
ON THE EXPONENT SEMIGROUPS OF FINITE p-GROUPS

PRIMOŽ MORAVEC

Abstract. In this note we describe the exponent semigroups of finite p-groups of max-
imal class and finite p-groups of class ≤ 5. Consequently, sharp bounds for the exponent

of the Schur multiplier of a finite p-group of class ≤ 4 are obtained. Our results extend
some well-known results of Jones (1974).

1. Introduction

A group G is said to be n-abelian if the map x 7→ xn is an endomorphism of G. The study of
n-abelian groups was initiated by Levi in [14], and has been a topic of several other papers,
see, e.g., [1, 4, 8, 12, 15]. Given a group G, define

E(G) = {n ∈ Z : (xy)n = xnyn for all x, y ∈ G}.

It is clear that E(G) is a multiplicative subsemigroup of Z containing 0 and 1. Following
Kappe [12], we say that E(G) is the exponent semigroup of G. One of the main results
of [12] is a number-theoretic characterization of E(G) for an arbitrary group G. We have
that E(G) is either {0, 1}, Z or a so-called Levi system [12]. When G is a finite p-group, a
more refined description of E(G) can be obtained. It is proved in [16] that for every finite
p-group G there exists a nonnegative integer r such that E(G) = pe+rZ∪ (pe+rZ+1), where
expG/Z(G) = pe. Following [16], we say that r is the exponential rank of G, and denote
it by exprank(G). The exponential rank of a finite p-group G, together with expG/Z(G),
completely determines the endomorphisms of G of the form x 7→ xn. Moreover, it has been
shown in [16] that exprank(G) can be bounded in terms of expG/Z(G). In [16], some classes
of finite p-groups having small exponential rank have been exhibited. For instance, every
finite abelian p-group clearly has exponential rank zero, and the same is true for regular
p-groups [16]. It has also been proved in [16] that powerful p-groups have exponential rank
at most 1; when p is odd, then the exponential rank is always zero, and when p = 2, the
exponential rank is 1, if the group in question is nonabelian.

Roughly speaking, the exponential rank of a finite p-group G can be calculated once the
power-commutator structure of G has been determined. A prominent class of groups for
which this structure is well understood is the class of finite p-groups of maximal class. It
can be seen that if G is a finite p-group of maximal class, then its exponential rank is at
most one. This bound is best possible, as Example 3 shows. We characterize finite p-groups
of maximal class with zero exponential rank. More precisely, we prove that a finite p-group
G of maximal class has zero exponential rank if and only if expG = expG/Z(G) or G is
regular. At the other end of the scale, finite p-groups of small nilpotency class also have
small exponential rank. If G is nilpotent of class ≤ 4, then we prove that exprank(G) ≤ 1.
Furthermore, if the nilpotency class of G is at most 3, then there is a nice criterion for G to
have zero exponential rank. For instance, if G is nilpotent of class 2, then exprank(G) = 1
if p = 2, and exprank(G) = 0 for odd p. We also deal with groups of class 5 and show
that their exponential rank is at most 1 if p is odd, whereas exprank(G) ≤ 2 for every
finite 2-group of class 5. These bounds are shown to be best possible. Note that similar
calculations could be done for groups of class ≥ 6, but they would probably become rather
lengthy.
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As observed in [16], the exponent of the Schur multiplier M(G) of a finite p-group G
is closely related to the exponential rank of its covering group H. For instance, it follows
from [16] that if H is pe-abelian, then expM(G) divides pe. Thus the exponential rank of
H, together with the exponent of H/Z(H), provides an estimate for the exponent of M(G).
It was a long-standing problem as to whether the exponent of M(G) divides the exponent
of G. This question was settled by Bayes et al. [2] who constructed a group of order 221

which has exponent 4 and multiplier of exponent 8. This is in a sense best possible, since
the exponent of M(G) divides 8 for any group G of exponent 4 [16]. On the other hand,
Jones [11] proved that if G is a finite p-group of class ≤ 2, then expM(G) divides expG,
and if G is of class ≤ 3, then expM(G) divides expG when p 6= 3. These results were
extended by Kayvanfar and Sanati [13] who proved that if G is a finite p-group of class
≤ 6 and exponent pe, then expM(G) divides pe for appropriately chosen p and e. What
we show in this note is that most of those restrictions on p and e are redundant if G is
nilpotent of class ≤ 4. First we improve the above mentioned result of Jones by proving
that if G is a finite p-group of class 3, then expM(G) divides expG for any prime p. If
G is nilpotent of class 4, then expM(G) divides expG, if p is odd. For 2-groups of class
4 this is no longer true. We construct a group of order 268, exponent 4 and class 4, with
multiplier of exponent 8. Our example is obtained with the help of GAP [7]. Using the
notion of exponential rank, we also prove that, given the nilpotency class, the exponent of
the Schur multiplier of a p-group G divides expG for almost all primes p.

