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Abstract Let ϕ be an automorphism of a group G. In this paper, we study the influ-
ence of its centralizer CG(ϕ) on its commutator subgroup [G,ϕ] when G is polycyclic
or metabelian. For instance, when G is metabelian and ϕ fixed-point-free of prime or-
der p, we prove that [G,ϕ] is nilpotent of class ≤ p. Also, when G is polycyclic and
ϕ of order 2, we show that if CG(ϕ) is finite, then so are G/[G,ϕ] and [G,ϕ]′.
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1 Introduction and main results

Let ϕ be an automorphism of a group G. Denote by CG(ϕ) the centralizer of ϕ in G,
i.e., the subgroup of G consisting of all elements fixed by ϕ . Let [G,ϕ] = 〈x−1ϕ(x) |
x ∈ G〉 be the commutator subgroup of ϕ . Notice that [G,ϕ] is normal in G since for
all x,y ∈ G, if z = ϕ−1(y), we can write

y−1{x−1
ϕ(x)}y = ϕ(z−1)x−1

ϕ(x)ϕ(z)

= ϕ(z−1)z(xz)−1
ϕ(xz).

It is well known that, under suitable hypotheses, the fact that CG(ϕ) is ”small” in
some sense has consequences on G, and in particular on G/[G,ϕ] and [G,ϕ]′. For
example, Belyaev and Sesekin proved that if G is locally finite and if ϕ is of order 2,
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the fact that CG(ϕ) is finite implies that G/[G,ϕ] and [G,ϕ]′ are finite too [1]. Further
results on the influence of CG(ϕ) on G, G/[G,ϕ] and [G,ϕ]′ can be found in a survey
by Shumyatsky [8].
In this paper, we are interested in the case where G is polycyclic or metabelian. In
particular, as a consequence of our first two results, we shall see that the result of
Belyaev and Sesekin cited above remains valid when G is polycyclic (see Theorem 1
and 2 below).

Theorem 1 Let ϕ be an automorphism of order 2 of a polycyclic group G. If CG(ϕ)
is finite, then so is [G,ϕ]′.

In a first version of this paper, we conjectured that when G is polycyclic and ϕ of
prime order p, if CG(ϕ) is finite, then [G,ϕ] is finite-by-nilpotent. According to Theo-
rem 1, that is true when p = 2, and also for an arbitrary prime p when G is metabelian
(see Theorem 5 below). In fact, as Khukhro pointed out to the authors, this conjecture
is false (see Example 1 in Section 3). In our next result, we have no restriction on the
order of ϕ .

Theorem 2 Let ϕ be an automorphism of a polycyclic group G. If CG(ϕ) is finite,
then so is G/[G,ϕ].

In the particular case where ϕ is of finite order, the fact that G/[G,ϕ] is finite is an
easy consequence of the following result.

Theorem 3 If ϕ is an automorphism of finite order of a polycyclic group G, we have
|G:CG(ϕ)[G,ϕ]|< ∞.

However, we cannot deduce Theorem 2 from Theorem 3 in the general case. When
ϕ is of infinite order, it can easily happen that |G:CG(ϕ)[G,ϕ]| is not finite. For
example, if ϕ is the automorphism of G = Z2 defined by ϕ(x,y) = (x+y,y), we have
CG(ϕ)= [G,ϕ] = {(x,y)∈Z2 |y= 0} and so the index of CG(ϕ)[G,ϕ] in G is infinite.
If we only assume that G is soluble, then Theorems 2 and 3 fail, even if G is a finitely
generated metabelian group (see Example 2 in Section 3). Our next results treat the
case where G is metabelian and CG(ϕ) periodic. At first we introduce some notations.
If π is a (possibly empty) set of primes, the class of π-groups will be denoted by Tπ

(recall that a π-group is a periodic group in which the order of each element is a
π-integer, namely an integer such that π contains the set of primes dividing it). In
particular, Tπ is the class of trivial groups when π is empty and the class of periodic
groups when π is the set of all prime numbers. Furthermore, we shall write A for
the class of abelian groups and En for the class of groups satisfying the law xn = 1 (n
being a positive integer). If X1, . . . ,Xk are classes of groups, we say that a group G
belongs to the class X1 · · ·Xk if it has a series

1 = H0 �H1 � · · ·�Hk−1 �Hk = G

such that Hi/Hi−1 belongs to Xi for i = 1, . . . ,k.

