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Abstract Let ¢ be an automorphism of a group G. In this paper, we study the influ-
ence of its centralizer Cg(¢) on its commutator subgroup [G, ¢] when G is polycyclic
or metabelian. For instance, when G is metabelian and ¢ fixed-point-free of prime or-
der p, we prove that [G, ¢] is nilpotent of class < p. Also, when G is polycyclic and
@ of order 2, we show that if C; (@) is finite, then so are G/[G, ¢] and [G, ¢]'.
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1 Introduction and main results

Let ¢ be an automorphism of a group G. Denote by C(¢) the centralizer of ¢ in G,
i.e., the subgroup of G consisting of all elements fixed by ¢. Let [G, 9] = (x 1o (x) |
x € G) be the commutator subgroup of ¢. Notice that [G, ¢] is normal in G since for
all x,y € G, if z= ¢~ !(y), we can write

Yy T le@ly = 0@ o) 0(2)
= ¢(z)z(x2) " p(xz).
It is well known that, under suitable hypotheses, the fact that Cg(¢) is ”small” in

some sense has consequences on G, and in particular on G/[G, 9| and [G, ¢]'. For
example, Belyaev and Sesekin proved that if G is locally finite and if ¢ is of order 2,
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the fact that Cg (@) is finite implies that G/[G, @] and [G, @]" are finite too [1]. Further
results on the influence of Cg(¢) on G, G/[G, @] and [G, @]’ can be found in a survey
by Shumyatsky [8].

In this paper, we are interested in the case where G is polycyclic or metabelian. In
particular, as a consequence of our first two results, we shall see that the result of
Belyaev and Sesekin cited above remains valid when G is polycyclic (see Theorem 1
and 2 below).

Theorem 1 Let ¢ be an automorphism of order 2 of a polycyclic group G. If C(@)
is finite, then so is [G, ¢]'.

In a first version of this paper, we conjectured that when G is polycyclic and ¢ of
prime order p, if Cg(¢) is finite, then [G, @] is finite-by-nilpotent. According to Theo-
rem 1, that is true when p = 2, and also for an arbitrary prime p when G is metabelian
(see Theorem 5 below). In fact, as Khukhro pointed out to the authors, this conjecture
is false (see Example 1 in Section 3). In our next result, we have no restriction on the
order of @.

Theorem 2 Let ¢ be an automorphism of a polycyclic group G. If Cg(@) is finite,
then so is G/[G, ¢].

In the particular case where ¢ is of finite order, the fact that G/[G, ¢] is finite is an
easy consequence of the following result.

Theorem 3 If ¢ is an automorphism of finite order of a polycyclic group G, we have
G:C(9)[G, @] <eo.

However, we cannot deduce Theorem 2 from Theorem 3 in the general case. When
¢ is of infinite order, it can easily happen that |G:Cg(9)[G, ]| is not finite. For
example, if @ is the automorphism of G = Z? defined by ¢(x,y) = (x+y,y), we have
Cs(9) =[G, 9] = {(x,y) € Z*|y = 0} and so the index of C;(9)[G, ¢] in G is infinite.
If we only assume that G is soluble, then Theorems 2 and 3 fail, even if G is a finitely
generated metabelian group (see Example 2 in Section 3). Our next results treat the
case where G is metabelian and C (@) periodic. At first we introduce some notations.
If 7 is a (possibly empty) set of primes, the class of m-groups will be denoted by 7
(recall that a m-group is a periodic group in which the order of each element is a
m-integer, namely an integer such that 7 contains the set of primes dividing it). In
particular, .77 is the class of trivial groups when 7 is empty and the class of periodic
groups when 7 is the set of all prime numbers. Furthermore, we shall write ./ for
the class of abelian groups and &, for the class of groups satisfying the law x* =1 (n
being a positive integer). If 27,..., 2} are classes of groups, we say that a group G
belongs to the class 27 - -- 2} if it has a series

l=Ho<dH; <d---dH 1 <H, =G
such that H;/H;_ belongs to Z; fori=1,...,k.