2. Finite p-groups of maximal class

For a finite p-group G, Ωi(G) and 0i(G) denote, respectively, the subgroups generated by
all elements of order at most pi and by all pith powers in G.

Let G be a finite p-group of order pn. It is well known that the nilpotency class of G is
at most n− 1. Thus G is said to be of maximal class, if n > 3 and the nilpotency class of
G is n− 1. We refer to Blackburn [3] or Huppert [9] for a comprehensive account on finite
p-groups of maximal class.

The purpose of this section is to determine the exponential rank of finite p-groups of
maximal class. We note here that some of our arguments actually work in a more general
setting. For 3 < m ≤ n−1 denote by CF(m,n, p) the set of all groups of order pn and class
m− 1 in which |γi(G) : γi+1(G)| = p for i = 2, 3, . . . ,m− 1, see [3]. Clearly every group of
order pn and class n− 1, where n > 3, belongs to CF(n, n, p).

Proposition 1. Let G ∈ CF(m,n, p). Then exprank(G) ≤ 1.

Proof. Let expG/Z(G) = pf and let x and y be arbitrary elements of G. Then we can
write (xy)p

f

= xp
f

yp
f

c for some c ∈ γ2(G) ∩ Z(G). We have that γm−1(G) ≤ Z(G) and
γm−2(G) 6≤ Z(G). If Z(G)∩γ2(G) > γm−1(G), then γm−2(G) is contained in Z(G)∩γ2(G),
since G ∈ CF(m,n, p). This contradiction shows that γ2(G) ∩ Z(G) is cyclic of order p,
hence (xy)p

f+1
= xp

f+1
yp

f+1
. This proves our claim. �

Let m, n and p be as above. Following [3], let ECF(m,n, p) be the set of all groups
of CF(m,n, p) in which G/γ2(G) is elementary abelian. Again it is easy to see that
ECF(n, n, p) contains all groups of order pn and maximal class.

Proposition 2. Let G ∈ ECF(m,n, 2). Then exprank(G) = 1.

Proof. We use a description of groups in ECF(m,n, 2) obtained by James [10]. Define

P1 = CG(γ2(G)/γ4(G)).

Then there exist s ∈ G\P1, s1 ∈ P1\Zm−2(G) and a subset T = {t1, . . . , tn−m} of CG(s)
such that G = 〈s〉P1, P1 = 〈s1〉Zm−2(G), Zm−2(G) = 〈T 〉γ2(G), and we have the following
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relations:

si = [si−1, s] for i = 2, 3, . . . ,m− 1,

s2 = sαm−1,

s2
1s2 = sβm−1,

s2
i si+1 = 1 for i = 2, 3, . . . ,m− 2,

t2j = s
γj

m−1 for j = 1, 2, . . . , n−m,
[si, sj ] = 1 for i ≥ 2, j ≥ 1,

[T, γ2(G)] = 1,

[T, s] = 1,

[s1, tj ] = s
δj

m−1 for j = 1, 2, . . . , n−m,

where α, β, γj , δj ∈ {0, 1}, and α and β are not both 1. There exists an integer l such
that Z(G) = 〈tl+1, . . . , tn−m, sm−1〉. We obtain from the above relations that |s1| = 2m−1,
and it also follows that expG/Z(G) = 2m−2. Since ss1 /∈ P1, we have that (ss1)4 = 1,
and similarly also s4 = 1. As m > 3, we obtain (ss1)2m−2

= 1, whereas s2m−2
s2m−2

1 =
s2m−2

1 6= 1. This shows that exprank(G) > 0. By Proposition 1 we therefore have that
exprank(G) = 1. �

We note here that, for every prime p, there exists a p-group G of maximal class with
exprank(G) = 1, as the following example shows.

