On the centralizer and the commutator subgroup of an automorphism

Gérard Endimioni · Primož Moravec

the date of receipt and acceptance should be inserted later

Abstract Let φ be an automorphism of a group *G*. In this paper, we study the influence of its centralizer $C_G(\varphi)$ on its commutator subgroup $[G, \varphi]$ when *G* is polycyclic or metabelian. For instance, when *G* is metabelian and φ fixed-point-free of prime order *p*, we prove that $[G, \varphi]$ is nilpotent of class $\leq p$. Also, when *G* is polycyclic and φ of order 2, we show that if $C_G(\varphi)$ is finite, then so are $G/[G, \varphi]$ and $[G, \varphi]'$.

Keywords Polycyclic group · Metabelian group · Automorphism · Fixed point

Mathematics Subject Classification (2010) 20E 36, 20F28

1 Introduction and main results

Let φ be an automorphism of a group *G*. Denote by $C_G(\varphi)$ the centralizer of φ in *G*, i.e., the subgroup of *G* consisting of all elements fixed by φ . Let $[G, \varphi] = \langle x^{-1}\varphi(x) | x \in G \rangle$ be the commutator subgroup of φ . Notice that $[G, \varphi]$ is normal in *G* since for all $x, y \in G$, if $z = \varphi^{-1}(y)$, we can write

$$y^{-1}\{x^{-1}\varphi(x)\}y = \varphi(z^{-1})x^{-1}\varphi(x)\varphi(z) = \varphi(z^{-1})z(xz)^{-1}\varphi(xz).$$

It is well known that, under suitable hypotheses, the fact that $C_G(\varphi)$ is "small" in some sense has consequences on *G*, and in particular on $G/[G,\varphi]$ and $[G,\varphi]'$. For example, Belyaev and Sesekin proved that if *G* is locally finite and if φ is of order 2,

The authors were partially supported by the bilateral grant BI-FR/10-11-PROTEUS-009.

Gérard Endimioni

C.M.I-Université de Provence,

39 rue F. Joliot-Curie, 13453 Marseille Cedex 13, France E-mail: endimion@gyptis.univ-mrs.fr

Primož Moravec

Department of Mathematics, University of Ljubljana, Jadranska 21, 1000 Ljubljana, Slovenia E-mail: primoz.moravec@fmf.uni-lj.si

the fact that $C_G(\varphi)$ is finite implies that $G/[G,\varphi]$ and $[G,\varphi]'$ are finite too [1]. Further results on the influence of $C_G(\varphi)$ on $G, G/[G,\varphi]$ and $[G,\varphi]'$ can be found in a survey by Shumyatsky [8].

In this paper, we are interested in the case where G is polycyclic or metabelian. In particular, as a consequence of our first two results, we shall see that the result of Belyaev and Sesekin cited above remains valid when G is polycyclic (see Theorem 1 and 2 below).

Theorem 1 Let φ be an automorphism of order 2 of a polycyclic group G. If $C_G(\varphi)$ is finite, then so is $[G, \varphi]'$.

In a first version of this paper, we conjectured that when *G* is polycyclic and φ of prime order *p*, if $C_G(\varphi)$ is finite, then $[G, \varphi]$ is finite-by-nilpotent. According to Theorem 1, that is true when p = 2, and also for an arbitrary prime *p* when *G* is metabelian (see Theorem 5 below). In fact, as Khukhro pointed out to the authors, this conjecture is false (see Example 1 in Section 3). In our next result, we have no restriction on the order of φ .

Theorem 2 Let φ be an automorphism of a polycyclic group G. If $C_G(\varphi)$ is finite, then so is $G/[G, \varphi]$.

In the particular case where φ is of finite order, the fact that $G/[G, \varphi]$ is finite is an easy consequence of the following result.

Theorem 3 If φ is an automorphism of finite order of a polycyclic group *G*, we have $|G:C_G(\varphi)[G,\varphi]| < \infty$.

