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Abstract. A ring is called CT (commutative transitive) if commutativity is

a transitive relation on its nonzero elements. Likewise, it is wCT (weakly com-

mutative transitive) if commutativity is a transitive relation on its noncentral

elements. The main topic of this paper is to describe the structure of finite

wCT rings. It is shown that every such ring is a direct sum of an indecompos-

able noncommutative wCT ring of prime power order, and a commutative ring.

Furthermore, finite indecomposable wCT rings are either two-by-two matrices

over fields, local rings, or basic rings with two maximal ideals. We characterize

finite local rings as generalized skew polynomial rings over coefficient Galois

rings; the associated automorphisms of the Galois ring give rise to a signature

of the local ring. These are then used to further describe the structure of finite

local and wCT basic rings.

1. Introduction

A group G is called commutative transitive (CT) if for all x, y, z ∈ G \ {1},

(1) xy = yx and yz = zy imply xz = zx.

This notion was defined and studied by Weisner [13] in 1925. Wu [15] proved in 1998
that finite CT groups are either solvable or simple, thus fixing gaps in Weisner’s
proof. In the solvable case, they are either abelian or cyclic split extensions of their
Fitting subgroups [15]. Finite nonabelian simple CT groups had been classified
by Suzuki [12] in 1957. He proved that every finite nonabelian simple CT group
is isomorphic to some PSL(2, 2f ), where f > 1. Suzuki’s result is considered to
have been one of the key steps in the proof of the Odd Order Theorem by Feit and
Thompson [6]. Wu’s and Suzuki’s arguments use deep techniques from cohomology
theory and the theory of group representations. On the other hand, the classification
of finite-dimensional complex Lie algebras satisfying the CT property is elementary
modulo the Levi-Mal’cev decomposition theorem [7].

A relaxation of the above notion is as follows. A group G is called weakly commu-
tative transitive (wCT) if for all x, y, z ∈ G\Z(G), (1) holds. wCT groups are more
complicated than CT groups. For a survey of known results see [1]. Finite non-
nilpotent wCT groups were characterized by Schmidt [11], and Rocke [10] proved
some results on finite wCT p-groups.

The aim of this note is to study these notions in the ring theoretical setting.
A noncommutative ring with the commutative transitive property as in (1) has
no identity. Adjoining one leads to a ring in which the property (1) holds for all
noncentral elements, so in this paper we focus our investigation on wCT rings. Some
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of the important examples of wCT rings include free algebras and affine domains of
small Gelfand-Kirillov dimension (Example 2) indicating diversity within the class
of wCT rings, so there is little hope of obtaining a unifying theory of wCT rings in
general. Hence we focus on finite wCT rings allowing us to deploy the rich theory of
finite rings as developed e.g. in [8], [9], and [14], yet some of the results of Sections
2.1 and 2.2 are valid for finite dimensional algebras over (infinite) fields.

As a sample, we prove that finite simple wCT rings are either fields or algebras
of two-by-two matrices over fields. In general, finite wCT rings are direct sums of
indecomposable noncommutative wCT rings of prime power order, and commutative
rings. We prove that the class of wCT rings is closed under taking factor rings by
the Jacobson radical. This implies that finite indecomposable wCT rings are either
algebras of two-by-two matrices over fields, local rings, or basic rings with two
maximal ideals.

We then focus on local wCT rings. Here, the wCT property is equivalent to the
wCT property of the group of units of the ring in question. (This fails to hold for
general wCT rings.) In order to study the wCT property for local rings, we give
a characterization of finite local rings as generalized skew polynomial rings over
coefficient Galois rings. The associated automorphisms of the Galois ring used in
this description yield an important invariant of the local ring, the so-called signa-
ture. This is then used to further describe the structure of finite local wCT rings.
For such rings R with Jacobson radical J satisfying dim J/J2 = 1 our results are
very definitive, while for general local wCT rings only partial results are obtained.
Indeed, we provide evidence supporting our belief that the class of all finite local
wCT rings is too diverse to allow for a complete classification.

At the end of the paper we briefly touch upon wCT basic rings. Similar methods
are used for describing the structure of these. We prove that the wCT property of
a basic ring largely depends on the properties of its coefficient ring.

2. Weakly commutative transitive rings

By analogy with the group case, a ring R is said to be weakly commutative
transitive (wCT) if for all x, y, z ∈ R \ Z(R), (1) holds. Here Z(R) stands for the
center of R.