Theorem 4 Let G be a metabelian group and ϕ an automorphism of G of finite order
n. Suppose that CG(ϕ) is a periodic group which belongs to Tπ (where π is a set of
primes). Then G/[G,ϕ] belongs to TπEnA .
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Under the hypothesis of this theorem, when G is finite and n is a prime power pλ , it
is easy to see that G/[G,ϕ] actually belongs to TπA (observe that if p /∈ π , then p
does not divide the order of G since p divides the cardinality of the set G \CG(ϕ)).
However, in general, the quotient G/[G,ϕ] need not be in TπEn or in TπA (see
Examples 2 and 3 respectively). Also, trivially, G/[G,ϕ] need not be in EnA : for
instance, if G is a finite non-abelian metabelian group and if ϕ is the identity auto-
morphism, G/[G,ϕ]' G does not belong to E1A = A .
Denote by Nc the class of all nilpotent groups of class at most c. The next result is
about the subgroup [G,ϕ]:

Theorem 5 Let G be a metabelian group, and let ϕ be an automorphism of G of
prime order p. Let π be a set of primes, and suppose that CG(ϕ) is a periodic group
which belongs to Tπ . Then [G,ϕ] belongs to TπNp (and even to TπA when p = 2).
In particular, if ϕ is fixed-point-free, then [G,ϕ] is nilpotent of class at most p.

This theorem fails to hold when G is soluble of derived length 3. For instance, if G =
S4 is the permutation group on {a,b,c,d} and if ϕ is the inner automorphism σ 7→(

a b c
)−1

σ
(

a b c
)
, then CG(ϕ) is the subgroup generated by

(
a b c

)
and [G,ϕ]

the alternating subgroup A4; but A4 is not an extension of a 3-group by a nilpotent
group. Also, in Theorem 5, we cannot conclude that [G,ϕ] is nilpotent: if H is a finite
non-nilpotent metabelian group and if ϕ is the automorphism of G = H×H defined
by ϕ(x,y) = (y,x), it is easy to see that [G,ϕ] is not nilpotent. In the same way,
Example 2 (or 3) shows that [G,ϕ] need not be periodic. These examples also show
that under the hypothesis of Theorem 5, unlike [G,ϕ], the group G itself need not
be periodic-by-nilpotent. Notice that if ϕ is an automorphism of prime order p of a
polycyclic group G such that CG(ϕ) is periodic (and so finite), then G is an extension
of a nilpotent group (of class bounded by a function of p) by a finite group [3].
It follows from Theorem 5 that if ϕ is a fixed-point-free automorphism of order 2,
then [G,ϕ] is abelian when G is metabelian. But in fact, this result is true for any
soluble group:

Theorem 6 If ϕ is a fixed-point-free automorphism of order 2 of a soluble group G,
then [G,ϕ] is abelian.

2 Proofs

Notations used in this paper are standard. In particular, we shall denote by G(r) the
r-th term of the derived series: thus G(r+1) is the derived subgroup of G(r), with
G(0) = G. We also write G′ = G(1) and G′′ = G(2). To prove our first theorem, we
need a preliminary result:

Lemma 1 Let ϕ be an automorphism of order 2 of a group G and let A be a normal
ϕ-invariant abelian subgroup of G. If A∩CG(ϕ) = 1, then [[G,ϕ],A] = 1.