However, we cannot deduce Theorem 2 from Theorem 3 in the general case. When φ is of infinite order, it can easily happen that $|G:C_G(\varphi)[G,\varphi]|$ is not finite. For example, if φ is the automorphism of $G = \mathbb{Z}^2$ defined by $\varphi(x,y) = (x+y,y)$, we have $C_G(\varphi) = [G,\varphi] = \{(x,y) \in \mathbb{Z}^2 | y = 0\}$ and so the index of $C_G(\varphi)[G,\varphi]$ in *G* is infinite. If we only assume that *G* is soluble, then Theorems 2 and 3 fail, even if *G* is a finitely generated metabelian group (see Example 2 in Section 3). Our next results treat the case where *G* is metabelian and $C_G(\varphi)$ periodic. At first we introduce some notations. If π is a (possibly empty) set of primes, the class of π -groups will be denoted by \mathcal{T}_{π} (recall that a π -group is a periodic group in which the order of each element is a π -integer, namely an integer such that π contains the set of primes dividing it). In particular, \mathcal{T}_{π} is the class of trivial groups when π is empty and the class of periodic groups when π is of abelian groups and \mathcal{E}_n for the class of groups satisfying the law $x^n = 1$ (n being a positive integer). If $\mathcal{X}_1, \ldots, \mathcal{X}_k$ are classes of groups, we say that a group *G* belongs to the class $\mathcal{X}_1 \cdots \mathcal{X}_k$ if it has a series

$$1 = H_0 \trianglelefteq H_1 \trianglelefteq \cdots \trianglelefteq H_{k-1} \trianglelefteq H_k = G$$

such that H_i/H_{i-1} belongs to \mathscr{X}_i for i = 1, ..., k.

Theorem 4 Let G be a metabelian group and φ an automorphism of G of finite order n. Suppose that $C_G(\varphi)$ is a periodic group which belongs to \mathcal{T}_{π} (where π is a set of primes). Then $G/[G, \varphi]$ belongs to $\mathcal{T}_{\pi} \mathcal{E}_n \mathscr{A}$. Under the hypothesis of this theorem, when *G* is finite and *n* is a prime power p^{λ} , it is easy to see that $G/[G, \varphi]$ actually belongs to $\mathcal{T}_{\pi}\mathscr{A}$ (observe that if $p \notin \pi$, then *p* does not divide the order of *G* since *p* divides the cardinality of the set $G \setminus C_G(\varphi)$). However, in general, the quotient $G/[G, \varphi]$ need not be in $\mathcal{T}_{\pi}\mathscr{E}_n$ or in $\mathcal{T}_{\pi}\mathscr{A}$ (see Examples 2 and 3 respectively). Also, trivially, $G/[G, \varphi]$ need not be in $\mathscr{E}_n\mathscr{A}$: for instance, if *G* is a finite non-abelian metabelian group and if φ is the identity automorphism, $G/[G, \varphi] \simeq G$ does not belong to $\mathscr{E}_1 \mathscr{A} = \mathscr{A}$.

Denote by \mathcal{N}_c the class of all nilpotent groups of class at most *c*. The next result is about the subgroup $[G, \varphi]$:

Theorem 5 Let *G* be a metabelian group, and let φ be an automorphism of *G* of prime order *p*. Let π be a set of primes, and suppose that $C_G(\varphi)$ is a periodic group which belongs to \mathcal{T}_{π} . Then $[G, \varphi]$ belongs to $\mathcal{T}_{\pi} \mathcal{N}_p$ (and even to $\mathcal{T}_{\pi} \mathcal{A}$ when p = 2). In particular, if φ is fixed-point-free, then $[G, \varphi]$ is nilpotent of class at most *p*.

