P 〉 satisfies the Neumann-Taylor nilpotency
condition. By [3, Corollary 3] we conclude that 〈P 〉 is nilpotent of class ≤ c. �

Lemma 4.3. Let G be a group and e its identity element. Let c be a positive integer
and a ∈ G. Then a ∈ Zc(G) if and only if qc(a, e, g0, . . . , gc−1) = qc(e, a, g0, . . . , gc−1)
for all g0, . . . , gc−1 ∈ G.

Proof. We prove this by induction on c. The case c = 1 is clear, thus we assume
that the assertion holds true for some c ≥ 1. Suppose that a ∈ G is such that
qc+1(a, e, g0, . . . , gc) = qc+1(e, a, g0, . . . , gc) for all g0, . . . , gc ∈ G. Similarly as in
the proof of Proposition 4.1 we conclude that this equation is equivalent to the fact
that qc(a, e, g0, . . . , gc−1)−1qc(e, a, g0, . . . , gc−1) belongs to Z(G). For arbitrary h ∈ G
denote by h̄ its canonical image in G/Z(G). We get that qc(ā, ē, ḡ0, . . . , ḡc−1) =
qc(ē, ā, ḡ0, . . . , ḡc−1) for all g0, . . . , gc−1 ∈ G. By induction hypothesis it follows that
this is equivalent to ā ∈ Zc(G/Z(G)) = Zc+1(G)/Z(G), which is further equivalent to
a ∈ Zc+1(G). �

The class of completely simple central semigroups can be characterized by the law
a0x0a = ax0a0 [4]. This can be generalized as follows.

Theorem 4.4. Let S be a completely simple semigroup. Then S is ωc-marginal if and
only if it satisfies the identity qc(a0, a, x0, x1, . . . , xc−1) = qc(a, a0, x0, x1, . . . , xc−1) for
all a, x, x1, . . . , xc−1 ∈ S.

Proof. Let S = M(I,G,Λ;P ) with P normalized. Suppose first that S is ωc-marginal.
We prove that S satisfies the above identity by induction on c. When c = 1, this
follows from [4]. Suppose that the assertion holds true for some c ≥ 1. Let now S be
ωc+1-marginal. Let ρ = ρ(ε,Z(G),ε). By [6, Theorem III.4.6], S/ρ ∼= M(I,G/Z(G),Λ; P̄ ),
where P̄ is the Λ×I-matrix with (λ, i)-entry equal to pλiZ(G). By Theorem 3.6 we have
that 〈P 〉 ≤ Zc+1(G). Factoring over Z(G), we get that 〈P 〉Z(G)/Z(G) ≤ Zc(G/Z(G)).
This shows that S/ρ is ωc-marginal. By induction assumption we get that

qc(a0, a, x0, x1, . . . , xc−1) ρ qc(a, a0, x0, x1, . . . , xc−1)

for all a, x, x1, . . . , xc−1 ∈ S. It is not difficult to observe that qc(a0, a, x0, x1, . . . , xc−1)
and qc(a, a0, x0, x1, . . . , xc−1) belong to the same H -class. It follows from here that we
can write qc(a0, a, x0, x1, . . . , xc−1) = (i, u, λ) and qc(a, a0, x0, x1, . . . , xc−1) = (i, v, λ)
for some i ∈ I, λ ∈ Λ and u, v ∈ G with u ≡ v mod Z(G). We thus have u = vz for
some z ∈ Z(G). Let xc = (j, gc, µ) be an arbitrary element of S. Then

qc+1(a0, a, x0, x1, . . . , xc) = qc(a0, a, x0, x1, . . . , xc−1)xcqc(a, a0, x0, x1, . . . , xc−1)
= (i, u, λ)(j, gc, µ)(i, v, λ)
= (i, upλjgcpµiuz, λ)
= (i, uzpλjgcpµiu, λ)
= qc(a, a0, x0, x1, . . . , xc−1)xcqc(a0, a, x0, x1, . . . , xc−1)
= qc+1(a, a0, x0, x1, . . . , xc).

Suppose now that S satisfies the identity

qc(a0, a, x0, x1, . . . , xc−1) = qc(a, a0, x0, x1, . . . , xc−1)

for all a, x, x1, . . . , xc−1 ∈ S. Let a = (i, g, λ), x = (1, h, 1) and xl = (i, gl, λ) be elements
of S. We claim that qn(a0, a, x0, x1, . . . , xn−1) = (i, p−1

λi qn(e, pλi, g, g1, . . . , gn−1)p−1
λi , λ)

and qn(a, a0, x0, x1, . . . , xn−1) = (i, p−1
λi qn(pλi, e, g, g1, . . . , gn−1)p−1

λi , λ) for all positive
integers n. For n = 1 this is clearly true. For the induction step note that

qn+1(a0, a, x0, x1, . . . , xn) = qn(a0, a, x0, x1, . . . , xn−1)xnqn(a, a0, x0, x1, . . . , xn−1)
= (i, p−1

λi qn(e, pλi, g, g1, . . . , gn−1)p−1
λi , λ)(i, gn, λ)
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·(i, p−1
λi qn(pλi, e, g, g1, . . . , gn−1)p−1

λi , λ)
= (i, p−1

λi qn(e, pλi, g, g1, . . . , gn−1)gn
·qn(pλi, e, g, g1, . . . , gn−1)p−1

λi , λ)
= (i, p−1

λi qn+1(e, pλi, g, g1, . . . , gn)p−1
λi , λ).

Similarly we get that qn+1(a, a0, x0, x1, . . . , xn) = (i, p−1
λi qn+1(pλi, e, g, g1, . . . , gn)p−1

λi , λ).
It follows that the identity qc(e, pλi, g, g1, . . . , gc−1) = qc(pλi, e, g, g1, . . . , gc−1) holds
true for all g, g1, . . . , gc−1 ∈ G and i ∈ I, λ ∈ Λ. By Lemma 4.3 we get that pλi ∈ Zc(G),
thus also 〈P 〉 ≤ Zc(G). This shows that S is ωc-marginal. �
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