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Abstract. Liedtke (2008) has introduced group functors K and K̃ , which are used in the context of
describing certain invariants for complex algebraic surfaces. He proved that these functors are con-
nected to the theory of central extensions and Schur multipliers. In this work we relate K and K̃ to a
group functor τ arising in the construction of the non-abelian exterior square of a group. In contrast
to K̃ , there exist e�cient algorithms for constructing τ , especially for polycyclic groups. Supported
by computations with the computer algebra system GAP, we investigate when K(G, 3) is a quotient
of τ(G), and when τ(G) and K̃(G, 3) are isomorphic.

1. Introduction

In the study of complex algebraic surfaces it is of interest to �nd strong invariants which are not
too complicated to be useful. Towards this aim, Liedtke [Liedtke 2008] introduced group theoretical
functorsK and K̃ that are related to the fundamental groups of the associated Galois closures. More
precisely, let X be a smooth projective surface, �x a generic projection f : X → P2 of degree n, and
let fgal : Xgal → P2 be its Galois closure. Let A2 be the complement of a �xed generic line in P2, and
set Xaff = f−1(A2) and Xaff

gal = f−1
gal (A

2). It is proved in [Liedtke 2008, �eorems 5.1 & 5.2] that
π1(Xaff

gal) has images isomorphic to K̃(π1(Xaff), n) and to K(π1(Xaff), n). It is the constructions of
K(−, n) and K̃(−, n) that are central to Liedtke’s investigation in [Liedtke 2008, Liedtke 2010]. As
pointed out in these papers, it is important to have a be�er understanding of K̃ in order to describe
the above mentioned fundamental groups.
�e aim of this work is to extend the group theoretical analysis of the functors K̃ and K , and to
relate these to a functor τ associated with Brown and Loday’s construction of the non-abelian tensor
square of a group [BL 1987]. �e la�er has applications in topology and K-theory, and can e�ciently
be computed for several classes of groups, such as polycyclic groups.
In Section 2, we set the notations and give the de�nitions of K(G,n), K̃(G,n), and τ(G). In Sec-
tion 3, we elaborate on these and provide explicit descriptions that enable e�cient computations for
polycyclic groups. In Section 4, we introduce the concept of an AI-automorphism and show that the
existence of such an automorphism for a group G yields a central extension

1 H2(G,Z) τ(G) K(G, 3) 1,

similar to the one proved in [Liedtke 2008, �eorem 2.2]:

1 H2(G,Z) K̃(G, 3) K(G, 3) 1.
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2 On two group functors extending Schur multipliers

It is therefore natural to ask when τ(G) and K̃(G, 3) are isomorphic. In Section 5, we explore this
question for several classes of groups. For example, we show that if G is a �nite group and a Schur
cover H/M = G admits an AI-automorphism which acts as inversion on M , then τ(G) ∼= K̃(G, 3).
In Section 6, we show that K(G, 3) and K̃(G, 3) are closely related to the unrami�ed Brauer group
of the �eld ofG-�xed points in a complex function �eld. �is group is also known as the Bogomolov
multiplier B0(G), and has various applications in algebraic geometry, in particular, to Noether’s
Problem. In Section 7 we comment on our computational experiments with the system GAP [GAP].

2. Definitions and preliminary results

Unless stated otherwise, all groups are �nite and wri�en multiplicatively. For a group G and in-
teger n > 0 we denote by Gn the direct product of n copies of G. We write Cn for the cyclic
group of size n. �e commutator subgroup G′ is the subgroup of G generated by all commutators
[g, h] = g−1h−1gh = g−1gh with g, h ∈ G. A free presentation for G is a free group F with normal
subgroup N � F such that G ∼= F/N ; since G is assumed to be �nite, we assume that F is �nitely
generated. A polycyclic presentation pc〈g1, . . . , gn | r1, . . . , rm〉 for G is a group presentation with
abstract generators g1, . . . , gn and relations r1, . . . , rm that are power or conjugate relations, with
the convention that trivial conjugate relations are omi�ed; see [EN 2008, Section 2.1] for details. For
example, pc〈g1, g2 | g2

1, g
2
1〉 describes the Klein 4-group 〈g1, g2 | g2

1, g
2
2, g

g1
2 = g2〉. A group extension

of A by B is wri�en G = B.A, meaning that A�G with quotient G/A = B.

2.1. Liedtke’s constructions. For a group G and integer n > 2, the group K(G,n) is the kernel
of the map Gn → G/G′ that sends an n-tuple (g1, . . . , gn) to the product of its components modulo
the commutator subgroups, that is,

K(G,n) = {(g1, . . . , gn) ∈ Gn : g1 · · · gn ∈ G′}.

Note that every permutation of the n factors in Gn de�nes an automorphism of K(G,n), that is, we
have Symn 6 Aut(K(G,n)). To de�ne the group K̃(G,n), choose a free presentation G = F/N
for G, and set

K̃(G,n) = K(F, n)/K(N,n)F
n
,

where K(N,n)F
n is the normal closure of K(N,n) in Fn; if n > 3, then this is simply the normal

closure of K(N,n) in K(F, n), see [Liedtke 2008, p. 248]. It is shown in [Liedtke 2008, �eorem 2.2]
that the de�nition of K̃(G,n) does not depend on the choice of presentation for G.

2.2. Non-abelian exterior square. Let G and G∗ be groups, with isomorphism G→ G∗, g 7→ g∗;
we continue to use “∗” to denote elements and subsets of G∗. Let G ? G∗ be the free product of G
and G∗, and, following [Rocco 1991], de�ne ν(G) as a quotient group of G ? G∗ via

ν(G) = (G ? G∗)/〈{[x, y∗]z[xz, (yz)∗]−1, [x, y∗](z
∗)[xz, (yz)∗]−1 : x, y, z ∈ G}〉G?G∗ .