This theorem fails to hold when *G* is soluble of derived length 3. For instance, if $G = S_4$ is the permutation group on $\{a, b, c, d\}$ and if φ is the inner automorphism $\sigma \mapsto (a \ b \ c)^{-1} \sigma \ (a \ b \ c)$, then $C_G(\varphi)$ is the subgroup generated by $(a \ b \ c)$ and $[G, \varphi]$ the alternating subgroup A_4 ; but A_4 is not an extension of a 3-group by a nilpotent group. Also, in Theorem 5, we cannot conclude that $[G, \varphi]$ is nilpotent: if *H* is a finite non-nilpotent metabelian group and if φ is the automorphism of $G = H \times H$ defined by $\varphi(x, y) = (y, x)$, it is easy to see that $[G, \varphi]$ is not nilpotent. In the same way, Example 2 (or 3) shows that $[G, \varphi]$ need not be periodic. These examples also show that under the hypothesis of Theorem 5, unlike $[G, \varphi]$, the group *G* itself need not be periodic-by-nilpotent. Notice that if φ is an automorphism of prime order *p* of a *polycyclic* group *G* such that $C_G(\varphi)$ is periodic (and so finite), then *G* is an extension of a nilpotent group (of class bounded by a function of *p*) by a finite group [3].

It follows from Theorem 5 that if φ is a fixed-point-free automorphism of order 2, then $[G, \varphi]$ is abelian when G is metabelian. But in fact, this result is true for any soluble group:

Theorem 6 If φ is a fixed-point-free automorphism of order 2 of a soluble group G, then $[G, \varphi]$ is abelian.

2 Proofs

Notations used in this paper are standard. In particular, we shall denote by $G^{(r)}$ the *r*-th term of the derived series: thus $G^{(r+1)}$ is the derived subgroup of $G^{(r)}$, with $G^{(0)} = G$. We also write $G' = G^{(1)}$ and $G'' = G^{(2)}$. To prove our first theorem, we need a preliminary result:

Lemma 1 Let φ be an automorphism of order 2 of a group G and let A be a normal φ -invariant abelian subgroup of G. If $A \cap C_G(\varphi) = 1$, then $[[G, \varphi], A] = 1$.

Proof For all $a \in A$, the element $a\varphi(a)$ belongs to $A \cap C_G(\varphi)$ whence the relation $\varphi(a) = a^{-1}$. Therefore, for all $x \in G$, we may write

$$\boldsymbol{\varphi}(x^{-1}ax) = \boldsymbol{\varphi}(x^{-1})a^{-1}\boldsymbol{\varphi}(x)$$

and also

$$\varphi(x^{-1}ax) = x^{-1}a^{-1}x$$

since $x^{-1}ax$ belongs to *A*. It follows $\varphi(x)x^{-1}a^{-1}x\varphi(x^{-1}) = a^{-1}$ and the lemma is proved.

Proof of Theorem 1 We proceed by induction on the derived length *r* of $[G, \varphi]$. If *r* = 0 or 1 (that is, $[G, \varphi] = 1$ or $[G, \varphi]' = 1$), the result is obvious. Now suppose *r* ≥ 2. The subgroup $[G, \varphi]^{(r-1)}$ is then abelian; denote by *T* its torsion subgroup and by $\overline{\varphi}$ the automorphism induced by φ on G/T. Since *T* is finite, the subgroup $C_{G/T}(\overline{\varphi})$ is finite [2, Lemma 2.4(i)] and so the intersection of $C_{G/T}(\overline{\varphi})$ and $[G, \varphi]^{(r-1)}/T$ is trivial for $[G, \varphi]^{(r-1)}/T$ is torsion-free. Consequently, by Lemma 1, $[G, \varphi]^{(r-1)}/T$ is included in the centre of $[G, \varphi]/T$ and it follows that $[G, \varphi]^{(r-2)}/T$ is nilpotent (of class at most 2). Applying Corollary 2.1 of [2], we may then deduce that $[G, \varphi]^{(r-2)}/T$ is finite-byabelian and so that $[G, \varphi]^{(r-1)}/T$ is finite. Since $[G, \varphi]^{(r-1)}/T$ is torsion-free, we have then $[G, \varphi]^{(r-1)} = T$, thus $[G/T, \overline{\varphi}]^{(r-1)} = 1$. By induction, it follows that $[G/T, \overline{\varphi}]'$ is finite. But $[G/T, \overline{\varphi}]' = [G, \varphi]'/T$, hence $[G, \varphi]'$ is finite and the proof is complete. \Box