Proof For all a ∈ A, the element aϕ(a) belongs to A∩CG(ϕ) whence the relation
ϕ(a) = a−1. Therefore, for all x ∈ G, we may write

ϕ(x−1ax) = ϕ(x−1)a−1
ϕ(x)
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and also
ϕ(x−1ax) = x−1a−1x

since x−1ax belongs to A. It follows ϕ(x)x−1a−1xϕ(x−1) = a−1 and the lemma is
proved. ut

Proof of Theorem 1 We proceed by induction on the derived length r of [G,ϕ]. If r = 0
or 1 (that is, [G,ϕ] = 1 or [G,ϕ]′ = 1), the result is obvious. Now suppose r ≥ 2. The
subgroup [G,ϕ](r−1) is then abelian; denote by T its torsion subgroup and by ϕ the
automorphism induced by ϕ on G/T . Since T is finite, the subgroup CG/T (ϕ) is finite
[2, Lemma 2.4(i)] and so the intersection of CG/T (ϕ) and [G,ϕ](r−1)/T is trivial for
[G,ϕ](r−1)/T is torsion-free. Consequently, by Lemma 1, [G,ϕ](r−1)/T is included
in the centre of [G,ϕ]/T and it follows that [G,ϕ](r−2)/T is nilpotent (of class at most
2). Applying Corollary 2.1 of [2], we may then deduce that [G,ϕ](r−2)/T is finite-by-
abelian and so that [G,ϕ](r−1)/T is finite. Since [G,ϕ](r−1)/T is torsion-free, we have
then [G,ϕ](r−1) = T , thus [G/T,ϕ](r−1) = 1. By induction, it follows that [G/T,ϕ]′ is
finite. But [G/T,ϕ]′ = [G,ϕ]′/T , hence [G,ϕ]′ is finite and the proof is complete. ut

Proof of Theorem 2 We proceed again by induction on the derived length r of [G,ϕ].
If r = 0, we have [G,ϕ] = 1 and so CG(ϕ) =G. Thus G is finite and the result follows.
If r > 0, put A = [G,ϕ](r−1) and consider the automorphism ϕ induced by ϕ on G/A.
Since A is finitely generated and abelian, the subgroup CG/A(ϕ) is finite [2, Lemma
2.4(ii)]. By induction, we deduce that the index of [G/A,ϕ] in G/A is finite. But
[G/A,ϕ] = [G,ϕ]/A and |G/A: [G,ϕ]/A| = |G: [G,ϕ]|, hence |G: [G,ϕ]| is finite, as
required. ut

For convenience, we recall the following well-known result:

Lemma 2 Let G be an infinite polycyclic group. Then G contains a characteristic
abelian subgroup A which is torsion-free infinite.

Proof The group G contains a normal torsion-free subgroup K of finite index [6,
1.3.4] and K can be chosen characteristic [6, 1.3.7]. We can then take A to be the last
non-trivial term of the derived series of K. ut

Lemma 3 Let ϕ be an automorphism of a group G such that the subgroup [G,ϕ] is
finite. Then the index of CG(ϕ) in G is finite.

Proof Denote by m the order of [G,ϕ] and consider m+ 1 elements x1, . . . ,xm+1 in
G. Therefore, among the elements

x−1
1 ϕ(x1), . . . ,x−1

m+1ϕ(xm+1),

at least two coincide. If x−1
i ϕ(xi) = x−1

j ϕ(x j) (i, j ∈ {1, . . . ,m+1}, i 6= j), it follows
ϕ(xix−1

j ) = xix−1
j and so xix−1

j ∈CG(ϕ). Hence we deduce that |G:CG(ϕ)| ≤ m, and
so the lemma is proved. ut
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Lemma 4 Let ϕ be an automorphism of an abelian group G. If ϕ is of finite or-
der n, for any x ∈ G, the element xn can be written in the form xn = vw−1ϕ(w),
with v ∈CG(ϕ) and w ∈ G. In particular, if G is finitely generated, then the quotient
G/CG(ϕ)[G,ϕ] is finite.

Proof Consider an element x ∈ G and put v = xϕ(x) · · ·ϕn−1(x). First notice that v
clearly belongs to CG(ϕ). Now observe that

ϕ(x)≡ x mod [G,ϕ]

and so more generally
ϕ

k(x)≡ x modd[G,ϕ]

for any positive integer k. That implies

v≡ xn mod [G,ϕ],

thus the element u = v−1xn belongs to [G,ϕ]. It follows that xn = vu, with v ∈CG(ϕ)
and u ∈ [G,ϕ]. Since G is abelian, each element of [G,ϕ] is of the form w−1ϕ(w)
(w ∈ G), hence the proof is complete. ut

Lemma 5 Let ϕ be an automorphism of order n of a group G. Let A be a torsion-free
normal ϕ-invariant abelian subgroup of G. Put B=An and consider an element x∈G
such that ϕ(x) ≡ x modB (in other words, xB is a fixed point of the automorphism
induced by ϕ in G/B). Then x belongs to CG(ϕ)A.