Example 3. Let p be a prime and let G = Cp o Cp be the wreath product of two cyclic
groups of order p. Then G is a group of order pp+1, exponent p2 and class p. We have that
expG/Z(G) = p. We can write G = H〈y〉, where H = 〈x1, x2, . . . , xp〉 is an elementary
abelian p-group, yp = 1 and xyi = xi+1 (i mod p). A short calculation gives

(x1y
−1)p = x1+y+···+yp−1

1 y−p = x1x2 · · ·xp,

whereas xp1y
−p = 1. This shows that exprank(G) = 1.

The main theorem of this section describes finite p-groups of maximal class with zero
exponential rank. Before formulating the result, recall that a p-group G is said to be regular
[9, p. 321], if for all x, y ∈ G we have that (xy)p = xpypω for some ω ∈ γ2(〈x, y〉)p. Note
that, given a prime p, there are only finitely many p-groups of maximal class that are
regular, and their order is at most pp+1 by [3, Lemma 3.3] and [9, Hilfssatz III.14.15].

Theorem 4. Let G be a finite p-group of maximal class and suppose that its exponential
rank is zero. Then p is odd and

(a) expG = expG/Z(G) or
(b) G is regular.

Conversely, every p-group satisfying (a) or (b) has zero exponential rank.

Proof. By Proposition 2, we may assume that p is odd. Let |G| = pn. Note that if n ≤ p,
then G is regular, hence exprank(G) = 0 by [16]. Also, if expG = expG/Z(G), then clearly
exprank(G) = 0. Thus we may assume that n > p and expG > expG/Z(G).

Consider first the case when n = p+ 1. By [3, Theorem 3.2] we conclude that γ2(G) and
G/γn−1(G) have exponent p, whence expG = p2 and expG/Z(G) = p. In this case the
exponential rank of G is zero if and only if G is p-abelian, which in turn is equivalent to
the fact that G is regular.

In what follows, G is a p-group of maximal class, |G| = pn and n > p + 1. By a
remark in the beginning of the section G is not regular. Suppose also that exprank(G) = 0.
First note that this yields expG > p2. For, if expG = p2 and expG/Z(G) = p, then
exprank(G) = 0 would imply that G is regular, which is not the case. Define P0 = G,
P1 = CG(γ2(G)/γ4(G)), and Pi = γi(G) for i ≥ 2. Then we have a chief series

G = P0 > P1 > P2 > · · · > Pn−1 > Pn = 1
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with factors of order p [3]. Furthermore, we have that Ω1(Pi) = Pn−p+1 and 01(Pi) =
Pi+p−1 for every i with 1 ≤ i ≤ n − p + 1. As P1 is regular by [3, p. 69, Corollary 1], we
conclude from here that

0k(Pi) =
{
Pi+k(p−1) : i+ k(p− 1) ≤ n,

1 : otherwise,

for every i ≥ 1. It follows that expPi = pei , where

ei =
⌊
n− p+ 1− i

p− 1

⌋
+

+ 1

for every i ≥ 1; here we use the notation α+ = (α+ |α|)/2 for any real number α. We claim
that expG = expP1. First note that we can assume that e1 ≥ 2. Choose any x ∈ G\P1.
Then G = 〈x〉P1. For any g ∈ G we have g = xty for some y ∈ P1 and t ∈ Z. If t is
divisible by p, then xt ∈ Pn−1 by [3], whence we may assume without loss of generality
that gcd(t, p) = 1, that is, xt /∈ P1. If y ∈ P2, then it follows from [3, p. 64, Corollary
2] that xty is conjugate to xt, and (xty)p = xtp. We conclude that gp

2
= 1, hence also

gp
e1 = 1. Suppose now that y /∈ P2. Then it follows from [3, Lemma 3.3] that (xty)p ≡ xtp

mod Pp+1. Hence we can write gp = xtpz for some z ∈ Pp+1. As xtp ∈ Z(G), we obtain
gp

e1 = zp
e1−1

. On the other hand, consider ep+1. From the above argument it follows that
if n ≤ 2p, then ep+1 = 1. For n > 2p we obtain

ep+1 =
⌊
n− 2p
p− 1

⌋
+ 1 =

⌊
n− p− 1
p− 1

⌋
= e2 − 1 ≤ e1 − 1,

hence in both cases gp
e1 = 1. This proves our claim.