To simplify notation, we identify elements in ν(G) with elements in G ? G∗, keeping in mind
that further relations hold in ν(G). If we want to emphasise the parent group, then we some-
times use subscripts at generated groups 〈−〉A or at commutators [−,−]A to indicate that the cor-
responding structures are to be considered in the group A. For example, if g ∈ G and g∗ ∈ G∗,
then [g, g∗]ν(G) denotes their commutator in ν(G), not in G ∗ G∗. With this convention, consider
∇(G) = 〈[x, x∗]ν(G) : x ∈ G〉 as a subgroup of ν(G), and de�ne

τ(G) = ν(G)/∇(G).
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Note that the homomorphism G ? G∗ → G × G, g1h
∗
1g2h

∗
2 . . . gkh

∗
k 7→ (g1 · · · gk, h1 · · ·hk), maps

commutators [x, y∗] to 1, hence it induces short exact sequences

1 G⊗G ν(G) G×G 1

1 G ∧G τ(G) G×G 1

cν

cτ

where the kernels G ⊗ G and G ∧ G are called the non-abelian tensor square and the non-abelian
exterior square of G, respectively. In will be shown in Lemma 3.1 below that this coincides with the
de�nitions given in [BL 1987]. We conclude with a lemma that is used later.

Lemma 2.1. LetH → G be a surjective group homomorphism with kernelM . �en there are induced
epimorphisms β : ν(H)→ ν(G) and γ : τ(H)→ τ(G) whose kernels are

〈M,M∗〉ν(H)[M,H∗]ν(H)[H,M
∗]ν(H) and 〈M,M∗〉τ(H)[M,H∗]τ(H)[H,M

∗]τ(H).

Proof. For β this is [Rocco 1991, Proposition 2.5]. Since β maps ∇(H) to ∇(G), this induces γ.
Note that ker γ = {x · ∇(H) : x ∈ β−1(∇(G))}, and β−1(∇(G)) = (kerβ) · ∇(H); the claim
follows. �

2.3. Schur multiplier. We recall some facts about the Schur multiplier of a �nite group and refer
to [Karpilovsky 1987] for more details, in particular, Proposition 2.1.1 and �eorems 2.1.4, 2.4.6, 2.5.1,
2.6.7, and 2.7.3. A Schur cover of G is a group H such that H/M ∼= G for some M 6 H ′ ∩ Z(H)
isomorphic to the Schur multiplier

M(G) = H2(G,C×).

Note thatG′ ∼= H ′/M sinceM 6 H ′. Schur (1904-07) has shown thatM(G) is �nite and ifF/N = G
is a free presentation of G with F a free group of �nite rank r, then M(G) ∼= (F ′ ∩N)/[F,N ]; the
la�er is known as Hopf’s formula. Every Schur cover H of G is isomorphic to F/S for some normal
subgroup S � F that de�nes a complement S/[F,N ] to (F ′ ∩ N)/[F,N ] ∼= M(G) in N/[F,N ];
in particular, S/[F,N ] is free abelian of rank r and (F ′ ∩ N)/[F,N ] is the torsion subgroup of
N/[F,N ]. �e isomorphism type of a Schur cover is in general not uniquely determined. However,
Schur proved that the isomorphism type of H ′ depends only on G, and not on the chosen cover H .
Miller (1952) has shown that

M(G) ∼= H2(G,Z).

We will see in Remark 3.2 below that we can identify [G,G∗]τ(G) = G ∧G via [g, h∗] 7→ g ∧ h. �is
identi�cation allows us to de�ne the surjective commutator map

κ : G ∧G→ G′, g ∧ h 7→ [g, h],

which, according to [BJR 1987, Corollary 2], can be li�ed to an isomorphism
G ∧G→ H ′, g ∧ h→ [g′, h′],

where g′, h′ ∈ H are li�s of g, h ∈ G. Since G′ = H ′/M(G), this yields an exact sequence

1 M(G) G ∧G G′ 1κ

with kerκ ∼= M(G) central in G ∧ G. �is shows that if G is abelian, then G ∧ G ∼= M(G) ∼= H ′,
and a Schur cover of G is abelian if and only if G is cyclic if and only if M(G) = 1.

3. Explicit description

As a �rst step towards investigating the relation between τ(G) and K̃(G, 3) we provide a more
concrete description of these groups.
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3.1. An explicit description of τ . �e next lemma summarises some facts about τ(G) and ν(G).

Lemma 3.1. Every w ∈ ν(G) can be wri�en uniquely as w = gh∗w′ for some w′ ∈ [G,G∗]ν(G) and
g, h ∈ G; the analogous statement holds in τ(G). Moreover, we have

ker cν = [G,G∗]ν(G)
∼= G⊗G and ker cτ = [G,G∗]τ(G)

∼= G ∧G.

Proof. Let g = g1h
∗
1 · · · gnh∗n ∈ ν(G). �e identities

h∗g = gh∗[h∗, g], [h∗, g]k = k[(hk)∗, gk], and [h∗, g]k∗ = k∗[(hk)∗, gk](3.1)
can be used to rewrite g = g1h

∗
1 · · · gnh∗n = (g1 · · · gn)(h1 · · ·hn)∗w with w ∈ [G,G∗]ν(G). Re-

call that cν maps [G,G∗]ν(G) to 1, hence cν(g) = (g1 · · · gn, h1 · · ·hn), which proves ker cν =
[G,G∗]ν(G). �e uniqueness of the expression of g follows from the exact sequence associated
with cν . �e argument for τ(G) and cτ is exactly the same. Recall that above we have de�ned
G⊗G = ker cν andG∧G = ker cτ ; it is shown in [Rocco 1991, Proposition 2.6] that the ’non-abelian
tensor square’ of [BL 1987] is isomorphic to [G,G∗]ν(G) via [g, h∗] 7→ g⊗ h, and from this it follows
that the ’non-abelian exterior square’ of [BL 1987] is is naturally isomorphic to [G,G∗]τ(G). �

Remark 3.2. Using Lemma 3.1, we can identify
G⊗G = [G,G∗]ν(G) and [G,G∗]τ(G) = G ∧G

via g ⊗ h→ [g, h∗] and g ∧ h→ [g, h∗], respectively.

Proposition 3.3. �e group τ(G) is isomorphic to G2.(G ∧G) with multiplication

(a, b; c)(g, h; d) = (ag, bh; (bh ∧ gh)cghd),

and derived subgroup τ(G)′ ∼= (G′ ×G′).(G ∧G).