Theorem 4 Let G be a metabelian group and ¢ an automorphism of G of finite order
n. Suppose that Cg(Q) is a periodic group which belongs to Ty (where T is a set of
primes). Then G/|G, @] belongs to Ty&,4 .
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Under the hypothesis of this theorem, when G is finite and » is a prime power p’l, it
is easy to see that G/[G, ¢] actually belongs to Jz.<7 (observe that if p ¢ 7, then p
does not divide the order of G since p divides the cardinality of the set G\ Cg(9)).
However, in general, the quotient G/[G, @] need not be in Fz&, or in Tpo/ (see
Examples 2 and 3 respectively). Also, trivially, G/[G, ¢] need not be in &, for
instance, if G is a finite non-abelian metabelian group and if ¢ is the identity auto-
morphism, G/[G, @] ~ G does not belong to 8.7 = <.

Denote by 4, the class of all nilpotent groups of class at most ¢. The next result is
about the subgroup [G, ¢]:

Theorem 5 Let G be a metabelian group, and let ¢ be an automorphism of G of
prime order p. Let Tt be a set of primes, and suppose that Cc() is a periodic group
which belongs to . Then |G, Q| belongs to TN, (and even to T/ when p =2).
In particular, if @ is fixed-point-free, then [G, Q) is nilpotent of class at most p.

This theorem fails to hold when G is soluble of derived length 3. For instance, if G =
Sy is the permutation group on {a,b,c,d} and if @ is the inner automorphism o —
(ab c)_l o (abc), then Cs(@) is the subgroup generated by (a b ¢) and [G, ]
the alternating subgroup A4; but A4 is not an extension of a 3-group by a nilpotent
group. Also, in Theorem 5, we cannot conclude that [G, ¢] is nilpotent: if H is a finite
non-nilpotent metabelian group and if ¢ is the automorphism of G = H x H defined
by @(x,y) = (y,x), it is easy to see that [G, @] is not nilpotent. In the same way,
Example 2 (or 3) shows that [G, @] need not be periodic. These examples also show
that under the hypothesis of Theorem 5, unlike [G, @], the group G itself need not
be periodic-by-nilpotent. Notice that if ¢ is an automorphism of prime order p of a
polycyclic group G such that Cg (@) is periodic (and so finite), then G is an extension
of a nilpotent group (of class bounded by a function of p) by a finite group [3].

It follows from Theorem 5 that if ¢ is a fixed-point-free automorphism of order 2,
then [G, @] is abelian when G is metabelian. But in fact, this result is true for any
soluble group:

Theorem 6 If ¢ is a fixed-point-free automorphism of order 2 of a soluble group G,
then |G, @] is abelian.

2 Proofs

Notations used in this paper are standard. In particular, we shall denote by G") the
r-th term of the derived series: thus GU*1) is the derived subgroup of G"), with
G = G. We also write G = G!) and G” = G?. To prove our first theorem, we
need a preliminary result:

Lemma 1 Let ¢ be an automorphism of order 2 of a group G and let A be a normal
@-invariant abelian subgroup of G. [fANCg (@) = 1, then [[G, ¢],A] = 1.

Proof For all a € A, the element a@(a) belongs to A NCg(¢@) whence the relation
o(a) = a~'. Therefore, for all x € G, we may write

o(x 'ax) = @(x Na 'o(x)
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and also
o(x lax) =x"lax

since x~'ax belongs to A. It follows @(x)x 'a~'xp(x~!) = a~! and the lemma is

proved. O

Proof of Theorem 1 We proceed by induction on the derived length r of [G, ¢]. If r =0
or 1 (thatis, [G,@] =1 or [G, @]’ = 1), the result is obvious. Now suppose r > 2. The
subgroup [G, q)](”l) is then abelian; denote by T its torsion subgroup and by ¢ the
automorphism induced by ¢ on G/T'. Since T is finite, the subgroup Cg /T (@) is finite
[2, Lemma 2.4(i)] and so the intersection of Cg/7(®) and [G, @]V /T is trivial for
(G, 0]V /T is torsion-free. Consequently, by Lemma 1, [G, ¢]"~") /T is included
in the centre of [G, @] /T and it follows that [G, ¢]"~2) /T is nilpotent (of class at most
2). Applying Corollary 2.1 of [2], we may then deduce that [G, ¢]"~2) /T is finite-by-
abelian and so that [G, ]~V /T is finite. Since [G, ]"~) /T is torsion-free, we have
then [G, p]"~1) =T, thus [G/T,®]"~") = 1. By induction, it follows that [G/T, @]’ is
finite. But [G/T, @] =[G, 9]’ /T, hence [G, @]’ is finite and the proof is complete. O