From here on we may therefore assume that e1 > 2. As G is pe1−1-abelian, it follows
that for any x, y ∈ G we get [x, y]p

e1−1
= [xp

e1−1
, y] = 1, since xp

e1−1 ∈ Z(G). We conclude
from here that expP2 divides pe1−1. Thus we obtain that e2 = e1 − 1. Choose x ∈ G\P1

and y ∈ P1\P2 with |y| = pe1 . As above, we have that (xy)p = xpz for some z ∈ Pp+1. As
ep+1 ≤ e1 − 1, we obtain (xy)p

e1−1
= 1. On the other hand, xp

e1−1
yp

e1−1
= yp

e1−1 6= 1,
a contradiction. This shows that if n > p + 1, then exprank(G) = 1, hence Theorem 4 is
proved. �

Let G be a finite p-group of exponent pe. Then we clearly have that peZ ∪ (peZ + 1) ⊆
E(G). Theorem 4 thus shows that the structure of exponent semigroups of finite p-groups
of maximal class is quite restricted.

Corollary 5. Let G be a p-group of maximal class and exponent pe. Then E(G) 6= peZ ∪
(peZ + 1) if and only if G is regular and expG > expG/Z(G).

Proof. Suppose that E(G) 6= peZ∪ (peZ + 1). Then there exists f < e such that pf ∈ E(G),
thus expG/Z(G) < expG. As G is of maximal class, we have that expG/Z(G) = pe−1. It
follows that G is regular by Theorem 4. The converse is obvious. �

3. Finite p-groups of small nilpotency class

In this section we estimate the exponential rank of finite p-groups of class ≤ 5. We first
prove the following proposition.

Proposition 6. Let G be a finite p-group of class at most 4. Then exprank(G) ≤ 1.

Proof. If p > 3, then G is regular [9, Satz III.10.2], hence exprank(G) = 0 by [16]. Thus we
only need to consider 2-groups and 3-groups. Suppose first that p = 2 and expG/Z(G) = 2f .
Let x, y ∈ G. As 〈x, y〉 is metabelian, expansion of the identity [x, y2f

] = 1 with the help
of [15, Lemma 2.1] yields

(3.1) [x, y]2
f

[x, y, y](
2f

2 )[x, y, y, y](
2f

3 ) = 1.

Replacing x by [x, y] in (3.1), we get that [x, y, y]2
f

[x, y, y, y](
2f

2 ) = 1. As G is of class ≤ 4,
we also have 1 = [[x, y]2

f

, y] = [x, y, y]2
f

, hence

(3.2) [x, y, y, y]2
f−1

= 1.
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Thus (3.1) can be rewritten as

(3.3) [x, y]2
f

[x, y, y](
2f

2 ) = 1.

Replacing y by xy in the equation (3.3) and using (3.3), we obtain

(3.4) [x, y, x](
2f

2 )[x, y, y, x](
2f

2 ) = 1.

Further replacement of x by yx in (3.4) gives [x, y, y](
2f

2 )[x, y, y, x](
2f

2 ) = 1, hence [x, y, y](
2f

2 ) =

[x, y, x](
2f

2 ). Commuting this equation with y and using (3.2), we get [x, y, x, y]2
f−1

= 1.
It follows from here that G satisfies the law [x, y, y, x]2

f−1
= 1. Thus the equation (3.4)

implies [x, y, y]2
f−1

= [x, y, x]2
f−1

= 1, and hence also [x, y]2
f

= 1 by (3.1). We now have

(xy−1)2f

= x2f

[x, y](
2f

2 )[x, y, y](
2f

3 )[x, y, x](
2f

3 )[x, y, x, x](
2f

4 )

· [x, y, y, x](
2f

4 )[x, y, y, y](
2f

4 )y−2f
(3.5)

by [15, Lemma 2.1]. It follows from the above equations that (xy−1)2f+1
= x2f+1

y−2f+1
for

all x, y ∈ G, hence exprank(G) ≤ 1.
Consider now the case p = 3. Let expG/Z(G) = 3f and x, y ∈ G. Similarly as above we

have that [x, y, y]3
f

= 1, and thus expansion of the identity [x, y3f

] = 1 gives

(3.6) [x, y]3
f

[x, y, y, y](
3f

3 ) = 1.