Proof of Theorem 2 We proceed again by induction on the derived length *r* of $[G, \varphi]$. If r = 0, we have $[G, \varphi] = 1$ and so $C_G(\varphi) = G$. Thus *G* is finite and the result follows. If r > 0, put $A = [G, \varphi]^{(r-1)}$ and consider the automorphism $\overline{\varphi}$ induced by φ on G/A. Since *A* is finitely generated and abelian, the subgroup $C_{G/A}(\overline{\varphi})$ is finite [2, Lemma 2.4(ii)]. By induction, we deduce that the index of $[G/A, \overline{\varphi}]$ in G/A is finite. But $[G/A, \overline{\varphi}] = [G, \varphi]/A$ and $|G/A: [G, \varphi]/A| = |G: [G, \varphi]|$, hence $|G: [G, \varphi]|$ is finite, as required.

For convenience, we recall the following well-known result:

Lemma 2 Let G be an infinite polycyclic group. Then G contains a characteristic abelian subgroup A which is torsion-free infinite.

Proof The group *G* contains a normal torsion-free subgroup *K* of finite index [6, 1.3.4] and *K* can be chosen characteristic [6, 1.3.7]. We can then take *A* to be the last non-trivial term of the derived series of *K*.

Lemma 3 Let φ be an automorphism of a group G such that the subgroup $[G, \varphi]$ is finite. Then the index of $C_G(\varphi)$ in G is finite.

Proof Denote by *m* the order of $[G, \varphi]$ and consider m + 1 elements x_1, \ldots, x_{m+1} in *G*. Therefore, among the elements

$$x_1^{-1}\varphi(x_1),\ldots,x_{m+1}^{-1}\varphi(x_{m+1}),$$

at least two coincide. If $x_i^{-1}\varphi(x_i) = x_j^{-1}\varphi(x_j)$ $(i, j \in \{1, \dots, m+1\}, i \neq j)$, it follows $\varphi(x_i x_j^{-1}) = x_i x_j^{-1}$ and so $x_i x_j^{-1} \in C_G(\varphi)$. Hence we deduce that $|G: C_G(\varphi)| \leq m$, and so the lemma is proved.

Lemma 4 Let φ be an automorphism of an abelian group G. If φ is of finite order n, for any $x \in G$, the element x^n can be written in the form $x^n = vw^{-1}\varphi(w)$, with $v \in C_G(\varphi)$ and $w \in G$. In particular, if G is finitely generated, then the quotient $G/C_G(\varphi)[G,\varphi]$ is finite.

Proof Consider an element $x \in G$ and put $v = x\varphi(x)\cdots\varphi^{n-1}(x)$. First notice that v clearly belongs to $C_G(\varphi)$. Now observe that

$$\varphi(x) \equiv x \mod [G, \varphi]$$

and so more generally

$$\varphi^k(x) \equiv x \mod d[G, \varphi]$$

for any positive integer k. That implies

$$v \equiv x^n \mod [G, \varphi],$$

thus the element $u = v^{-1}x^n$ belongs to $[G, \varphi]$. It follows that $x^n = vu$, with $v \in C_G(\varphi)$ and $u \in [G, \varphi]$. Since *G* is abelian, each element of $[G, \varphi]$ is of the form $w^{-1}\varphi(w)$ $(w \in G)$, hence the proof is complete.

Lemma 5 Let φ be an automorphism of order n of a group G. Let A be a torsion-free normal φ -invariant abelian subgroup of G. Put $B = A^n$ and consider an element $x \in G$ such that $\varphi(x) \equiv x \mod B$ (in other words, xB is a fixed point of the automorphism induced by φ in G/B). Then x belongs to $C_G(\varphi)A$.