Proof. By Lemma 3.1, the element gh∗w ∈ τ(G) corresponds to (g, h;w) ∈ G2.(G ∧ G), and this
correspondence de�nes the multiplication in G2.(G ∧ G). Note that c ∈ G ∧ G corresponds to an
element of the form

∏
i[xi, y

∗
i ], and so cg and c(g∗) both correspond to

∏
i[x

g
i , (y

g
i )∗]. �e last claim

is [Rocco 1991, �eorem 3.1]. �

Remark 3.4. If G ∧ G is abelian, then Proposition 3.3 shows that τ(G) is an extension of G ∧ G
by G2 de�ned by a 2-cocycle γ ∈ Z2(G2, G ∧ G) with γ((a, b), (g, h)) = bh ∧ gh; the G2-module
structure on G ∧G is de�ned by (u ∧ v)(g,h) = (ugh ∧ vgh), cf. [Robinson 1982, §11.4].

Remark 3.5. �e extension in Remark 3.4 is split if and only if there is a function f : G2 → G ∧G
such that the subset {(a, b; f(a, b)) : a, b ∈ G} is a subgroup of G2.(G ∧ G) isomorphic to G2 via
(a, b) 7→ (a, b; f(a, b)). In this case A = {(a, 1; f(a, 1)) : a ∈ G} and B = {(1, b; f(1, b)) : b ∈ G}
are commuting and disjoint subgroups of G2.(G ∧ G) isomorphic to G. In particular, the maps
a → f(a, 1) and b → f(1, b) are 1-cocycles G → G ∧ G; recall that a 1-cocycle r : G → G ∧ G
is a map satisfying r(gh) = r(g)hr(h) for all g, h ∈ G. Conversely, for every pair of 1-cocycles
l, r : G → G ∧ G the sets L = {(a, 1; l(a)) : a ∈ G} and R = {(1, b; r(b)) : b ∈ G} are disjoint
subgroups of G2.(G ∧ G) isomorphic G. Together they form a complement to G ∧ G if and only if
they commute, that is, if and only if l(a)br(b) = (b ∧ a)r(b)al(a) for all a, b ∈ G. �e existence of
such 1-cocycles is a necessary and su�cient condition for the extension to be split.

Remark 3.6. It follows from [BL 1987, Proposition 2.5] that G acts trivially on the kernels of the
maps κ : G∧G→ G′ and κ′ : G⊗G→ G′, both induced by the commutator map. �is proves that
kerκ�τ(G) and kerκ′�ν(G) are central. Since (G∧G)/ kerκ ∼= G′, we have τ(G)/ kerκ ∼= G2.G′

with multiplication (a, b; c)(g, h; d) = (ag, bh; [b, g]hcghd). An analysis similar to that in Remark 3.5
can be used to determine necessary and su�cient conditions for this extension to be split.
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3.2. An explicit description of K̃. �e following result is based on [Liedtke 2008, �eorem 3.2].
We denote the components of a tuple g by g1, g2, . . ., that is, g ∈ Gn−1 is g = (g1, . . . , gn−1).

Proposition 3.7. Let G be a group with Schur coverH andH/M = G. �e following hold for n > 3.

a) We have K(G,n) ∼= Gn−1.G′ where the product of u = (g; c) and v = (h; d) in Gn−1.G′ is
de�ned as

uv = (gh;µ(g, h)chd)

where ch = c(h1···hn−1)−1
and µ(g, h) = (g1h1) · · · (gn−1hn−1)(g1 · · · gn−1)−1(h1 · · ·hn−1)−1;

we have µ(g, h)(cg)h = c(gh)µ(g, h) for all g, h ∈ Gn−1 and c ∈ G′.
b) Let µ be the map de�ning K(H,n) ∼= Hn−1.H ′ as in a). Identifying H ′ = G ∧ G via the iso-

morphism in Section 2.3, we have K̃(G,n) ∼= Gn−1.(G ∧G) where the product of u = (g; c) and
v = (h; d) in Gn−1.(G ∧G) is de�ned as

uv = (gh;µ(g′, h′)chd);

here g′, h′ ∈ Hn−1 are elements that map onto g, h ∈ Gn−1, and ch is de�ned as in a).
c) �ere is a central extension

1 H2(G,Z) K̃(G,n) K(G,n) 1.

Proof. a) By de�nition, K(G,n) = {(g1, . . . , gn−1, g
−1
n−1 · · · g

−1
1 c) : g1, . . . , gn−1 ∈ G, c ∈ G′}.

�e isomorphism fromGn−1.G′ toK(G,n) maps (g; c) ∈ Gn−1.G′ to (g, g−1
n−1 · · · g

−1
1 c) ∈ K(G,n);

the de�nition of µ and ch guarantee that this is an isomorphism.
b) It is shown in [Liedtke 2008, �eorem 3.2] that K̃(G,n) ∼= K(H,n)/K(M,n), independent of
the chosen cover. �e proof of a) shows that there is an isomorphism ϕ : Hn−1.(G∧G)→ K(H,n).
Recall that M 6 Z(H) is central, hence it follows from the de�nition of µ that Mn−1.1 is a central
subgroup of Hn−1.(G ∧ G). �is subgroup is mapped under ϕ onto K(M,n), which proves that
K̃(G,n) ∼= K(H,n)/K(M,n) ∼= (Hn−1.(G ∧ G))/(Mn−1.1) ∼= Gn−1.(G ∧ G). Note that the
multiplication is well-de�ned since M 6 Z(H).
c) �is is [Liedtke 2008, �eorem 2.2]: note that the epimorphism from K̃(G,n) ∼= Gn−1.(G ∧ G)
to K(G,n) ∼= Gn−1.G′ ∼= K(G,n) can be induced by κ : G ∧ G → G′; recall from Section 2.3 and
Remark 3.6 that kerκ ∼= H2(G,Z) is central. �

Remark 3.8. If G′ is abelian, then Proposition 3.7a) shows that K(G,n) is an extension of G′ by
Gn−1 de�ned by the 2-cocycle µ ∈ Z2(Gn−1, G′) as in the proposition and Gn−1-module structure
on G′ de�ned by ch = c(h1···hn−1)−1 ; since G′ is abelian, this is indeed a group action. A similar
consideration as in Remark 3.5 can be used to obtain a (quite technical) criterion for splitness.

Corollary 3.9. If H has nilpotency class at most 2, thenK(H,n) ∼= Hn−1.H ′ with multiplication

(g; c)(h, d) = (gh; cd
∏n−1

i=1

∏n−1

j=i
[gi, hj ]).