Proof of Theorem 2 We proceed again by induction on the derived length r of [G, @].
If r = 0, we have [G, @] = 1 and so Cg(9) = G. Thus G is finite and the result follows.
If r > 0, put A = [G, ]! and consider the automorphism @ induced by ¢ on G/A.
Since A is finitely generated and abelian, the subgroup Cg /4 () is finite [2, Lemma
2.4(ii)]. By induction, we deduce that the index of [G/A, @] in G/A is finite. But
(G/A,9] = [G,0]/A and |G/A: [G. 9] /A| = |G:[G, ¢ hence |G: G, ]| s finite, as
required. O

For convenience, we recall the following well-known result:

Lemma 2 Let G be an infinite polycyclic group. Then G contains a characteristic
abelian subgroup A which is torsion-free infinite.

Proof The group G contains a normal torsion-free subgroup K of finite index [6,
1.3.4] and K can be chosen characteristic [6, 1.3.7]. We can then take A to be the last
non-trivial term of the derived series of K. O

Lemma 3 Let ¢ be an automorphism of a group G such that the subgroup |G, @] is
finite. Then the index of C;(@) in G is finite.

Proof Denote by m the order of [G, @] and consider m + 1 elements xj,..., X, in
G. Therefore, among the elements

x;](p(x1>7'"axy;llq)(xm+l)a

at least two co1n01de If x;° (p( i) =x; Yo(xj) (i,j € {1,...,m+1},i# j), it follows

Pxix; D = xix; 7 !and so XX lec ( ). Hence we deduce that |G:Cg(@)| < m, and
so the lemma is proved. ad
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Lemmad4 Let ¢ be an automorphism of an abelian group G. If ¢ is of finite or-
der n, for any x € G, the element X" can be written in the form x* = vw™'(w),
with v € Cg(@) and w € G. In particular, if G is finitely generated, then the quotient

G/Co(9)[G, 9] is finite.

Proof Consider an element x € G and put v = x¢(x) - -- "~ (x). First notice that v
clearly belongs to C;(¢). Now observe that

©(x) = x mod [G, ¢]

and so more generally
0" (x) = xmodd|[G, @]

for any positive integer k. That implies
v=x" mod[G, ¢],

thus the element u = v~'x" belongs to [G, @]. It follows that x" = vu, with v € Cg(9)
and u € [G, @]. Since G is abelian, each element of [G, @] is of the form w='¢(w)
(w € G), hence the proof is complete. O

Lemma S Let ¢ be an automorphism of order n of a group G. Let A be a torsion-free
normal @-invariant abelian subgroup of G. Put B= A" and consider an element x € G
such that @(x) = x modB (in other words, xB is a fixed point of the automorphism
induced by @ in G/B). Then x belongs to Cs(@)A.

Proof We have @(x) = xy for some y € B. Applying Lemma 4 to the restriction ¢4
of ¢ to A, we conclude that y can be written in the form y = vw_l(p(w), where
v € Ca(@a), w € A, and so @(x) = xvw'@(w). Induction now shows that ¢*(x) =
xvkw= 1@k (w) for all positive integers k. For k = n, we obtain v = 1 whence v = 1
since A is torsion-free. Consequently, we have @(x) = xw™'@(w) and so @(xw™!) =
xw~ !, In other words, the element u = xw ™! belongs to C(¢), thus x = uw € Cs(@)A.

O

Proof of Theorem 3 We proceed by induction on the Hirsch length A of G. The
result is trivial when A = 0, so suppose that A > 0. By Lemma 3, if [G, ¢] is finite,
then the index of Cg(@) in G is finite and so the result follows. Therefore, we can
assume that [G, @] is infinite. By Lemma 2, [G, @] contains a characteristic abelian
subgroup A which is torsion-free infinite (notice that A is @-invariant). Put B = A"
and denote by @ the automorphism induced by ¢ on G/B. It follows from Lemma 5
that Cg/p(@) < ACG(¢@)/B. Since the Hirsch length of G/B is < 4, we deduce from
the inductive hypothesis that the index of Cg/3(¢)[G/B,®] in G/B is finite. But we
have clearly

Co/5(9)[G/B, 9] < AC6(9)[G, 9]/B = Cs(9)[G, ¢]/B,
thus |G/B:Cg(9)[G, ¢]/B| < . Consequently,

G:Ci(9)[G, 9]| < oo, as required.
O

We state here a consequence of Theorem 3:
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Proposition 1 Let 2 be a class of groups which is closed with respect to formation
of subgroups and homomorphic images of its members. Let ¢ be an automorphism
of finite order of a polycyclic group G and suppose that Ci(@) belongs to X . Then
G/[G, @] belongs to " F, where F is the class of finite groups.