We start by giving a basic characterization of wCT rings.

Lemma 1. Let R be a ring. The following are equivalent:

(i) R is a wCT ring.
(ii) For all x, z ∈ R and y ∈ R \ Z(R), xy = yx and yz = zy imply xz = zx.
(iii) If xy = yx then CR(x) = CR(y) for x, y ∈ R \ Z(R).
(iv) CR(x) is commutative for all x ∈ R \ Z(R).

Proof. Let R be a wCT ring and let x, z ∈ R and y ∈ R\Z(R) be such that xy = yx

and yz = zy. If either of x or z belongs to Z(R), then x and z clearly commute. If
x, z /∈ Z(R), then xz = zx by the wCT property. This shows that (i) implies (ii),
whereas (ii) clearly implies (i).

Assume now that (ii) holds. Choose x, y ∈ R \ Z(R) such that xy = yx. Then
x ∈ CR(y), hence CR(x) ⊆ CR(y) by our assumption. By the symmetry we conclude
that CR(x) = CR(y), therefore (ii) implies (iii).
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Suppose the ring R satisfies (iii) and choose x ∈ R \Z(R). Let y, z ∈ CR(x). We
want to show that y and z commute, thus we may assume that y, z /∈ Z(R). By our
assumption we get that CR(y) = CR(x) = CR(z), hence yz = zy. This yields (iv).

Let R satisfy (iv) and let x, z ∈ R and y ∈ R \ Z(R) satisfy xy = yx and
yz = zy. We have that both x and z belong to CR(y) which is commutative,
therefore xz = zx. It follows from here that (iv) implies (ii).

Example 2.

(1) Free algebras k〈X〉 are wCT. This follows easily from the fact that the central-
izer of a nonscalar element of k〈X〉 is a polynomial ring in one variable over k;
this is Bergman’s centralizer theorem (see e.g. [4] or [5, Theorem 6.7.7]).

(2) For an example of a different flavor, each affine domain of Gelfand-Kirillov
dimension 2 over an algebraically closed field is wCT [3].

(3) By (2), the first Weyl algebra (over, say, C) is wCT. In contrast with that,
higher Weyl algebras are not wCT. Consider the second Weyl algebra A2(k)
with generators p1, p2, q1, q2 and defining relations pipj = pjpi and qjqi = qiqj
for i, j = 1, 2, piqi − qipi = 1 and piqj − qjpi = 0 for i 6= j. Then p1 is not
central, commutes with p2 and q2, but p2q2 6= q2p2.

(4) Rings R in which centralizers (of noncentral elements) are minimal, in the
sense that for all x ∈ R \ {0} (x ∈ R \ Z(R)), the centralizer CR(x) is the
subring generated by x, are (w)CT. Such rings were studied and characterized
by Bell and Klein in [2]. In particular, they proved that if R is a ring where all
noncentral elements have minimal centralizers, then R is either commutative
or finite. Furthermore, finite rings with this property are, apart from two
exceptions, nil.

The above examples demonstrate a certain richness of the class of general wCT
rings, so we restrict our attention to an important subclass, namely finite rings with
identity.

2.1. Simple wCT rings. In this subsection we classify finite simple wCT rings,
using the Wedderburn theorem. We show that these are either fields or 2×2 matrix
algebras over a field.

Proposition 3. Let R be a nontrivial ring with identity.

(1) M2(R) is wCT if and only if R is commutative and zero-divisor free.
(2) For n > 3, Mn(R) is not wCT.

Proof. (1) Suppose R is commutative without zero-divisors. Suppose xy = yx and
yz = yz for noncentral x, y, z ∈ M2(R). Since we can subtract central elements

from x, y, z, we may assume they are of the form

[
0 ∗
∗ ∗

]
. In addition to that, each

of the matrices x, y, z has at least one nonzero entry. Without loss of generality,
replace R by its quotient field.

Case 1: Suppose x12 is nonzero. Let y =

[
0 y12

y21 y22

]
. As xy = yx, a straightforward

inspection yields two cases. If y12 = 0, then y21 = y22 = 0 contradicting
the choice of y. If y12 6= 0, then (since x and y commute) x is a multiple of
y. In particular, x commutes with z.
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Case 2: Suppose x21 is nonzero. By transposing the matrices x, y, z, this case re-
duces to the previous one.