Proof. �is follows from the formula given in Proposition 3.7a), together with c, d ∈ H ′ 6 Z(H)

and [h, g−1] = [h, g−1](g
h) = [g, h] for all g, h ∈ G. �

3.3. Abelian groups. For a groupG letZ∧(G) = {g ∈ G : g∧x = 1 for all x ∈ G} be the epicentre
of G. Note that Z∧(G) is equal to the projection of the center of a Schur cover of G on G, see [Ellis
1995, p. 254], therefore the next result agrees with [Liedtke 2008, Proposition 4.7]. It is shown in
[Ellis 1995, Proposition 16(vii)] that there exists H with H/Z(H) ∼= G if and only if Z∧(G) = 1.
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Proposition 3.10. If G is an abelian group, then K̃(G,n) is isomorphic to the group Gn−1.(G ∧ G)
with multiplication

(g; c)(h; d) = (gh; cd
∏n−1

i=1
gi ∧ (hi · · ·hn−1)).

Under this identi�cation,

Z(K̃(G,n)) = {(u, uy2, . . . , uyn−1; c) ∈ Gn−1.(G ∧G) : y2, . . . , yn−1, u
n ∈ Z∧(G)}

∼= Z∧(G)n−2 × (G ∧G)× {u ∈ G : un ∈ Z∧(G)}.

Proof. Let H be a Schur cover of G with H/M = G. It follows from Corollary 3.9 and Proposi-
tion 3.7b) that K̃(G,n) ∼= Gn−1.H ′ with multiplication

(g; c)(h, d) = (gh; cd
∏n−1

i=1

∏n−1

j=i
[g′i, h

′
j ]),

where each g′i and h′j is a li� of gi, hj ∈ G to H ; note that H ′ = M 6 Z(H) and H ′ = M ∼= G ∧G
since G is abelian. Recall that G ∧ G = ker cτ , that is, G ∧ G = 〈g ∧ h : g, h ∈ G〉 with the
convention g ∧ h = [g, h∗]τ(G). In particular, if [g′, h′]H ∈ H where g′, h′ ∈ H are li�s of g, h ∈ G,
then H ′ ∼= G ∧G via [g′, h′] 7→ g ∧ h. �e �rst claim follows.
If (a; c) ∈ Z(K̃(G,n)), then the following holds for all (g; d) ∈ K̃(G,n):∏n−1

i=1
ai ∧ gi · · · gn−1 =

∏n−1

i=1
gi ∧ ai · · · an−1.

Considering g with only one nontrivial entry gi = h, this forces

a1 . . . ai−1a
2
i ai+1 . . . an−1 ∧ h = 1 for all h ∈ G and i ∈ {1, . . . , n− 1}.

Write zi = a1 . . . ai−1a
2
i ai+1 . . . an−1 and note that each zi ∈ Z∧(G); now for i = 2, . . . , n − 1

we have z−1
i−1zi = a−1

i−1ai ∈ Z∧(G), so ai = a1yi for some yi ∈ Z∧(G). Now z1 ∈ Z∧(G) yields
an1 ∈ Z∧(G). Conversely, it is easy to check that every such element yields a central (a; c). �

Proposition 3.11. IfG is an abelian group, then τ(G) is isomorphic to the groupG2.(G∧G), where the
multiplication is given by (g1, g2; c)(h1, h2; d) = (g1h1, g2h2; cd(g2 ∧ h1)). Under this identi�cation,
Z(τ(G)) = {(a, b; c) : a, b ∈ Z∧(G), c ∈ G ∧G} ∼= Z∧(G)2 × (G ∧G).

Proof. �e �rst claim follows from Proposition 3.3. As above, (a, b; c) ∈ Z(τ(G)) if and only if
b ∧ g = h ∧ a for all g, h ∈ G. If g = 1, then a ∈ Z∧(G); if h = 1, then b ∈ Z∧(G). Conversely,
every such (a, b; c) lies in the centre; the claim follows. �

4. Relating τ(G) with K̃(G, 3) andK(G, 3)

�e aim of this section is to relate τ(G) with K̃(G, 3). As a �rst step, we consider a construction of
an epimorphism τ(G) → K(G, 3). Our construction requires an automorphism of G which acts as
inversion on the abelianisation of G.

4.1. AI-automorphisms. An automorphism α ∈ Aut(G) of a group G is an AI-automorphism if it
induces the inversion automorphism on the abelianisationG/G′; this is not to be confused with an IA-
automorphism introduced by Bachmuth (1966), which is an automorphism that induces the identity
on the abelianisation. Clearly, the composition of two AI-automorphisms is an IA-automorphism;
for abelian groups the only AI-automorphism is inversion.
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Example 4.1. Let F be a free group on X . �e map X → X given by x 7→ x−1 for all x ∈ X
induces an AI-automorphism ιF of F . If a group G is given by a free presentation G = F/N such
that ιF (N) = N , then ιF induces an AI-automorphism of G. Note that if F/N is abelian, then
F ′ 6 N , hence ιF (N) = N and ιF induces inversion on G. If ιF (N) 6= N , then de�ne M =
ιF (N)N�F . By de�nition, ιF (M) = M , and F/M is the largest quotient ofG on which ιF induces
an AI-automorphism. In particular, every group G has such a quotient since ιF induces inversion
on F/F ′N ∼= G/G′. We give two examples. First, the dihedral group of order 2n can be de�ned
as D2n = F/N where F is free on {a, b} and N is the normal closure of {an, b2, aba}. Clearly,
ιF (an) = (a−1)n and ιF (b2) = b−2 lie in N ; moreover, (ιF (aba)−1)b = (aab

−1
)b = aba ∈ N ,

hence ιF induces an AI-automorphism on F/N . Second, consider G = F/N where F is free on
{g, h} and N is the normal closure of {g4, h5, hgh2}, that is, G is a semidirect product C4 n C5. A
direct computation (by hand or with GAP [GAP]) shows thatG does not admit an AI-automorphism,
which implies that ιF (N) 6= N . If M is the normal closure of {g4, h5, (h−1)(g−1)h−2, hgh2}, then
ιF (M) = M , andG/M ∼= C4 is the largest quotient ofG on which ιF induces an AI-automorphism.