Proof First observe that the group Cg(@)[G, 9]/[G, @] belongs to £ since it is iso-
morphic to Cg(@)/Cs (@) N[G, ¢]. Now consider the core

N=)x"'Cc(9)[G,olx

xeG

of Cs(9)[G, 9] in G. Since |G:Cg(9)[G, ]| < o by Theorem 3, Cs(@)[G, @] has
only a finite number of conjugates and so G/N is finite. Furthermore N/[G, @] is
a subgroup of Cs(9)[G,9]/[G, @], hence N/[G, @] belongs to .2 and the proof is
complete. O

Proof of Theorem 4 Clearly it suffices to show that G’ /[G, 9] NG’ belongs to T &,. In
other words, we must prove that for all x € G’, x" is a w-element modulo [G, ] NG’
For that, consider the restriction ¢': G’ — G’ of ¢ to G’. By Lemma 4, for all x € G,
we have X" = vw~l@(w), with v € C(¢') and w € G'. Since w™!¢(w) belongs to
[G, 9] NG and v is a m-element (it belongs to C(¢)), the proof is complete. O

Let n be a positive integer. Recall that an automorphism ¢ of a group G is said to
be splitting of order n if ¢" is the identity automorphism and if x¢(x)--- "~ (x) = 1
for all x € G. To prove Theorem 5, we shall use the following result due to Khukhro:

Proposition 2 ([5]) If a soluble group of derived length r admits a splitting automor-
phism of prime order p, then it is nilpotent, and its nilpotency class is bounded by a
function g = g(p,r) depending only on p and r.

A splitting automorphism of order 2 inverts every element. Therefore, in the proposi-
tion above, we can take g(2,7) = 1 and so the bound is independent of r when p = 2.
For an arbitrary prime p, we can take g(p,2) = p (see [3, p. 78]).

Lemma 6 Let ¢ be an automorphism of finite order n of a metabelian group G such
that Cg(@) is a m-group. Put H = [Iyen Hy where Hy is the g-primary component of
[G,9]NG'. Then:

(i) Forallt € [G,@]NG', the product t¢(t)---¢"~(t) belongs to H;
(ii) @ induces a splitting automorphism of order n on [G, @] /H.

Proof (i) Clearly, the automorphism ¢ fixes t@(t)---@"~!(¢). It follows that this
product is a w-element and so belongs to H.

(ii) Consider an element x € [G, @] and put y = x(x) - - - 9"~ (x). We must prove that
y belongs to H. For that, first notice that x can be written in the form x = wl o(w)t,
withw € G and 7 € G'. Observe that 7 € [G, @] N G'. Then we have:

=TT v ok ek o)
k=1
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= w H T et Ok ) hw

k=1

—— fll<pk‘<r>[<pk‘<r>,<pk<wl>]}w

— k1"11<p“<t><p“<[a<p<wl>1>}w-
Since the factors g%~ (1) and @ ([r, p(w~")]) are in G, we obtain
B kﬁl(pk—m}{ lﬁw’”([w(w‘l)})}w

By the first part of our lemma, [Tf_, ¢*~'(¢) and [T{_, @*~' ([, (w™!)]) belong to
H and so does y, as required. g

Proof of Theorem 5 The proof is now immediate: with the notation of Lemma 6 and
Proposition 2, and as a consequence of these results, we may assert that [G, ¢|/H is
nilpotent of class at most g(p,2) = p (and of class at most 1 when p = 2). Since H is
a m-group, we obtain the desired conclusion. O

Proof of Theorem 6 Let A <G be a maximal abelian normal ¢-invariant subgroup
contained in [G, ¢]. In order to obtain a contradiction, suppose that A and [G, @] are
distinct. Let B/A be the smallest non-trivial term of the derived series of [G, @] /A.
Thus A is a proper subgroup of B. By Lemma 1, A is contained in the centre of [G, ¢],
hence B is nilpotent of class at most 2. But a nilpotent group admitting a fixed-point-
free automorphism of order 2 is abelian [4, Theorem 3]. It follows that B is abelian,
a contradiction by maximality of A. g

3 Examples

Example 1 Let R denote the subgroup of GL(2,C) generated by the matrices

_(i0Y ,_ (01 (0
“=\o-i)?"\z10) " \io)
. 1 —i o,
d=2 (l—l)(1 l.),Wlthlz—l.