Case 3: Suppose x =

[
0 0
0 a

]
. If y is as in Case 1, then xy = yx implies y12 = y21 =

0. Hence x and z commute.

The three cases considered show that M2(R) is wCT.
For the converse implication assume M2(R) is wCT. If R has zero-divisors, i.e.,

ab = 0 for some a, b ∈ R \ {0}, then with

x =

[
1 b

0 0

]
, y =

[
a 0
0 0

]
, z =

[
0 0
0 1

]
,

we have xy = yx, yz = zy, but xz 6= zx. Similarly, if ab 6= ba for some a, b ∈ R,
then choose

x =

[
a 0
0 0

]
, y =

[
0 0
0 1

]
, z =

[
b 0
0 0

]
.

Again, xy = yx, yz = zy, and xz 6= zx.

(2) Consider

x =

0 1 0
0 0 0
0 0 0

 , y =

1 0 0
0 1 0
0 0 0

 , z =

0 0 0
1 0 0
0 0 0

 ,
where the bottom right 0 is the block (n− 2)× (n− 2) zero matrix. Then x, y, z /∈
Z(Mn(R)), xy = yx, yz = zy and xz 6= zx.

Corollary 4. Let R be a finite simple wCT ring with identity. Then R is either a
field or a 2× 2 matrix algebra over a field.

Proof. An immediate consequence of the Wedderburn theorem and Proposition 3.

It is clear that Corollary 4 also holds when R is a finite dimensional simple wCT
algebra.

2.2. Indecomposable wCT rings. In the first part of this subsection we show
that every finite wCT ring is the direct sum of an indecomposable noncommutative
wCT ring of prime power order, and a commutative ring. We then proceed to study
indecomposable wCT rings. As the main result we prove that indecomposable finite
wCT rings are either simple, local, or basic with two maximal ideals (see Theorem
10).

Proposition 5. Let R = R1 ⊕ R2 and suppose that R1 is noncommutative. Then
R is wCT if and only if R2 is commutative and R1 is wCT.

Proof. (⇒) As R1 is a subring of R and Z(R1) ⊆ Z(R), R1 is wCT. Suppose that
R2 is not commutative. Choose x, y ∈ R2 such that xy 6= yx. Clearly x, y /∈ Z(R).
As R1 is not commutative, there exists z ∈ R1 \ Z(R). We have that xz = zx and
yz = zy, and this contradicts the fact that R is a wCT ring.

(⇐) Choose xi ∈ R \ Z(R), i = 1, 2, 3, such that x1x2 = x2x1 and x2x3 = x3x2.
Write xi = r1,i + r2,i, where r1,i ∈ R1 and r2,i ∈ R2, i = 1, 2, 3. It follows that
the elements r1,i do not belong to the center of R1, and that r1,1r1,2 = r1,2r1,1
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and r1,2r1,3 = r1,3r1,2. As R1 is a wCT ring, we conclude that r1,1r1,3 = r1,3r1,1,
therefore x1x3 = x3x1, as required.

As an application we classify all wCT group algebras over C.

Corollary 6. Let G be a finite nonabelian group. The group algebra CG is wCT
if and only if G is either isomorphic to the dihedral group D4 of order 8, or the
quaternion group Q of order 8, or the symmetric group S3 on three letters.

Proof. Let G be a finite nonabelian group such that CG is a wCT ring. By the
Wedderburn theorem, CG is a direct sum of matrix algebras over C. Using Propo-
sition 3 and Proposition 5, we conclude that CG ∼= Cr ⊕M2(C) for some r > 0. In
other words, G admits r linear irreducible characters and precisely one irreducible
character of degree two. It is well known that r = |G : G′|, and thus r divides
|G| = r + 4. The only such possibilities are r ∈ {1, 2, 4}. Since G is nonabelian,
r 6= 1. If r = 2, then G ∼= S3, and if r = 4, then either G ∼= Q or G ∼= D4.

For the converse note that both CD4 and CQ are isomorphic to C4 ⊕M2(C),
whereas CS3

∼= C2⊕M2(C). These are wCT rings by Proposition 3 and Proposition
5.

Another consequence of Proposition 5 is the following.

Corollary 7. Let R be a noncommutative finite wCT ring. Then R is the direct
sum of an indecomposable noncommutative wCT ring of prime power order, and a
commutative ring.