Proof We have ϕ(x) = xy for some y ∈ B. Applying Lemma 4 to the restriction ϕA
of ϕ to A, we conclude that y can be written in the form y = vw−1ϕ(w), where
v ∈ CA(ϕA), w ∈ A, and so ϕ(x) = xvw−1ϕ(w). Induction now shows that ϕk(x) =
xvkw−1ϕk(w) for all positive integers k. For k = n, we obtain vn = 1 whence v = 1
since A is torsion-free. Consequently, we have ϕ(x) = xw−1ϕ(w) and so ϕ(xw−1) =
xw−1. In other words, the element u= xw−1 belongs to CG(ϕ), thus x= uw∈CG(ϕ)A.

ut

Proof of Theorem 3 We proceed by induction on the Hirsch length λ of G. The
result is trivial when λ = 0, so suppose that λ > 0. By Lemma 3, if [G,ϕ] is finite,
then the index of CG(ϕ) in G is finite and so the result follows. Therefore, we can
assume that [G,ϕ] is infinite. By Lemma 2, [G,ϕ] contains a characteristic abelian
subgroup A which is torsion-free infinite (notice that A is ϕ-invariant). Put B = An

and denote by ϕ the automorphism induced by ϕ on G/B. It follows from Lemma 5
that CG/B(ϕ)≤ ACG(ϕ)/B. Since the Hirsch length of G/B is < λ , we deduce from
the inductive hypothesis that the index of CG/B(ϕ)[G/B,ϕ] in G/B is finite. But we
have clearly

CG/B(ϕ)[G/B,ϕ]≤ ACG(ϕ)[G,ϕ]/B =CG(ϕ)[G,ϕ]/B,

thus |G/B:CG(ϕ)[G,ϕ]/B|< ∞. Consequently, |G:CG(ϕ)[G,ϕ]|< ∞, as required.
ut

We state here a consequence of Theorem 3:
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Proposition 1 Let X be a class of groups which is closed with respect to formation
of subgroups and homomorphic images of its members. Let ϕ be an automorphism
of finite order of a polycyclic group G and suppose that CG(ϕ) belongs to X . Then
G/[G,ϕ] belongs to X F , where F is the class of finite groups.

Proof First observe that the group CG(ϕ)[G,ϕ]/[G,ϕ] belongs to X since it is iso-
morphic to CG(ϕ)/CG(ϕ)∩ [G,ϕ]. Now consider the core

N =
⋂
x∈G

x−1CG(ϕ)[G,ϕ]x

of CG(ϕ)[G,ϕ] in G. Since |G:CG(ϕ)[G,ϕ]| < ∞ by Theorem 3, CG(ϕ)[G,ϕ] has
only a finite number of conjugates and so G/N is finite. Furthermore N/[G,ϕ] is
a subgroup of CG(ϕ)[G,ϕ]/[G,ϕ], hence N/[G,ϕ] belongs to X and the proof is
complete. ut

Proof of Theorem 4 Clearly it suffices to show that G′/[G,ϕ]∩G′ belongs to TπEn. In
other words, we must prove that for all x ∈ G′, xn is a π-element modulo [G,ϕ]∩G′.
For that, consider the restriction ϕ ′:G′→ G′ of ϕ to G′. By Lemma 4, for all x ∈ G′,
we have xn = vw−1ϕ(w), with v ∈ CG′(ϕ

′) and w ∈ G′. Since w−1ϕ(w) belongs to
[G,ϕ]∩G′ and v is a π-element (it belongs to CG(ϕ)), the proof is complete. ut

Let n be a positive integer. Recall that an automorphism ϕ of a group G is said to
be splitting of order n if ϕn is the identity automorphism and if xϕ(x) · · ·ϕn−1(x) = 1
for all x ∈ G. To prove Theorem 5, we shall use the following result due to Khukhro:

Proposition 2 ([5]) If a soluble group of derived length r admits a splitting automor-
phism of prime order p, then it is nilpotent, and its nilpotency class is bounded by a
function g = g(p,r) depending only on p and r.