Replacing y by xy in (3.6) and using (3.6), we get [x, y, y, x]2(
3f

3 )[x, y, x, x](
3f

3 ) = 1, hence

[x, y, y, x](
3f

3 ) = [x, y, x, x](
3f

3 ). Replacing y by xy in this equation, we conclude that
[x, y, y, x]3

f−1
= [x, y, x, x]3

f−1
= 1. From (3.6) it follows that [x, y]3

f

= 1, and the identity

(xy−1)3f

= x3f

[x, y](
3f

2 )[x, y, y](
3f

3 )[x, y, x](
3f

3 )[x, y, x, x](
3f

4 )

· [x, y, y, x](
3f

4 )[x, y, y, y](
3f

4 )y−3f
(3.7)

thus implies that G is 3f+1-abelian, as required. �

When the nilpotency class of the group is 2, even more can be said. We can precisely
determine which p-groups of class 2 have exponential rank zero.

Corollary 7. Let G be a finite p-group of class 2. If p is odd, then exprank(G) = 0. If
p = 2, then exprank(G) = 1.

Proof. If p is odd, then G is regular, hence exprank(G) = 0 by [16]. Assume that G is
a 2-group of class 2. Because of the class restriction, the identity [x, y]n = [xn, y] holds
in G for all integers n and x, y ∈ G. In particular, exp γ2(G) = expG/Z(G) = 2f . If

exprank(G) = 0, then the identity x2f

y2f

= (xy)2f

= x2f

y2f

[y, x](
2f

2 ) implies that exp γ2(G)
divides 2f−1, a contradiction. �

Given a group G, denote by E2(G) the subgroup of G generated by all commutators of
the form [x, y, y], where x, y ∈ G.

Corollary 8. Let G be a finite p-group of class 3. Then exprank(G) = 0 if and only if one
of the following holds.

(a) p > 3.
(b) p = 2 and exp γ2(G) divides (expG/Z(G))/2.
(c) p = 3 and expE2(G) divides (expG/Z(G))/3.

Proof. This follows from the proof of Proposition 6, in particular from (3.5) and (3.7), and
from [16]. �

For p ∈ {2, 3} there exist p-groups of class 3 with exponential rank one. For p = 2, the
dihedral group D2·8 of order 16 is an appropriate example. When p = 3, the group C3 oC3

has specified properties, see Example 3.
Next we deal with groups of class 5. To this end, the following technical lemma is needed.
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Lemma 9. Let G be a group of nilpotency class 5. Then the following identities hold in G.
(a) (xy)n = xnyncm1

1 · · · cm12
12 , where c1 = [y, x], c2 = [y, x, x], c3 = [y, x, y], c4 =

[y, x, x, x], c5 = [y, x, x, y], c6 = [y, x, y, y], c7 = [y, x, x, x, x], c8 = [y, x, x, x, y],
c9 = [y, x, x, y, x], c10 = [y, x, x, y, y], c11 = [y, x, y, y, x], c12 = [y, x, y, y, y], and
each mi is a Z-linear combination of

(
n
1

)
, . . . ,

(
n
wi

)
, where wi is the weight of ci.

(b) [xn, y] = [x, y]n[x, y, x](
n
2)[x, y, x, x](

n
3)[x, y, x, x, x](

n
4)[x, y, x, [x, y]]α(n), where α(n) =

n(n− 1)(2n− 1)/6.

Proof. Part (a) can be proved using Hall’s Collection Process, see for instance [9, p. 315–
321]. The identity (b) is proved by induction on n, the case n = 1 being obvious. Suppose
that the identity holds true for some positive integer n. Then

[xn+1, y] = [x, y][x, y, xn][xn, y]

= [x, y][xn, y][x, y, xn][x, y, x, [x, y]]n
2

= [x, y]n+1[x, y, x](
n
2)+n[x, y, x, x](

n
3)+(n

2)[x, y, x, x, x](
n
4)+(n

3)[x, y, x, [x, y]]α(n)+n2
,

and our conclusion easily follows. �

Proposition 10. Let G be a finite p-group of class 5.
(a) If p > 5, then exprank(G) = 0.
(b) If p ∈ {3, 5}, then exprank(G) ≤ 1.
(c) If p = 2, then exprank(G) ≤ 2.