Proof. Let
Rp = {x ∈ R | pnx = 0 for some integer n > 1}.

Since R as a finite abelian group decomposes into the sum of its p-subgroups, Rp is
nonempty for every prime p that divides |R| and of course Rp is a subring of prime
power order. But for p 6= q we have RpRq = 0: if x ∈ Rp, say pnx = 0, and y ∈ Rq,
say qmy = 0, there exist integers a and b such that apn + bqm = 1 and therefore
xy = 0. Thus, R is a direct sum of its prime power order subrings Rp.

Now Proposition 5 concludes the proof.

We now turn to indecomposable finite wCT rings. We shall prove that these are
either simple, local, or basic with two maximal ideals (see Theorem 10). A crucial
step in the proof is to show that the wCT property is closed under taking quotients
by the Jacobson radical.

Theorem 8. Let R be a finite wCT ring with identity and J = J(R) its Jacobson
radical. Then R/J is also wCT.

Proof. We may assume that R is directly indecomposable, since J(R1 ⊕ R2) =
J(R1) ⊕ J(R2). Because R/J is semisimple it can be written as a direct sum of
fields or complete matrix algebras over fields by Wedderburn’s theorem.

To prove that R/J is wCT, by Proposition 3 it suffices to check that no matrix
algebra of dimension greater or equal to 3 can appear as a direct summand and that
at most one of the direct summands is equal to a 2× 2 matrix algebra. Assume the
contrary and let e1, e2, e3 be orthogonal idempotents in R/J such that e1 +e2 +e3 =
1. By [8, Theorem VII.11], we can lift these idempotents to orthogonal idempotents
e1, e2, e3 in R such that e1 + e2 + e3 = 1. Obviously, all these idempotents are
noncentral. But [e1, e2] = [e1, e3] = 0 and for every x ∈ R we have [e1, e2xe3] =
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[e1, e3xe2] = 0, therefore wCT implies that [e2, e2xe3] = e2xe3 = 0 and [e3, e3xe2] =
e3xe2 = 0. Similarly, we prove that eiRej = 0 for every i 6= j, thus yielding a
decomposition R = e1Re1⊕e2Re2⊕e3Re3, which contradicts the indecomposability
of R.

Example 9. The converse of the above theorem does not hold. Let 1 6 k < r and
consider the ring

R =



a b c d

0 ap
k

bp
k

cp
k

0 0 ap
2k

bp
2k

0 0 0 ap
3k

 | a, b, c, d ∈ GF(pr)

 .

Observe that there exist b, c, d ∈ GF(pr) such that

B =


0 b 0 0
0 0 bp

k

0
0 0 0 bp

2k

0 0 0 0

 , C =


0 0 c 0
0 0 0 cp

k

0 0 0 0
0 0 0 0

 , D =


0 0 0 d

0 0 0 0
0 0 0 0
0 0 0 0


are noncentral elements and [B,D] = [D,C] = 0 but [B,C] 6= 0.

The factor ring R/J however, is even commutative (it is isomorphic to the field
GF(pr)).

Theorem 10. Let R be an indecomposable finite wCT ring with identity. Then
either R = M2(F ) for a field F , or R/J is commutative (and therefore R/J is
either a field or a direct sum of two fields).

Proof. Since R/J is semisimple, Corollary 4 and the proof of Theorem 8 yield only
three possible cases: R/J is either a field, a direct sum of two fields or a two by two
matrix algebra over a field. So, assume now that R/J = M2(F ). By [8, Theorem
VIII.26], we know that then R = M2(S) for some local finite ring S. Assume that
S is not a field. Since S is finite, it contains zero divisors, which is a contradiction
with Proposition 3. Therefore, R is indeed a two by two matrix algebra over a
field.

2.3. Local wCT rings. Corollary 7 essentially reduces the study of wCT rings to
the study of the indecomposable wCT rings, which in turn are either full matrix
algebras, local or basic rings by Theorem 10. The focus of this subsection are local
wCT rings. Remember that a ring is said to be local if it has a unique maximal
ideal.

Proposition 11. Let R be a local ring. Then R is a wCT ring if and only if R−1

is a wCT group.