The matrix d has order 3 and the subgroup Q := (a,b,c) is a normal subgroup of R
isomorphic to the quaternion group of order 8 (see [7, p. 245]). Thus R is a finite group
of order 24. Regard the elements of C? as column matrices with two lines and coef-
ficients in C. The group R acting in a natural way on C?, choose a non-zero element
vo € C? and denote by V the (additive) subgroup of C? generated by the R-orbit of
vo. In the semidirect product V x R, consider the normal subgroup G :=V x Q. Note
that V x R is polycyclic (and so G too). The element (0,d) induces by conjugation an
automorphism @: G — G. Thus ¢ has order 3 and we have @ (v,m) = (d~'v,d~'md)
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forall veV and m € Q. It is easy to verify that Cg(¢) = {(0,1), (0,—1I)}, where I
denotes the identity matrix. Now consider the elements x,y € [G, @] defined by

x= (vo,1) "' @(vo,1) = ((d~" = D)o, 1)

and
y=(0,a)"'¢(0,a) = (0,a'd 'ad) = (0,c").

For any k € N, define [x, ] by [x,0y] = x and [x, x1y] = [x,x9] "'y~ [x,y]x. An easy
induction leads then to the relation

[x,10] = ((c =D)*(d~" = I)vy,I) forallk € N.

This element is of infinite order since the matrix (¢ —I)¥(d~' —1I) is nonsingular and
so [G, @] is not finite-by-nilpotent.

Example 2 This example is given in [2]. For convenience, we summarize here its
main properties and we refer to the paper cited above for more details. Let Z[x*!] be
the ring of Laurent polynomials in one indeterminate with coefficients in the ring of
integers Z. Let G be the group of matrices of the form

miis)= (1) ez rez)

with the usual multiplication. This group is metabelian and generated by u = m(1,0)
and v =m(0, 1). Consider the subgroup A formed by the elements

mo.0)=(o7) ez,

Each element of G can be uniquely written in the form wa, where i € Z and a € A,
and the function ¢:G — G defined by ¢(u'a) = (uv)a~' is an automorphism of
order 2 such that Cs(¢@) = 1. It is then easy to see that [G, 9] = A. Consequently,
[G, 9] is torsion-free infinite and G/[G, ¢] is infinite cyclic. Thus Theorem 2 cannot
be extended to soluble groups. Likewise, in Theorem 4 (resp. in Theorem 5), we
cannot conclude that G/[G, ¢] (resp. [G, ¢]) is periodic.

Example 3 Let ¢ be an odd prime and let @ be a primitive g-th root of unity. Denote
by Z[w] the subring of C generated by ®. Here G is defined as the group of matrices
of the form

(a(;i i) (i€Z, zeZlw))

with the usual multiplication (notice that this group is a homomorphic image of the
group defined in the preceding example). The group G is metabelian and polycyclic
since it is an extension of the group

A:{(éi)ereZ[w]}
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(isomorphic to Z4~!) by a cyclic group of order g. Now consider the automorphism
¢:G — G of order 2 defined by

(o z = o —z
{01 01 )

Obviously, Cg (@) is cyclic of order g. Straightforward calculation shows that

[Gv(P]:{<(l)i) 6G|z€2Z[a)]}
G’—{(éf) €G|z€(1—w)Z[co]},

where (1 — ®)Z[w] (resp. 2Z[w]) denotes the ideal of Z|w] generated by 1 — @ (resp.
by 2). It follows that the quotient G/[G, @] is not abelian. Furthermore, this quotient
is an extension of an elementary abelian 2-group of order 2¢~! by a cyclic group
of order ¢g. Thus G/[G, @] is not in T/, where T = {q}. This shows that in the
statement of Theorem 4, we cannot replace .7, &, by T4 .

and
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