Proof. If p > 5, then G is regular and so it has zero exponential rank by [16]. Thus it
suffices to prove the result for p ∈ {2, 3, 5}.

First consider the case p = 2. Let expG/Z(G) = 2f and x, y, z ∈ G. By Lemma

9 we have 1 = [x2f

, y] = [x, y]2
f

[x, y, x](
2f

2 )[x, y, x, x](
2f

3 )[x, y, x, x, x](
2f

4 )[x, y, x, [x, y]]α(2f ).

Commuting this identity with z, we get [x, y, x, z]2
f−1

= 1, hence [x, y]2
f+1

[x, y, x]2(
2f

2 ) = 1.
Replacing x by yx in this equation, we obtain ([x, y, y][x, y, y, x])2f

= 1. As [x, y, y, x]2
f

=
[y, x, y, x]−2f

= 1, we immediately get [x, y, x]2
f

= 1, hence also [x, y]2
f+1

= 1. Using
Lemma 9, we get that (xy)2f+2

= x2f+2
y2f+2

, hence exprank(G) ≤ 2.
Now let G be a 3-group and expG/Z(G) = 3f . Expanding [[x, z]3

f

, y] = 1 with the help

of Lemma 9, we obtain [x, z, y]3
f

[x, z, y, [x, z]](
3f

2 ) = 1. As 1 = [[x, y, z]3
f

, w] = [x, y, z, w]3
f

,
we obtain [x, z, y]3

f

= 1. Thus the identity [x3f

, y] = 1 can be written as

(3.8) [x, y]3
f

[x, y, x, x](
3f

3 )[x, y, x, [x, y]]α(3f ) = 1.

Commuting (3.8) with z, we get [x, y, x, x, z]3
f−1

= 1. Expanding [y, yx, yx, yx, y]3
f−1

= 1,
we obtain ([y, x, y, x, y][y, x, x, y, y])3f−1

= 1. We expand the commutator [yx, xy] in two
ways to obtain

[yx, xy] = [yx, y][yx, x][yx, x, y] = [y, x, x][y, x, y][y, x, x, y]

and
[yx, xy] = [y, xy][y, xy, x][x, xy] = [y, x][y, x, y][y, x, x][y, x, y, x][x, y].

As [y, x, y]−1 = [x, y, y][y,x] and [y, x, x]−1 = [x, y, x][y,x], this further gives

[y, x, x, y] = [x, y, y][y,x][x, y, x][y,x][x, y, y]−1[x, y, x]−1[y, x, y, x].

Because of the class restriction [x, y, y] commutes with [x, y, x]. Since we have [x, y, y][y,x] =
[x, y, y][x, y, y, [y, x]] and [x, y, x][y,x] = [x, y, x][x, y, x, [y, x]], we get

(3.9) [y, x, x, y] = [y, x, y, x][x, y, y, [y, x]][x, y, x, [y, x]],

hence [y, x, y, x, y] = [y, x, x, y, y]. It follows that [y, x, y, x, y]2·3
f−1

= 1, and consequently
[y, x, y, x, y]3

f−1
= [y, x, x, y, y]3

f−1
= 1. We conclude from here that γ5(〈x, y〉)3f−1

= 1.
The equation (3.8) now implies

(3.10) [x, y]3
f

[x, y, x, x](
3f

3 ) = 1.
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Replacing x by yx in (3.10) and using (3.10), we obtain ([x, y, y, y][x, y, x, y][x, y, y, x])3f−1
=