A splitting automorphism of order 2 inverts every element. Therefore, in the proposi-
tion above, we can take g(2,r) = 1 and so the bound is independent of r when p = 2.
For an arbitrary prime p, we can take g(p,2) = p (see [5, p. 78]).

Lemma 6 Let ϕ be an automorphism of finite order n of a metabelian group G such
that CG(ϕ) is a π-group. Put H = ∏q∈π Hq, where Hq is the q-primary component of
[G,ϕ]∩G′. Then:

(i) For all t ∈ [G,ϕ]∩G′, the product tϕ(t) · · ·ϕn−1(t) belongs to H;
(ii) ϕ induces a splitting automorphism of order n on [G,ϕ]/H.

Proof (i) Clearly, the automorphism ϕ fixes tϕ(t) · · ·ϕn−1(t). It follows that this
product is a π-element and so belongs to H.
(ii) Consider an element x ∈ [G,ϕ] and put y = xϕ(x) · · ·ϕn−1(x). We must prove that
y belongs to H. For that, first notice that x can be written in the form x = w−1ϕ(w)t,
with w ∈ G and t ∈ G′. Observe that t ∈ [G,ϕ]∩G′. Then we have:

y =
n

∏
k=1

ϕ
k−1(w−1)ϕk(w)ϕk−1(t)
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= w−1{ n

∏
k=1

ϕ
k(w)ϕk−1(t)ϕk(w−1)

}
w

= w−1{ n

∏
k=1

ϕ
k−1(t)[ϕk−1(t),ϕk(w−1)]

}
w

= w−1{ n

∏
k=1

ϕ
k−1(t)ϕk−1([t,ϕ(w−1)])

}
w.

Since the factors ϕk−1(t) and ϕk−1([t,ϕ(w−1)]) are in G′, we obtain

y = w−1{ n

∏
k=1

ϕ
k−1(t)

}{ n

∏
k=1

ϕ
k−1([t,ϕ(w−1)])

}
w.

By the first part of our lemma, ∏
n
k=1 ϕk−1(t) and ∏

n
k=1 ϕk−1([t,ϕ(w−1)]) belong to

H and so does y, as required. ut

Proof of Theorem 5 The proof is now immediate: with the notation of Lemma 6 and
Proposition 2, and as a consequence of these results, we may assert that [G,ϕ]/H is
nilpotent of class at most g(p,2) = p (and of class at most 1 when p = 2). Since H is
a π-group, we obtain the desired conclusion. ut

Proof of Theorem 6 Let A�G be a maximal abelian normal ϕ-invariant subgroup
contained in [G,ϕ]. In order to obtain a contradiction, suppose that A and [G,ϕ] are
distinct. Let B/A be the smallest non-trivial term of the derived series of [G,ϕ]/A.
Thus A is a proper subgroup of B. By Lemma 1, A is contained in the centre of [G,ϕ],
hence B is nilpotent of class at most 2. But a nilpotent group admitting a fixed-point-
free automorphism of order 2 is abelian [4, Theorem 3]. It follows that B is abelian,
a contradiction by maximality of A. ut

3 Examples

Example 1 Let R denote the subgroup of GL(2,C) generated by the matrices

a =

(
i 0
0 −i

)
, b =

(
0 1
−1 0

)
, c =

(
0 i
i 0

)
,

d = 2−1(i−1)
(

1 −i
1 i

)
, with i2 =−1.