Proof We have $\varphi(x) = xy$ for some $y \in B$. Applying Lemma 4 to the restriction φ_A of φ to A, we conclude that y can be written in the form $y = vw^{-1}\varphi(w)$, where $v \in C_A(\varphi_A)$, $w \in A$, and so $\varphi(x) = xvw^{-1}\varphi(w)$. Induction now shows that $\varphi^k(x) = xv^kw^{-1}\varphi^k(w)$ for all positive integers k. For k = n, we obtain $v^n = 1$ whence v = 1 since A is torsion-free. Consequently, we have $\varphi(x) = xw^{-1}\varphi(w)$ and so $\varphi(xw^{-1}) = xw^{-1}$. In other words, the element $u = xw^{-1}$ belongs to $C_G(\varphi)$, thus $x = uw \in C_G(\varphi)A$.

Proof of Theorem 3 We proceed by induction on the Hirsch length λ of *G*. The result is trivial when $\lambda = 0$, so suppose that $\lambda > 0$. By Lemma 3, if $[G, \varphi]$ is finite, then the index of $C_G(\varphi)$ in *G* is finite and so the result follows. Therefore, we can assume that $[G, \varphi]$ is infinite. By Lemma 2, $[G, \varphi]$ contains a characteristic abelian subgroup *A* which is torsion-free infinite (notice that *A* is φ -invariant). Put $B = A^n$ and denote by $\overline{\varphi}$ the automorphism induced by φ on G/B. It follows from Lemma 5 that $C_{G/B}(\overline{\varphi}) \leq AC_G(\varphi)/B$. Since the Hirsch length of G/B is $< \lambda$, we deduce from the inductive hypothesis that the index of $C_{G/B}(\overline{\varphi})[G/B, \overline{\varphi}]$ in G/B is finite. But we have clearly

$$C_{G/B}(\overline{\varphi})[G/B,\overline{\varphi}] \leq AC_G(\varphi)[G,\varphi]/B = C_G(\varphi)[G,\varphi]/B,$$

thus $|G/B: C_G(\varphi)[G, \varphi]/B| < \infty$. Consequently, $|G: C_G(\varphi)[G, \varphi]| < \infty$, as required.

We state here a consequence of Theorem 3:

Proposition 1 Let \mathscr{X} be a class of groups which is closed with respect to formation of subgroups and homomorphic images of its members. Let φ be an automorphism of finite order of a polycyclic group G and suppose that $C_G(\varphi)$ belongs to \mathscr{X} . Then $G/[G, \varphi]$ belongs to $\mathscr{X}\mathscr{F}$, where \mathscr{F} is the class of finite groups.

Proof First observe that the group $C_G(\varphi)[G,\varphi]/[G,\varphi]$ belongs to \mathscr{X} since it is isomorphic to $C_G(\varphi)/C_G(\varphi) \cap [G,\varphi]$. Now consider the core

$$N = \bigcap_{x \in G} x^{-1} C_G(\varphi) [G, \varphi] x$$

of $C_G(\varphi)[G,\varphi]$ in *G*. Since $|G:C_G(\varphi)[G,\varphi]| < \infty$ by Theorem 3, $C_G(\varphi)[G,\varphi]$ has only a finite number of conjugates and so G/N is finite. Furthermore $N/[G,\varphi]$ is a subgroup of $C_G(\varphi)[G,\varphi]/[G,\varphi]$, hence $N/[G,\varphi]$ belongs to \mathscr{X} and the proof is complete. \Box

Proof of Theorem 4 Clearly it suffices to show that $G'/[G, \varphi] \cap G'$ belongs to $\mathcal{T}_{\pi} \mathscr{E}_n$. In other words, we must prove that for all $x \in G'$, x^n is a π -element modulo $[G, \varphi] \cap G'$. For that, consider the restriction $\varphi': G' \to G'$ of φ to G'. By Lemma 4, for all $x \in G'$, we have $x^n = vw^{-1}\varphi(w)$, with $v \in C_{G'}(\varphi')$ and $w \in G'$. Since $w^{-1}\varphi(w)$ belongs to $[G, \varphi] \cap G'$ and v is a π -element (it belongs to $C_G(\varphi)$), the proof is complete. \Box