Example 4.2. Let α ∈ Aut(G) be an automorphism which inverts every element of a generat-
ing set X of G. Such an automorphism is called GI-automorphism in [Boston 2006], where GI can
be interpreted as “generator inversion”. (Originally, GI stands for “generator-involutions” because
〈α〉 n G is generated by involutions {(α, x) : x ∈ X}.) Clearly, every GI-automorphism is an AI-
automorphism. �e map ιF in Example 4.1 is an example. To give another example, consider the
alternating group Altn of rank n > 3: Conjugation by the transposition (1 2) de�nes an automor-
phism α of Altn that inverts every element of the generating set {(1 2 3), (1 2 4), . . . , (1 2n)}; thus
α is a GI- and AI-automorphism.

4.2. An epimorphism. Suppose G has an AI-automorphism α; we use α to construct K(G, 3) as a
quotient of τ(G). Note that the homomorphism

G ? G∗ → G3, g1h
∗
1 . . . gkh

∗
k 7→ (g1 . . . gk, h1 . . . hk, α(g1h1 . . . gkhk))

maps commutators [x, x∗] to 1; since the above map forgets “∗”, it also maps the relations of τ(G)
to 1. �us there is an induced homomorphism

Φα : τ(G)→ G3.

Recall that the commutator map
κ : G ∧G = [G,G∗]τ(G) → G′

has central kernel H2(G,Z) ∼= M(G), see Section 2.3. We now show the following:

�eorem 4.3. If α ∈ Aut(G) is an AI-automorphism, then

im Φα = K(G, 3) and ker Φα = kerκ 6 Z(τ(G)).

Proof. �e inclusion im Φα 6 K(G, 3) follows immediately from the de�nition and the fact that α
is an AI-automorphism. If (g, h, k) ∈ K(G, 3), then k = h−1g−1c for some c ∈ G′. Note that Φα

maps gh∗ to (g, h, α(gh)) ∈ K(G, 3), and α(gh) = h−1g−1d for some d ∈ G′, thus
Φα(gh∗)−1 · (g, h, k) = (1, 1, d−1c);

now d−1c =
∏
i[xi, yi] ∈ G′, and so (1, 1, d−1c) = Φα(

∏
i[α
−1(xi), (α

−1(yi))
∗]). �is shows that

(g, h, k) ∈ im Φα, thus K(G, 3) 6 im Φα. Now we consider the kernel. Note that
ker Φα = {g1h

∗
1 . . . gkh

∗
k : g1 · · · gk = h1 · · ·hk = (g1h1) · · · (gkhk) = 1}.

If w = g1h
∗
1 . . . gkh

∗
k ∈ ker Φα, then use Lemma 3.1 to rewrite w = g1 · · · gk(h1 · · ·hk)∗w′ = w′

for some w′ =
∏
i[xi, y

∗
i ] ∈ [G,G∗]τ(G); thus, w = w′ ∈ G ∧ G and applying κ yields κ(w) =
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κ(w′) =
∏
i[xi, yi] ∈ G. Note that rewriting w to w′ involves a sequence of commutator rules as

in (3.1), replacing elements such as a∗b by ba∗[a∗, b], etc. Obviously, this rewriting process can be
reversed which yields a sequence of commutator rules that bring w′ back into the form w. Applying
this reversed process not tow′, but to

∏
i[xi, yi]G, we obtain g1h1 . . . gkhk ∈ G, which is the element

w without the “∗”. Recall that g1h1 . . . gkhk = 1 by assumption, which shows that

κ(w) = κ(w′) =
∏

i
[xi, yi] = g1h1 . . . gkhk = 1,

so w ∈ kerκ. Conversely, let w ∈ kerκ, that is, w =
∏
i[gi, h

∗
i ] ∈ [G,G∗]τ(G) with

∏
i[gi, hi] = 1.

Writing w as w =
∏
i g
−1
i (h−1

i )∗gih
∗
i and applying Φα shows that

Φα(w) = (1, 1, α([g1, h1] . . . [gk, hk])) = (1, 1, 1),

hence kerκ 6 ker Φα. In conclusion, ker Φα = kerκ. By Remark 3.6, the group ker Φα is central. �

Corollary 4.4. �e existence of an AI-automorphism of G yields a central extension

1 H2(G,Z) τ(G) K(G, 3) 1.

Together with Proposition 3.7c), it seems natural to ask when τ(G) ∼= K̃(G, 3). We will see in
Proposition 5.4 that the lack of AI-automorphisms may prevent this.

4.3. A subgroup T (G). Recall that K(G, 3) is the kernel of G3 → G/G′, (g, h, k) 7→ ghkG′. We
now consider the kernel

T (G) = {(g, h, cgh) : g, h ∈ G, c ∈ G′}
of the homomorphism π : G3 → G/G′, (g, h, k) 7→ ghk−1G′. We now provide a short alternative
proof that K(G, 3) ∼= τ(G)/ kerκ if G has an AI-automorphism, cf. �eorem 4.3.

Lemma 4.5. We have T (G) ∼= τ(G)/ kerκ. If G has AI-automorphisms, thenK(G, 3) ∼= T (G).

Proof. Recall that we can identify τ(G)/ kerκ = G2.G′ and K(G, 3) = G2.G′ via Remark 3.6 and
(g, h, h−1g−1c) = (g, h; c), respectively, with the following multiplications

K(G, 3) : (a, b; c)(g, h; d) = (ag, bh; [a−1, g−1][b−1a−1, h−1]g
−1
c(gh)−1

d) and
τ(G)/ kerκ : (a, b; c)(g, h; d) = (ag, bh; [b, g]hcghd).

Every element in T (G) can be wri�en as (a, b, abc) for unique a, b ∈ G and c ∈ G′. �is allows us to
identify T (G) = G2.G′ via (a, b, abc) = (a, b; c), and a short calculation con�rms that the induced
multiplication in T (G) = G2.G′ is the same as for τ(G)/ kerκ = G2.G′, so T (G) ∼= τ(G)/ kerκ.
If α is an AI-automorphism of G, then β = 1 × 1 × α is an automorphism of G3 that interchanges
K(G, 3) and T (G), hence T (G) ∼= K(G, 3). �

Identifying T (G) = τ(G)/ kerκ, the isomorphism β : T (G) → K(G, 3) in the proof of Lemma 4.5
coincides with the isomorphism τ(G)/ kerG ∼= K(G, 3) induced by Φα in �eorem 4.3.