Proof. This is essentially a consequence of 1 + J ⊆ R−1. First observe that Z(R)∩
R−1 = Z(R−1). Clearly, we have Z(R)∩R−1 ⊆ Z(R−1). For the converse inclusion,
given x ∈ Z(R−1) and y ∈ R we have two cases. If y ∈ R−1, then x and y commute
by assumption. If y 6∈ R−1, then y ∈ J and thus 1 + y ∈ 1 + J ⊆ R−1. Hence
0 = [x, 1 + y] = [x, y], as desired.

This observation immediately implies the implication (⇒) of the lemma: for
x, y, z ∈ R−1 \ Z(R−1), we have x, y, z ∈ R \ Z(R). Thus [x, y] = 0 = [y, z] implies
[x, z] = 0 by the wCT property of R. To prove (⇐), choose x, y, z ∈ R \ Z(R)
with [x, y] = 0 = [y, z]. If one of these elements is not in R−1, say x 6∈ R−1, then
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we may replace it with 1 + x without changing any of the commutator relations.
However 1 + x ∈ 1 + J ⊆ R−1. Thus the wCT property of R−1 yields the desired
conclusion.

In general there is no relationship between the wCT property of (the ring) R and
its group of units R−1.

Example 12. Let R be the ring of all upper triangular 2×2 matrices over Z4. Then
R/J ∼= GF(2)⊕GF(2). It is straightforward to verify that the group R−1 is wCT.
On the other hand, the ring R is not wCT. To this end, consider the matrices

A =

[
1 2
0 1

]
, B =

[
0 0
0 2

]
, and C =

[
0 2
0 1

]
.

Then B /∈ Z(R), AB = BA and BC = CB, but AC 6= CA.

To study the properties of local wCT rings, we recall the notion of a Galois ring.
The ring R = GR(pt, r) is said to be a Galois ring if it is isomorphic to the ring
Z[x]/(pt, f(x)), where f is a monic polynomial of degree r, which is irreducible
modulo pZ. Note that the Galois ring does not depend on the choice of f by [8,
Theorem XV.7 and XV.11].

The structure of finite local rings will be described using generalized skew poly-
nomial rings, a notion which we now define. R is a generalized skew polynomial ring
if it is defined by a subring A and a finite set of not necessarily commuting elements
xi, where there are automorphisms σi of A such that xia = σi(a)xi for all a ∈ A.
We then write R = A{x1, . . . , xn;σ1, . . . , σn}. For details see [8, Chapter XIX].

Theorem 13. Let R be a finite local ring with identity, R/J = k = GF(pr),
n = dimk(J/J2) and char(R) = pt. Then R = A{x1, x2, . . . , xn;σ1, σ2, . . . , σn},
where A = Zpt [y], the element y ∈ R is an invertible element of order pr − 1, the
set {x1, x2, . . . , xn} is a k-basis of J/J2, and for every i, σi(f(y)) = f(yp

`i ) is an
automorphism of the Galois ring A.

Proof. Choose y1 ∈ R such that y1 + J is a generator of the group k \ {0}. The
order of y1 is equal to (pr − 1)ps for some integer s, since the order of R−1 is equal
to (pr − 1)pm for some integer m. Now, take y = yp

s

1 and observe that y + J is
also a generator of the group k \ {0}. Let A be the subring of R generated by
y. If

∑t−1
i=0 p

iai =
∑t−1
i=0 p

ibi for some elements ai, bi ∈ {0, y, y2, . . . , yp
r−1}, we

can show by induction (and by multiplying the equation by pt−i−1) that ai = bi
for every i. Since the order of y + J in k \ {0} is r, we can therefore uniquely
express every element of A as a sum

∑r−1
i=0 niy

i for some ni ∈ {0, 1, . . . , pt − 1}.
Now let N be an A-module generated by {x1, x2, . . . , xn}. Note that N ⊆ J . Since
R/J(R) = A/J(A), we obtain the decomposition of R as an A-module, R = A⊕N .
The lemma now follows from the proof of [8, Theorem XIX.6] and the fact that A
is a Galois ring, so every automorphism of A is a power of the automorphism that
maps y into yp.

Remark 14. Note that the element y defined in Theorem 13 has the following useful
property: if yα − yβ ∈ J , then yα = yβ . We can easily check this by considering
the equation modulo the radical and keeping in mind that the image of y is the
generator of k \ {0}.
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A is called the coefficient ring [8, Theorem XVII.1] of R and is the local subring of
R containing Zchar(R), and being maximal with respect to the property J(A) = pA.
By [8, Theorem XIX.4], a coefficient ring of a local ring R is unique up to an inner
automorphism of R.