1. By (3.9) this can be rewritten as [x, y, y, y]3
f−1

= [x, y, y, x]3
f−1

. Replacing x by yx in
this equation, we get [x, y, y, y]3

f−1
= 1, hence also [x, y, y, x]3

f−1
= 1 and [x, y]3

f

= 1. By
Lemma 9 we now conclude that (xy)3f+1

= x3f+1
y3f+1

.
Finally let p = 5 and expG/Z(G) = 5f . Then [x, y, z, w]5

f

= 1 and thus Lemma 9 yields

1 = [x5f

, y] = [x, y]5
f

[x, y, x](
5f

2 ). Replacing x by yx in this equation, we get [x, y, x]5
f

= 1,
and thus [x, y]5

f

= 1. Using Lemma 9 again, we get (xy)5f+1
= x5f+1

y5f+1
. �

The bounds given by Proposition 10 are tight. There exists a 5-group G of class 5 with
exprank(G) = 1, see, for instance, Example 3. An example of a 3-group G of class 5 with
exprank(G) = 1 can be constructed as follows. Let N = 〈a〉 × 〈b〉 ∼= C9 × C27, and let c be
an automorphism of N of order 3 acting on N by the rules ac = a7b3 and bc = a8b. Let
G = N o 〈c〉. Then G is nilpotent of class 5 and |G| = 36. We have that expG/Z(G) = 9
and (bc)9 = 1 6= b9c9, hence exprank(G) = 1.

Let G be the group constructed in Example 3.3 of [15]. G is a metabelian group of order
219, exponent 16 and class 5. We have that expG/Z(G) = 4, and G is not k-abelian for
any 1 < k < 16. Thus exprank(G) = 2.

4. The Schur conjecture for groups of small nilpotency class

Let G be a group presented as the quotient of a free group F by a normal subgroup R. The
abelian group

M(G) = (R ∩ γ2(F ))/[R,F ]
is said to be the Schur multiplier of G. It is well known that M(G) is isomorphic to
the second integral homology group H2(G,Z) of G. A crucial role in studying the Schur
multipliers of finite groups is played by the covering groups. Recall that a group H is said
to be a covering group of a group G, if there exists M ≤ H isomorphic to M(G) such that
M ≤ H ′ ∩Z(H) and H/M ∼= G. Schur (1904) proved that covering groups of finite groups
always exist, although they need not be unique. For further account on the theory of the
Schur multipliers see e.g. [9, Kapitel V].

The Schur conjecture states that, for every finite group G, the exponent of M(G) divides
expG. It is now known that this conjecture is false [2, 16]. Thus the question arises as to
whether the conjecture holds true for certain classes of groups. In [16], we discovered that
there is a close relationship between the exponent of the Schur multiplier and exponential
rank. It is proved for instance that the exponential rank of a finite p-group G does not
exceed logp expM(G/Z(G)). On the other hand, if H is a covering group of G and if H is
pe-abelian, then expM(G) divides pe. Therefore it is possible to estimate the exponent of
M(G) by determining the exponential rank of H, together with the exponent of H/Z(H).

There are known estimates for expM(G) in case G is a finite p-group of small class,
given by Jones [11] and Kayvanfar and Sanati [13]. Most of those results are dealing with
the question whether expM(G) divides expG. An easy argument shows that, given the
nilpotency class, only finitely many primes need to be considered.

Proposition 11. Let G be a finite p-group of class less than p−1. Then expM(G) divides
expG.

Proof. Denote expG = pf and let H be a covering group of H. Then H is nilpotent of
class less than p, hence it is regular [9, Satz III.10.2]. Therefore exprank(H) = 0 by [16].
As expH/Z(H) divides pf , it follows that H is pf -abelian, whence exp γ2(H) divides pf

(see Section 2). We conclude that expM(G) divides pf , as required. �

Jones [11] proved that if G is a finite p-group of class 3 and p 6= 3, then expM(G) divides
expG. Note that when p > 3, this is a direct consequence of Proposition 11. We extend
Jones’s result as follows.

Theorem 12. Let G be a finite p-group of class ≤ 3. Then expM(G) divides expG.

Proof. If p 6= 3 then our assertion follows from [11]. Now let p = 3 and let expG = 3f . Let
H be a covering group of G. Then H is nilpotent of class ≤ 4, and H/Z(H) has exponent
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dividing 3f . Let x, y ∈ H and ω ∈ γ2(H). Then [x, y]3
f

= 1 by the proof of Proposition

6. As γ2(H) is nilpotent of class ≤ 2, we have (ω[x, y])3f

= ω3f

[x, y]3
f

[x, y, ω](
3f

2 ) = ω3f

,
hence γ2(H) has exponent dividing 3f . This concludes the proof. �

Finite p-groups of class 4 were considered by Kayvanfar and Sanati [13]. They proved
that if G is a finite p-group of class 4 and exponent pf with p > 3 and f odd, then expM(G)
divides pf . We prove the following result.

Theorem 13. Let G be a finite p-group of class 4. If p is odd, then expM(G) divides
expG. If p = 2, then expM(G) divides 2 · expG.