5. Some isomorphisms

Our computations in Section 7 suggest that τ(G) ∼= K̃(G, 3) only if G admits an AI-automorphism,
cf. Corollary 4.4. As mentioned above, the lack of AI-automorphisms may prevent isomorphisms, but
one may ask whether an AI-automorphism implies τ(G) ∼= K̃(G, 3). In general, the answer is no, as
illustrated by Proposition 5.12b) and Examples 5.11 and 7.1. However, there is strong evidence that
τ(G) is closely related to K̃(G, 3) when AI-automorphisms exists; the next theorem is a useful tool
for establishing various isomorphisms.
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�eorem 5.1. Suppose G has an AI-automorphism that li�s to an AI-automorphism of a Schur cover
inverting the Schur multiplier.

a) We have K̃(G, 3) ∼= τ(G).

b) We have K̃(G, 3) ∼= T (H)/T (M).

Proof. a) Let H be a Schur cover with H/M = G and let α ∈ Aut(H) be the induced AI-
automorphism with α(m) = m−1 for allm ∈M . Corollary 4.4 shows that Φα : τ(H)→ K(H, 3) is
an epimorphism with kernelH2(H,Z). It is shown in [Liedtke 2008, �eorem 3.2] that K̃(G,n) is iso-
morphic to K(H,n)/K(M,n), so we obtain an epimorphism τ(H)→ K̃(G, 3). By Lemma 2.1, the
projectionH → G yields a surjection γ : τ(H)→ τ(G) with kernel (〈M,M∗〉[M,H∗][H,M∗])τ(H).
We can construct an induced epimorphism τ(G) → K̃(G, 3) if Φα(ker γ) 6 K(M, 3). If m ∈ M ,
then Φα(m) = (m, 1, α(m)), which lies in K(M, 3) since α(m) = m−1; similarly for m∗ ∈ M∗. If
[m,h∗] is a generator of [M,H∗], then this is mapped under Φα to (1, 1, α([m,h])) = (1, 1, 1) since
M 6 Z(H); similarly for elements in [H,M∗]. �us, Φα(ker γ) 6 K(M, 3) and the claim follows.
b) We have T (M) = {(a, b, ab) : a, b ∈ M} and K(M, 3) = {(a, b, a−1b−1) : a, b ∈ M}. �e
isomorphism T (H) ∼= K(H, 3) of Lemma 4.5 maps T (M) onto K(M, 3); recall that α inverts M .
�is implies that K̃(G, 3) ∼= K(H, 3)/K(M, 3) ∼= T (H)/T (M). �

Remark 5.2. a) IfG has an abelian Schur cover, sayH/M = G, thenM 6 H ′ implies thatM = 1,
so G = H is cyclic, the assumptions of �eorem 5.1 are satis�ed, and τ(G) ∼= K̃(G, 3) ∼= K(G, 3).
b) If a Schur cover H of G admits an AI-automorphism α that leaves M invariant, then α induces
an AI-automorphism of G ∼= H/M since H/H ′ ∼= G/G′.
c) Based on �eorem 5.1 and example computations, we conjecture that τ(G) ∼= K̃(G, 3) only if G
admits an AI-automorphism. �e results that follow and Example 7.1 below support this conjecture.
A stronger conjecture would be that τ(G) ∼= K̃(G, 3) if and only if G admits an AI-automorphism
that li�s to an AI-automorphism of a Schur cover inverting the Schur multiplier. However, this is not
true as can be shown by a direct computation with GAP: the groupG = C4×C4 has Schur multiplier
M ∼= C4, has an AI-automorphism, and satis�es τ(G) ∼= K̃(G, 3); up to isomorphism G has three
Schur covers H1, H2, and H3, with GAP SmallGroup id [64,18], [64,19], and [64,28], respectively.
Each Hi has a unique Mi 6 H ′i ∩ Z(Hi) with Mi

∼= M and Hi/Mi
∼= G. Only H1 and H2 have

AI-automorphisms, but all of those act trivially on M . A similar statement holds for the non-abelian
C4 × (C4 n C3) with GAP id [48,11]. �is illustrates several things: First, whether or whether not
an AI-automorphism ofG li�s to an AI-automorphism of a Schur cover depends on the isomorphism
type of the Schur cover. Second, we can have τ(G) ∼= K̃(G, 3) even though there is no li� of an
AI-automorphism of G that inverts the Schur multiplier.

Corollary 5.3. If G is a group with exp(G/G′), exp(M(G)) ∈ {1, 2}, then τ(G) ∼= K̃(G, 3).

Proof. Let H be a Schur cover of G with H/M ∼= G. Since H/H ′ ∼= G/G′ and exp(M) | 2, the
identity automorphism is an AI-automorphism invertingM . Now �eorem 5.1 proves the claim. �

�e next result considers the �nite groups all whose Sylow subgroups are cyclic, see [Robinson 1982,
10.1.10]. Note that every group of square-free order has this property.

Proposition 5.4. Let G be a group all whose Sylow subgroups are cyclic, that is,

G = 〈a, b | bn, am, ab = ar〉 ∼= Cn n Cm

where |G| = mn withm odd, and 0 6 r < m with rn ≡ 1 mod m and gcd(m,n(r − 1)) = 1. �en
G has trivial Schur multiplier, hence K̃(G, 3) = K(G, 3), and the following hold.
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a) �e group G has AI-automorphisms if and only if r2 ≡ 1 mod m.
b) If G is square-free, then G has AI-automorphisms if and only if G has a cyclic 2′-Hall subgroup.

c) �e group G satis�es K̃(G, 3) ∼= τ(G) if and only if G has AI-automorphisms.