Lemma 15. Let R1 and R2 be finite local rings with identity, Ri/Ji = k =
GF(pr), char(Ri) = pt for i = 1, 2, and A = Zpt [y] a Galois ring. Suppose that
dimk(Ji/J2

i ) = 1 for i = 1, 2. Then R1 = A{x1;σ} is isomorphic to R2 = A{x2; τ}
if and only if σ = τ .

Proof. If σ = τ , the assertion is trivial, since both x1 and x2 are of the same order of
nilpotency. Conversely, assume that f is an isomorphism from R1 to R2 and f(x1) =
x2. The equation yx1 = x1σ(y) in R1, translates into f(y)x2 = x2f(σ(y)) in R2.
Let σ(y) = yp

r1 and τ(y) = yp
r2 . Then f(y)x2 = x2f(y)p

r1 . Since f is identity
on Zpt and its induced mapping on k is an isomorphism, we have f(y) = yp

α

for
some integer α. Thus yp

α

x2 = x2y
pα+r1 . We also know that yx2 = x2τ(y), therefore

x2y
pα+r1 = x2y

pα+r2 and thus yp
α+r1 −ypα+r1 ∈ J . This implies α+r1 = α+r2 +λr

for some integer λ, by Remark 14. Hence r1 = r2 + tr, so σ = τ .

Proposition 16. Let R be a finite local ring with identity, R/J = k = GF(pr),
char(R) = pt, n = dimk(J/J2) and A = Zpt [y] a Galois ring. Then there exists a
k-basis {x1, x2, . . . , xn} of J/J2 such that R = A{x1, x2, . . . , xn;σ1, σ2, . . . , σn} for
some automorphisms σ1, σ2, . . . , σn of A. Moreover, if τ1, τ2, . . . , τn are automor-
phisms of A, and the non-ordered n-tuples (σ1, σ2, . . . , σn) and (τ1, τ2, . . . , τn) are
not equal, then R is not isomorphic to the ring A{x1, x2, . . . , xn; τ1, τ2, . . . , τn}.

Proof. We already have the existence of xi and σi by Theorem 13. Let f be an
isomorphism from R to A{x1, x2, . . . , xn; τ1, τ2, . . . , τn}. Since f maps a k-basis of
J/J2 into a k-basis of J/J2, we have f(xi) =

∑
k λikxk for all i. As in the proof of

Lemma 15, we have f(y) = yp
α

for some integer α. Let also σi(y) = yp
ri and τi(y) =

yp
si for every i. So, yxi = xiσi(y) implies yp

α

(
∑
k λikxk) = (

∑
k λikxk)yp

α+ri , thus∑
k(λikxkyp

α+sk ) =
∑
k(λikxkyp

α+ri ). However, the set {x1, x2, . . . , xn} is linearly
independent over k, therefore yp

α+sk = yp
α+ri by Remark 14. So, whenever λik 6= 0,

we have τk = σi. Since there is at least one nonzero λik for every i, we conclude that
the non-ordered n-tuples (σ1, σ2, . . . , σn) and (τ1, τ2, . . . , τn) have to be equal.

Definition 17. Let R = A{x1, x2, . . . , xn; τ1, τ2, . . . , τn} be a finite local ring with
identity, as above. As A is a Galois ring, each τi is a power map y 7→ yp

ri . Without
loss of generality, r1 > · · · > rn. Then the n-tuple (τ1, . . . , τn) is called the signature
of the local ring R. By Proposition 16, the signature of a local ring is well defined
and is thus an invariant of the local ring.

Theorem 18. Let R = A{x1, x2, . . . , xn;σ1, σ2, . . . , σn}, where A is a Galois ring,
and suppose that x1, x2, . . . , xn ∈ J commute. Then R is wCT if and only if the
sets of fixed points of all nontrivial automorphisms

∏
i σ

ki
i with

∏
i x

ki
i 6= 0 coincide.