Let *n* be a positive integer. Recall that an automorphism φ of a group *G* is said to be *splitting of order n* if φ^n is the identity automorphism and if $x\varphi(x) \cdots \varphi^{n-1}(x) = 1$ for all $x \in G$. To prove Theorem 5, we shall use the following result due to Khukhro:

Proposition 2 ([5]) If a soluble group of derived length r admits a splitting automorphism of prime order p, then it is nilpotent, and its nilpotency class is bounded by a function g = g(p,r) depending only on p and r.

A splitting automorphism of order 2 inverts every element. Therefore, in the proposition above, we can take g(2, r) = 1 and so the bound is independent of r when p = 2. For an arbitrary prime p, we can take g(p, 2) = p (see [5, p. 78]).

Lemma 6 Let φ be an automorphism of finite order n of a metabelian group G such that $C_G(\varphi)$ is a π -group. Put $H = \prod_{q \in \pi} H_q$, where H_q is the q-primary component of $[G, \varphi] \cap G'$. Then:

(*i*) For all $t \in [G, \varphi] \cap G'$, the product $t\varphi(t) \cdots \varphi^{n-1}(t)$ belongs to H;

(ii) φ induces a splitting automorphism of order n on $[G, \varphi]/H$.

Proof (i) Clearly, the automorphism φ fixes $t\varphi(t)\cdots\varphi^{n-1}(t)$. It follows that this product is a π -element and so belongs to *H*.

(ii) Consider an element $x \in [G, \varphi]$ and put $y = x\varphi(x) \cdots \varphi^{n-1}(x)$. We must prove that y belongs to H. For that, first notice that x can be written in the form $x = w^{-1}\varphi(w)t$, with $w \in G$ and $t \in G'$. Observe that $t \in [G, \varphi] \cap G'$. Then we have:

$$y = \prod_{k=1}^{n} \varphi^{k-1}(w^{-1})\varphi^{k}(w)\varphi^{k-1}(t)$$

$$= w^{-1} \left\{ \prod_{k=1}^{n} \varphi^{k}(w) \varphi^{k-1}(t) \varphi^{k}(w^{-1}) \right\} w$$

$$= w^{-1} \left\{ \prod_{k=1}^{n} \varphi^{k-1}(t) [\varphi^{k-1}(t), \varphi^{k}(w^{-1})] \right\} w$$

$$= w^{-1} \left\{ \prod_{k=1}^{n} \varphi^{k-1}(t) \varphi^{k-1}([t, \varphi(w^{-1})]) \right\} w.$$

Since the factors $\varphi^{k-1}(t)$ and $\varphi^{k-1}([t,\varphi(w^{-1})])$ are in G', we obtain

$$y = w^{-1} \left\{ \prod_{k=1}^{n} \varphi^{k-1}(t) \right\} \left\{ \prod_{k=1}^{n} \varphi^{k-1}([t, \varphi(w^{-1})]) \right\} w.$$

By the first part of our lemma, $\prod_{k=1}^{n} \varphi^{k-1}(t)$ and $\prod_{k=1}^{n} \varphi^{k-1}([t, \varphi(w^{-1})])$ belong to H and so does y, as required.

Proof of Theorem 5 The proof is now immediate: with the notation of Lemma 6 and Proposition 2, and as a consequence of these results, we may assert that $[G, \varphi]/H$ is nilpotent of class at most g(p, 2) = p (and of class at most 1 when p = 2). Since *H* is a π -group, we obtain the desired conclusion.