The matrix d has order 3 and the subgroup Q := 〈a,b,c〉 is a normal subgroup of R
isomorphic to the quaternion group of order 8 (see [7, p. 245]). Thus R is a finite group
of order 24. Regard the elements of C2 as column matrices with two lines and coef-
ficients in C. The group R acting in a natural way on C2, choose a non-zero element
v0 ∈ C2 and denote by V the (additive) subgroup of C2 generated by the R-orbit of
v0. In the semidirect product V oR, consider the normal subgroup G :=V oQ. Note
that V oR is polycyclic (and so G too). The element (0,d) induces by conjugation an
automorphism ϕ:G→ G. Thus ϕ has order 3 and we have ϕ(v,m) = (d−1v,d−1md)
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for all v ∈ V and m ∈ Q. It is easy to verify that CG(ϕ) = {(0, I), (0,−I)}, where I
denotes the identity matrix. Now consider the elements x,y ∈ [G,ϕ] defined by

x = (v0, I)−1
ϕ(v0, I) = ((d−1− I)v0, I)

and
y = (0,a)−1

ϕ(0,a) = (0,a−1d−1ad) = (0,c−1).

For any k ∈ N, define [x, ky] by [x,0y] = x and [x, k+1y] = [x, ky]−1y−1[x, ky]x. An easy
induction leads then to the relation

[x, ky] = ((c− I)k(d−1− I)v0, I) for all k ∈ N.

This element is of infinite order since the matrix (c− I)k(d−1− I) is nonsingular and
so [G,ϕ] is not finite-by-nilpotent.

Example 2 This example is given in [2]. For convenience, we summarize here its
main properties and we refer to the paper cited above for more details. Let Z[x±1] be
the ring of Laurent polynomials in one indeterminate with coefficients in the ring of
integers Z. Let G be the group of matrices of the form

m(i, f ) =
(

xi f
0 1

)
(i ∈ Z, f ∈ Z[x±1])

with the usual multiplication. This group is metabelian and generated by u = m(1,0)
and v = m(0,1). Consider the subgroup A formed by the elements

m(0, f ) =
(

1 f
0 1

)
( f ∈ Z[x±1]).

Each element of G can be uniquely written in the form uia, where i ∈ Z and a ∈ A,
and the function ϕ:G → G defined by ϕ(uia) = (uv)ia−1 is an automorphism of
order 2 such that CG(ϕ) = 1. It is then easy to see that [G,ϕ] = A. Consequently,
[G,ϕ] is torsion-free infinite and G/[G,ϕ] is infinite cyclic. Thus Theorem 2 cannot
be extended to soluble groups. Likewise, in Theorem 4 (resp. in Theorem 5), we
cannot conclude that G/[G,ϕ] (resp. [G,ϕ]) is periodic.

Example 3 Let q be an odd prime and let ω be a primitive q-th root of unity. Denote
by Z[ω] the subring of C generated by ω . Here G is defined as the group of matrices
of the form (

ω i z
0 1

)
(i ∈ Z, z ∈ Z[ω])

with the usual multiplication (notice that this group is a homomorphic image of the
group defined in the preceding example). The group G is metabelian and polycyclic
since it is an extension of the group

A =

{(
1 z
0 1

)
∈ G | z ∈ Z[ω]

}
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(isomorphic to Zq−1) by a cyclic group of order q. Now consider the automorphism
ϕ:G→ G of order 2 defined by

ϕ:
(

ω i z
0 1

)
7→
(

ω i −z
0 1

)
.

Obviously, CG(ϕ) is cyclic of order q. Straightforward calculation shows that

[G,ϕ] =

{(
1 z
0 1

)
∈ G | z ∈ 2Z[ω]

}
and

G′ =
{(

1 z
0 1

)
∈ G | z ∈ (1−ω)Z[ω]

}
,

where (1−ω)Z[ω] (resp. 2Z[ω]) denotes the ideal of Z[ω] generated by 1−ω (resp.
by 2). It follows that the quotient G/[G,ϕ] is not abelian. Furthermore, this quotient
is an extension of an elementary abelian 2-group of order 2q−1 by a cyclic group
of order q. Thus G/[G,ϕ] is not in TπA , where π = {q}. This shows that in the
statement of Theorem 4, we cannot replace TπEnA by TπA .

Acknowledgements The authors are grateful to E.I. Khukhro for useful comments on a first version of
this paper. In particular, he suggested Theorem 6 and Example 1.
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