Proof. It follows from Hölder’s classi�cation [Robinson 1982, 10.1.10] that the �nite groups all
whose Sylow subgroups are cyclic are exactly the groups having a presentation as in the propo-
sition. It follows from [Karpilovsky 1987, Corollary 2.1.3] that G has trivial Schur multiplier, hence
K̃(G, 3) = K(G, 3) by de�nition. If G is abelian, then G is cyclic and �eorem 5.1 proves the claim
where the AI-automorphism is inversion. �e condition gcd(m,n(r−1)) = 1 guarantees that r 6= 1,
henceG is abelian if and only if r = 0 andm = 1; note that in this case r2 ≡ 1 mod m holds trivially.
�us, in the following we assume that G is non-abelian, that is, r > 1.

a) Note that [a, b] = ar−1, so G′ = 〈a〉. If G has an AI-automorphism, then there exist u, v with
gcd(u,m) = 1 such that b−1av and au satisfy the relations of b and a in G. �e conjugacy relation
forces ab = ab

−1 , that is, r2 ≡ 1 mod m. Conversely, if r2 ≡ 1 mod m, then (b, a) 7→ (b−1, a)
describes an AI-automorphism of G.
b) IfG is square-free with cyclic 2′-Hall subgroup V ∼= Cnm/2, then there is a subgroupU ∼= C2 with
G = U nV ∼= C2nCmn/2, see [Robinson 1982, Ex. 1.3(13) and (9.1.2)]. In particular, V is the unique
Hall 2′-subgroup, which shows that V = 〈b2, a〉 and we can choose U = 〈bn/2〉. �us, by renaming
the generators, we can assume that G = 〈a, b | am, b2, ab = ar〉 where r2 ≡ 1 mod m, m is odd,
0 6 r < m, and gcd(m, r − 1) = 1. Now by part a), the identity de�nes an AI-automorphism of G.
Conversely, if G is square-free with AI-automorphisms, then a) implies that G ∼= 〈bn/2〉n 〈b2, a〉 ∼=
C2 n Cmn/2, so G has a cyclic Hall 2′-subgroup.
c) If G has an AI-automorphism, then �eorem 5.1 proves that τ(G) ∼= K̃(G, 3) ∼= K(G, 3); recall
that M(G) = 1. Conversely, suppose that τ(G) ∼= K̃(G, 3) = K(G, 3); abbreviate T = τ(G) and
K = K(G, 3). If we interpret T via Proposition 3.3, we get generators y1 = (b, 1, 1), x1 = (a, 1, 1),
y2 = (1, b, 1), x2 = (1, a, 1), and x3 = (1, 1, a), and it follows that T ′ = 〈x1, x2, x3〉 ∼= C3

m and
T/T ′ = 〈y1T

′, y2T
′〉. �e elements yiT ′ act on T ′ from the right via matrices

m1 =
(
r 0 0
0 1 r−1
0 0 r

)
and m2 =

(
1 0 r−1
0 r 0
0 0 r

)
,

both given with respect to x1, x2, x3. Similarly, K is generated by ỹ1 = (b, 1, b−1), x̃1 = (a, 1, 1),
ỹ2 = (1, b, b−1), x̃2 = (1, a, 1), and x̃3 = (1, 1, a), and it follows that K ′ = 〈x̃1, x̃2, x̃3〉 ∼= C3

m, and
K/K ′ = 〈ỹ1K

′, ỹ2K
′〉. Here the elements ỹiK ′ act on K ′ from the right via the matrices

n1 =
(
r 0 0
0 1 0
0 0 s

)
and n2 =

(
1 0 0
0 r 0
0 0 s

)
,

where s is the multiplicative inverse of r modulo m. Now consider the subgroups A = 〈m1,m2〉
and B = 〈n1, n2〉 of GL3(m). As T and K are isomorphic, it follows that A and B are conjugate
in GL3(m). Since B is contained in SL3(m), the same holds for A. �is forces r2 ≡ 1 mod m, and
now part a) shows that G admits an AI-automorphism. �

Proposition 5.5. Let G be an extra-special p-group with p odd.

a) Let exp(G) = p. If |G| = p3, then τ(G) ∼= K̃(G, 3); if |G| = p2n+1 with n > 2, then there exist
Schur covers of G that admit AI-automorphisms, but none of these inverts the Schur multiplier.

b) If exp(G) = p2, then G does not have an AI-automorphism.

c) If |G| = p3 and exp(G) = p2, then τ(G) 6∼= K̃(G, 3).
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Proof. a) LetG be an extra-special p-group of exponent p and order p2n+1. It follows from [Huppert
1967, Satz III.13.7] that G is a central product of n extra-special groups of size p3 and exponent p,
that is, we can assume that G = pc〈g1, . . . , g2n, c | ∀i, j : [g2i, g2i−1] = c−1, gpj = cp = 1〉. First
suppose that n = 1. By [Karpilovsky 1987, �eorem 3.3.6], the Schur multiplier is isomorphic to C2

p ,
and it is straightforward to verify that the group

H = pc〈g1, g2, c, h1, h2 | gp1 , g
p
2 , c

p, hp1, h
p
2, [g2, g1] = c−1, [c, g1] = h1, [c, g2] = h2〉,

is a Schur cover of G with H/M = G for M = 〈h1, h2〉 ∼= C2
p . �e elements g−1

1 c, g−1
2 c−1,

c, h−1
1 , h−1

2 satisfy the relations of H , so von Dyck’s �eorem [Robinson 1982, 2.2.1] shows that
(g1, g2, c, h1, h2) 7→ (g−1

1 c, g−1
2 c−1, c, h−1

1 , h−1
2 ) extends to an automorphism α of H . �is is an

AI-automorphism of H that inverts elements of M , so �eorem 5.1 proves the claim for n = 1.
Now let n > 1. Beyl and Tappe (1982) [Karpilovsky 1987, �eorem 3.3.6] proved that M = M(G)

is elementary abelian of rank 2n2 − n − 1 and that every Schur cover H of G with H/M = G is
unicentral, that is, Z(H) is the full preimage of Z(G) under the projection H → G; in particular,
we have Z(G) = G′ = H ′/M and H ′ = Z(H). �us, if g, h ∈ H , then α([g, h]) = [α(g), α(h)] =
[g−1, h−1] = [g, h], so α �xes H ′ (and so M 6 H ′) elementwise; in particular, α does not invert M .