Proof of Theorem 6 Let $A \subseteq G$ be a maximal abelian normal φ -invariant subgroup contained in $[G, \varphi]$. In order to obtain a contradiction, suppose that A and $[G, \varphi]$ are distinct. Let B/A be the smallest non-trivial term of the derived series of $[G, \varphi]/A$. Thus A is a proper subgroup of B. By Lemma 1, A is contained in the centre of $[G, \varphi]$, hence B is nilpotent of class at most 2. But a nilpotent group admitting a fixed-point-free automorphism of order 2 is abelian [4, Theorem 3]. It follows that B is abelian, a contradiction by maximality of A.

3 Examples

Example 1 Let *R* denote the subgroup of $GL(2, \mathbb{C})$ generated by the matrices

$$a = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, b = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, c = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},$$
$$d = 2^{-1}(i-1) \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}, \text{ with } i^2 = -1.$$

The matrix *d* has order 3 and the subgroup $Q := \langle a, b, c \rangle$ is a normal subgroup of *R* isomorphic to the quaternion group of order 8 (see [7, p. 245]). Thus *R* is a finite group of order 24. Regard the elements of \mathbb{C}^2 as column matrices with two lines and coefficients in \mathbb{C} . The group *R* acting in a natural way on \mathbb{C}^2 , choose a non-zero element $v_0 \in \mathbb{C}^2$ and denote by *V* the (additive) subgroup of \mathbb{C}^2 generated by the *R*-orbit of v_0 . In the semidirect product $V \rtimes R$, consider the normal subgroup $G := V \rtimes Q$. Note that $V \rtimes R$ is polycyclic (and so *G* too). The element (0, d) induces by conjugation an automorphism $\varphi: G \to G$. Thus φ has order 3 and we have $\varphi(v,m) = (d^{-1}v, d^{-1}md)$

for all $v \in V$ and $m \in Q$. It is easy to verify that $C_G(\varphi) = \{(0,I), (0,-I)\}$, where *I* denotes the identity matrix. Now consider the elements $x, y \in [G, \varphi]$ defined by

$$x = (v_0, I)^{-1} \varphi(v_0, I) = ((d^{-1} - I)v_0, I)$$

and

$$y = (0,a)^{-1} \varphi(0,a) = (0,a^{-1}d^{-1}ad) = (0,c^{-1}).$$

For any $k \in \mathbb{N}$, define [x, ky] by [x, 0y] = x and $[x, k+1y] = [x, ky]^{-1}y^{-1}[x, ky]x$. An easy induction leads then to the relation

$$[x, ky] = ((c-I)^k (d^{-1} - I)v_0, I)$$
 for all $k \in \mathbb{N}$.

This element is of infinite order since the matrix $(c-I)^k(d^{-1}-I)$ is nonsingular and so $[G, \varphi]$ is not finite-by-nilpotent.

Example 2 This example is given in [2]. For convenience, we summarize here its main properties and we refer to the paper cited above for more details. Let $\mathbb{Z}[x^{\pm 1}]$ be the ring of Laurent polynomials in one indeterminate with coefficients in the ring of integers \mathbb{Z} . Let *G* be the group of matrices of the form

$$m(i,f) = \begin{pmatrix} x^i \ f \\ 0 \ 1 \end{pmatrix} \ (i \in \mathbb{Z}, \ f \in \mathbb{Z}[x^{\pm 1}])$$

with the usual multiplication. This group is metabelian and generated by u = m(1,0)and v = m(0,1). Consider the subgroup *A* formed by the elements

$$m(0,f) = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \quad (f \in \mathbb{Z}[x^{\pm 1}]).$$

Each element of *G* can be uniquely written in the form $u^i a$, where $i \in \mathbb{Z}$ and $a \in A$, and the function $\varphi: G \to G$ defined by $\varphi(u^i a) = (uv)^i a^{-1}$ is an automorphism of order 2 such that $C_G(\varphi) = 1$. It is then easy to see that $[G, \varphi] = A$. Consequently, $[G, \varphi]$ is torsion-free infinite and $G/[G, \varphi]$ is infinite cyclic. Thus Theorem 2 cannot be extended to soluble groups. Likewise, in Theorem 4 (resp. in Theorem 5), we cannot conclude that $G/[G, \varphi]$ (resp. $[G, \varphi]$) is periodic.