Proof. Assume that R is wCT and let σ =
∏
i σ

ki
i and τ =

∏
i σ

`i
i be nontrivial

for some x =
∏
i x

ki
i 6= 0, y =

∏
i x

`i
i 6= 0. If x(σ(a)) = xa for every a ∈ A, then

σ(a)−a ∈ J for every a ∈ A. If we choose a = y, Remark 14 implies that σ(y) = y,
whence σ(a) = a for all a ∈ A. So x /∈ Z(R) and similarly, y /∈ Z(R). If σ(a) = a,
then [a, x] = 0, and since [x, y] = 0, we have [a, y] = 0, thus τ(a) = a. The converse
is obvious.
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Corollary 19. Let R = A{x1, x2, . . . , xn;σ1, σ2, . . . , σn} be a finite local ring with
identity, where A is a Galois ring and R/J = k = GF(pr). Assume that J2 = 0.
Then R is wCT if and only if the sets of fixed points of all automorphisms σi with
xi /∈ Z(R) coincide.

Proof. Since all products of xi and xj are zero, we know by Theorem 18 that R
is wCT if and only if the sets of fixed points of all nontrivial automorphisms σi
coincide. The converse is obvious.

Theorem 20. Let R = A{x;σ} be a finite local ring with identity, where A is a
Galois ring, x ∈ J and R/J = k = GF(pr). Let m denote the nilpotency index of J
and σ(y) = yp

`

. Then R is wCT if and only if 1, 2, . . . ,m−1 are all either relatively
prime to, or divisible with r/ gcd(r, `).

Proof. By Theorem 13, we have R = A{x;σ} for A = Zpt [y] and σ(y) = yp
`

.
Assume R is wCT. By Theorem 18, the sets of fixed points of all nontrivial auto-
morphisms belonging to {σ, σ2, . . . , σm−1} coincide. Since all automorphisms fix all
scalars from A, we consider them modulo J(A). Let F denote the algebraic closure
of Zp. The set of fixed points of the automorphism σj : F → F is a subfield of
F isomorphic to GF(p`j). Hence the set of fixed points of σj : k → k is the meet
of GF(p`j) and k = GF(pr) in the lattice of all field extensions of Zp, therefore it
equals GF(pgcd(j`,r)). Thus for every j 6 m− 1, either gcd(j`, r) = gcd(`, r), if the
automorphism is nontrivial, or gcd(j`, r) = r, if the automorphism is trivial. The
converse is straightforward, since all nontrivial automorphisms have the same set of
fixed points.

Corollary 21. Let R = A{x1, x2, . . . , xn;σ1, σ2, . . . , σn} be a finite local ring with
identity, where A is a Galois ring, and R/J = k = GF(pr). If J is commutative
and r is a prime number, then R is wCT.

Proof. By Theorem 18, R is wCT if and only if the sets of fixed points of all nontriv-
ial automorphisms σi coincide. Let σ =

∏n
i=1 σ

ki
i and σi(y) = yp

ri . Since r is prime,
we either have gcd(

∑n
i=1 kiri, r) = r when σ is the identity, or gcd(

∑n
i=1 kiri, r) = 1.

As in the proof of Theorem 20, all nontrivial automorphisms of A have the same
set of fixed points.

Proposition 22. Let R = A{x1, x2, . . . , xn; id, id, . . . , id} be a finite local ring with
identity for a Galois ring A, where all xi ∈ J . Then R is wCT if and only if the
group 1 + J is wCT.

Proof. Since A is central, R is wCT if and only if J is wCT.

Example 23. Let R = A{x1, x2, . . . , xn;σ1, σ2, . . . , σn}, where A is a Galois ring
and R/J = GF(pr). Assume there exists an integer k such that

∏k
i=1 x`i = 0 where

`i ∈ {1, 2, . . . , n} for all i. Consider two cases:

(1) There exists a noncentral element x =
∏k−1
i=1 x`i . Then [xi, x] = 0 for all i, and

if R is wCT, also [xi, xj ] = 0 for all i 6= j.
(2) All elements

∏k−1
i=1 x`i where `i ∈ {1, 2, . . . , n} for all i, are central and nonzero.