Proof. Let expG = pf and let H be a covering group of G. Then expH/Z(H) divides pf ,
and H is nilpotent of class ≤ 5. If p > 5, then expM(G) divides expG by Proposition
11. If p ∈ {3, 5}, then H satisfies the law [x, y]p

f

= 1, see the proof of Proposition 10. As

γ2(H) has class ≤ 2, we have ([x, y]ω)p
f

= [x, y]p
f

ωp
f

[ω, [x, y]](
pf

2 ) = ωp
f

for all x, y ∈ H
and ω ∈ γ2(H), hence exp γ2(H) divides pf .

Consider the case p = 2. From the proof of Proposition 10 we know that H sat-
isfies the law [x, y]2

f+1
= 1. It also follows from there that H satisfies the identity

[x, y]2
f

[x, y, x](
2f

2 )[x, y, x, x, x](
2f

4 ) = 1. Replacing y by [y, z] in the latter equation, we
get

(4.1) [y, z, x]2
f

[y, z, x, x](
2f

2 ) = 1.

Next we prove that [y, z, x, x]2
f−1

= 1. To this end, consider first the commutator [y2, x, x].
As H is of class at most 5, we can expand this commutator as [y2, x, x] = [y, x, x]2[y, x, x, y].
From the proof of Proposition 10 we get that [y, x, x]2

f

= 1 and [y, x, x, y]2
f−1

= 1, hence
the order of [y2, x, x] divides 2f−1. Next consider the commutator [y2z2, x, x]. We have
[y2z2, x, x] = [y2, x, x][z2, x, x][y2, x, z2, x]. Since H is nilpotent of class ≤ 5, the commu-
tator [y2, x, z2, x] can be written as a product of squares of certain commutators of weight
at least 4. As H satisfies the identity 1 = [[x, y, z]2

f

, w] = [x, y, z, w]2
f

, it follows from
here that [y2z2, x, x]2

f−1
= 1. It is not difficult to see that this yields [H2, x, x]2

f−1
= 1.

Since γ2(H) ≤ H2, we get that [y, z, x, x]2
f−1

= 1. Consequently, we obtain from (4.1) that
exp γ3(H) divides 2f . Now let x, y ∈ H and ω ∈ γ2(H). As γ2(H) is nilpotent of class

≤ 2, we have ([x, y]ω)2f+1
= [x, y]2

f+1
ω2f+1

[ω, [x, y]](
2f+1

2 ) = ω2f+1
, hence exp γ2(H) divides

2f+1. This concludes the proof. �

Theorem 13 provides best possible bounds for expM(G), as the following example shows.
We acknowledge the help of R. F. Morse who greatly simplified the presentation of the
example.

Example 14. There exists a group G of exponent 4 and nilpotency class 4 with M(G) of
exponent 8. An example of such a group is for instance the largest nilpotent-of-class-4
quotient of the group G = 〈a, b, c, d | [a, b][c, d]〉 satisfying the law x4 = 1. This group can
be easily constructed with the help of the Nilpotent Quotient Algorithm [17]. The order of
G is 268. Using GAP [7], in particular the function SchurMultiplicator in the Polycyclic
Quotient Algorithm [5], one can compute that M(G) ∼= Z121

2 ⊕ Z5
4 ⊕ Z8. We include the

appropriate GAP commands for the reader’s convenience:
gap> F := FreeGroup("a", "b", "c", "d", "x");;
gap> AssignGeneratorVariables(F);;
gap> R := [x^4, Comm(a, b) * Comm(c, d)];;
gap> G := NilpotentQuotient(F/R, 4: idgens := [x]);;
gap> SchurMultiplicator(G);
[ [2, 121 ], [4, 5], [8, 1] ]

Kayvanfar and Sanati [13] have given some sufficient conditions under which expM(G)
divides expG for a p-group G of class ≤ 6. These conditions involve some arithmetic
restrictions on expG. Our results, in particular Proposition 11, show that most of those
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restrictions are redundant. The exact bounds for expM(G) in these cases are still not
known.

Another open question is whether there exists a p-group G, p odd, for which the exponent
of M(G) does not divide expG. We note here that the immediate analogue of Example 14
for 3-groups of class 5 did not yield an example of such a group. This will be the topic of
future investigations.
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