Example 3 Let *q* be an odd prime and let ω be a primitive *q*-th root of unity. Denote by $\mathbb{Z}[\omega]$ the subring of \mathbb{C} generated by ω . Here *G* is defined as the group of matrices of the form

$$\begin{pmatrix} \boldsymbol{\omega}^i \ z \\ 0 \ 1 \end{pmatrix} \ (i \in \mathbb{Z}, \ z \in \mathbb{Z}[\boldsymbol{\omega}])$$

with the usual multiplication (notice that this group is a homomorphic image of the group defined in the preceding example). The group G is metabelian and polycyclic since it is an extension of the group

$$A = \left\{ \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \in G \mid z \in \mathbb{Z}[\boldsymbol{\omega}] \right\}$$

(isomorphic to \mathbb{Z}^{q-1}) by a cyclic group of order *q*. Now consider the automorphism $\varphi: G \to G$ of order 2 defined by

$$\varphi: \begin{pmatrix} \omega^i z \\ 0 1 \end{pmatrix} \mapsto \begin{pmatrix} \omega^i -z \\ 0 1 \end{pmatrix}.$$

Obviously, $C_G(\varphi)$ is cyclic of order q. Straightforward calculation shows that

$$[G, \varphi] = \left\{ \begin{pmatrix} 1 \ z \\ 0 \ 1 \end{pmatrix} \in G \mid z \in 2\mathbb{Z}[\omega] \right\}$$

and

$$G' = \left\{ \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \in G \mid z \in (1 - \omega) \mathbb{Z}[\omega] \right\},\$$

where $(1 - \omega)\mathbb{Z}[\omega]$ (resp. $2\mathbb{Z}[\omega]$) denotes the ideal of $\mathbb{Z}[\omega]$ generated by $1 - \omega$ (resp. by 2). It follows that the quotient $G/[G, \varphi]$ is not abelian. Furthermore, this quotient is an extension of an elementary abelian 2-group of order 2^{q-1} by a cyclic group of order q. Thus $G/[G, \varphi]$ is not in $\mathcal{T}_{\pi} \mathcal{A}$, where $\pi = \{q\}$. This shows that in the statement of Theorem 4, we cannot replace $\mathcal{T}_{\pi} \mathcal{E}_n \mathcal{A}$ by $\mathcal{T}_{\pi} \mathcal{A}$.

Acknowledgements The authors are grateful to E.I. Khukhro for useful comments on a first version of this paper. In particular, he suggested Theorem 6 and Example 1.

References

- Belyaev, V.V., Sesekin, N.F.: Periodic groups with an almost regular involutorial automorphism. (Russian) Studia Sci. Math. Hungary 17, 137–141 (1982)
- 2. Endimioni, G.: On almost regular automorphisms. Arch. Math. 94, 19-27 (2010)
- 3. Endimioni, G.: Polycyclic groups admitting an almost regular automorphism of prime order. J. Algebra **323**, 3142–3146 (2010)
- 4. Higman, G.: Groups and rings which have automorphisms without non-trivial fixed elements. J. London Math. Soc. **32**, 321–334 (1957)
- 5. Khukhro, E.I.: Nilpotency of solvable groups admitting a splitting automorphism of prime order. (Russian) Algebra i Logika **19**, no. 1, 118–129 (1980); English transl.: Algebra and Logic **19**, no. 1, 77–84 (1981)
- Lennox, J.C., Robinson, D.J.S.: The Theory of Infinite Soluble Groups. Oxford Science Publications (2004)
- 7. Robinson, D.J.S.: A course in the theory of groups. 2nd ed. Springer-Verlag, New-York (1996)
- 8. Shumyatsky, P.: Centralizers in Locally Finite Groups. Turk J. Math. 31 Suppl., 149–170 (2007)