Let y denote the generator of the Galois ring A and let σi(y) = yp
ri . Suppose

at least one automorphism is nontrivial, i.e., suppose without loss of gener-
ality that r1 is not divisible by r. Then all automorphisms

∏n
i=1 σ

αi
i with∑n

i=1 αi = k − 1 coincide. Thus,
∑n
i=1 αi = k − 1 implies that

∑n
i=1 αiri is
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divisible by r. As in the proof of Theorem 20, if such a ring is wCT then either
gcd(

∑n
i=1 αiri, r) = gcd(r1, r), or

∑n
i=1 αiri is divisible by r for every tuple

(α1, . . . , αn) with
∑n
i=1 αi < k− 1. We list some of the numbers of such tuples

(r1, . . . , rn) in the following table:

n 3 4 4 6 5 6 7
r 6 6 10 6 10 9 8
k 3 3 3 4 3 3 3

s = # of tuples
(r1, . . . , rn)

6 36 100 216 1000 6561 32768

(This data is consistent with s = rn−k+1 and we conjecture this is true in gen-
eral.) To each of these triples (n, r, k) at least one wCT ring is associated. Note
that by Proposition 16, all such rings are non-isomorphic. The number of these
tuples is growing rapidly, so there is little hope of finding a nice classification
of wCT rings of this type in general.

2.4. wCT basic rings. By [8, Theorem XIX.1], a basic ring R has a similar pre-
sentation of the form R = A{x1, . . . , xn;σ1, σ2, . . . , σn} for some integer n and a
(local and Galois) coefficient ring A as in Theorem 13. However, not all of the
elements xi are in J .

The following theorem is an extension of Theorem 18 to the basic case. Its proof
is an adaptation of the corresponding result for local rings.

Theorem 24. Let R = A{x1, x2, . . . , xn;σ1, σ2, . . . , σn} for a Galois ring A, and
suppose that x1, x2, . . . , xn commute. Then R is wCT if and only if the sets of fixed
points of all nontrivial automorphisms

∏
i σ

ki
i with

∏
i x

ki
i 6= 0 coincide.

Proof. Assume that R is wCT and let σ =
∏
i σ

ki
i and τ =

∏
i σ

`i
i be nontrivial for

some x =
∏
i x

ki
i 6= 0, y =

∏
i x

`i
i 6= 0. If σ(y) − y is an invertible element of the

field A/J(A), then σ(y)−y is also invertible in A. Hence σ(y) = y, and this implies
σ(a) = a for all a ∈ A. Therefore, x /∈ Z(R) and likewise, y /∈ Z(R). If σ(a) = a,
then [a, x] = 0, and since [x, y] = 0, we have [a, y] = 0, thus τ(a) = a. The converse
is obvious.

In Theorems 18, 20 and Corollary 21 we have classified local wCT rings R =
A{x1, x2, . . . , xn;σ1, σ2, . . . , σn} with commuting variables xi ∈ J . We now pass to
the case of basic rings, where not all of the xi are in J . If R is a basic ring, and
all the xi /∈ J are central, then the basic case essentially reduces to the local case.
We thus assume that x1 /∈ Z(R)∪ J . In this case we have a characterization of the
wCT property as follows:

Corollary 25. Let R = A{x1, x2, . . . , xn;σ1, σ2, . . . , σn} be a basic ring for a Galois
ring A = GR(pt, r). Suppose that x1, x2, . . . , xn commute, and that x1 /∈ Z(R) ∪ J .
If r is prime, then R is wCT. Conversely, if R is wCT, then r/ gcd(r, `) is prime,
where σ1(y) = yp

`

for a generator y of A.

Proof. Following the lines of the proof of Corollary 21, we can show that R is wCT
if r is prime. Conversely, if R is wCT, then R/J is a direct sum of two fields
by Theorem 10. Hence x1 /∈ J implies x1 is not nilpotent. By Theorem 24, the
nontrivial automorphisms σα1 have the same set of fixed points for every such integer
α. As in the proof of Theorem 20, either gcd(α`, r) = gcd(`, r), or gcd(α`, r) = r

for all integers α as above. Hence these α have to be multiples of r/ gcd(r, `).
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David Dolžan, Univerza v Ljubljani, Fakulteta za matematiko in fiziko, Jadranska

19, SI–1111 Ljubljana, Slovenia

E-mail address: david.dolzan@fmf.uni-lj.si

Igor Klep, Univerza v Mariboru, Fakulteta za naravoslovje in matematiko, Koroška
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Primož Moravec, Univerza v Ljubljani, Fakulteta za matematiko in fiziko, Jadranska

19, SI–1111 Ljubljana, Slovenia

E-mail address: primoz.moravec@fmf.uni-lj.si