An explicit Schur cover H of G can be de�ned by abstract generators g1, . . . , g2n, c and hi,j for
1 6 i < j 6 n except (i, j) = (1, 2), all of order p, with each hi,j and c central, and the fol-
lowing nontrivial commutator relations: each commutator relation [gj , gi] = w in G with i < j
(except for [g2, g1]) becomes a relation [gi, gj ] = whi,j in H . Let N be the subgroup generated
by all hi,j ; it follows from the construction that N 6 Z(H) ∩ H ′, that Z(H) = 〈c,N〉, and that
H/N ∼= G. Standard consistency checks (see [HEO, Section 8.7.2]) can be used to show that this
presentation is consistent: since every element has order p, the only tests that have to be carried
out are for the equations (gigj)gk = gi(gjgk) with k < j < i, but all those lead to the condi-
tions hj,ihk,ihk,j = hk,ihj,ihk,j which are trivially satis�ed. Consistency of the presentation implies
|H| = p2n+1+2n2−n−1, so H/N ∼= G proves that N ∼= C2n2−n−1

p is isomorphic to the Schur mul-
tiplier. �is shows that H is indeed a Schur cover of G. In particular, AI-automorphisms exist: take
the isomorphism that is de�ned by mapping each generator gi to g−1

i .
b) Let G be extra-special of order p1+2n with Z(G) = 〈c〉 = G′. It follows from [Huppert 1967,
Satz III.13.7] that G is a central product of n extra-special groups of size p3, at least one of them of
exponent p2. �us, there are g, h ∈ G such that 〈g, h, c〉 is extraspecial of order p3 and exponent p2;
we can assume that gp = c, hp = cp = 1, and [h, g] = c−1. If α ∈ Aut(G) is an AI-automorphism,
then α(c−1) = [α(h), α(g)] = [h−1, g−1] = [h, g](−1)2 = c−1, so α(c) = c. Now if α(g) = g−1d
with d ∈ Z(G), then c = α(g)p = g−pdp = g−p = c−1 forces |c| = 2, a contradiction.
c) We consider G = 〈g, h, c | gp = c, hp, cp, [h, g] = c−1, [c, g], [c, h]〉 with M(G) = 1. Recall that
K̃(G, 3) = K(G, 3) and τ(G) ∼= T (G), see Lemma 4.5. We show that T = T (G) and K = K(G, 3)
are not isomorphic, which proves the claim. For i ∈ {1, 2, 3} and x ∈ G let xi be the element x
in the i-th copy of G3. Note that K is generated by {x1x

−1
3 , x2x

−1
3 , c1, c2, c3 : x ∈ G}, whereas T

is generated by {x1x3, x2x3, c1, c2, c3 : x ∈ G}. One can show that Z(K) = 〈c1, c2, c3〉 = Z(T )
and 0(K) = 〈c1c

−1
3 , c2c

−1
3 〉 and 0(T ) = 〈c1c3, c2c3〉. Moreover, Ω(T ) = 〈h1h3, h2h3, c1, c2, c3〉

and Ω(K) = 〈h1h
−1
3 , h2h

−1
3 , c1, c2, c3〉. Recall that 0 and Ω denote the subgroups generated by p-th

powers and elements of order p, respectively. Let B = {c1c
−1
3 , c2c

−1
3 , c3} be a basis of the Zp-space

Z(K). �e commutator mapK/Ω(K)×Ω(K)/Z(K)→ Z(K) is induced by [g1g
−1
3 , h1h

−1
3 ] = c1c3,

[g1g
−1
3 , h2h

−1
3 ] = c3, [g2g

−1
3 , h1h

−1
3 ] = c3, and [g2g

−1
3 , h2h

−1
3 ] = c2c3. Moreover, the power map

K/Ω(K) → 0(K) 6 Z(K) satis�es (g1g
−1
3 )p = c1c

−1
3 and (g2g

−1
3 )p = c2c

−1
3 . Note that with

respect to B, the element c1c3 is represented as (1, 0, 2), etc. All together, these commutator and
power maps are encoded by the Zp-matrixM(K) below; analogously, we obtain the matrixM(T )
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with respect to the basis B′ = {c1c3, c2c3, c3} of the Zp-space Z(T ):

M(K) =

(
1 0 2
0 0 1
0 0 1
0 1 2

∣∣∣∣ 1 0 0
1 0 0
0 1 0
0 1 0

)
M(T ) =

(
1 0 0
0 0 1
0 0 1
0 1 0

∣∣∣∣ 1 0 0
1 0 0
0 1 0
0 1 0

)
.

IfK ∼= T , then there existA,B ∈ GL2(p) andC ∈ GL3(p) with (A⊗B)·M(T ) =M(K)·(I2⊗C);
since 0(T ) and 0(K) are characteristic subgroups, C has entry 0 in position (1, 3) and (2, 3). A
straightforward but technical calculation shows that such A,B,C cannot exist, thus, T 6∼= K . �

Remark 5.6. In general, deciding (non)-isomorphism for τ(G) and K̃(G, 3) seems to be an intricate
ma�er since already for extra-special G of order 35, both τ(G) and K̃(G, 3) are extensions of C8

3 by
C8

3 . As explained in Section 7, even advanced computational group theory methods fail for such
isomorphism tests.

Next, for n > 1 we consider the generalised quaternion group Q4n and dihedral group D2n of order
4n and 2n, respectively, which are de�ned as

Q4n = 〈a, b | a2n, b2 = an, ab = a−1〉 and D2n = 〈a, b | an, b2, ab = a−1〉.

Proposition 5.7. We have τ(Q4n) ∼= K̃(Q4n, 3) and τ(D2n) ∼= K̃(D2n, 3).

Proof. For Q4 = C4 and D2 = C2 the claim is obvious, so let n > 2. It follows from [Karpilovsky
1987, Example 2.4.8] that M(Q4n) = 1. Note that {a−1, b−1} also satis�es the relations of Q4n, so
(a, b) 7→ (a−1, b−1) extends to a GI-automorphism of Q4n by von Dyck’s �eorem. Now τ(Q4n) ∼=
K̃(Q4n, 3) by �eorem 5.1. Let H be a Schur cover of D2n with H/M = D2n. By [Karpilovsky
1987, Proposition 2.11.4], we have M = 1 and H = D2n if n is odd, and M = C2 and H = Q4n

otherwise. As seen above and in Example 4.1, the group H admits an AI-automorphism which �xed
M elementwise. Again, the claim follows with �eorem 5.1. �

Proposition 5.8. We have τ(Symn) ∼= K̃(Symn, 3) and τ(Altn) ∼= K̃(Altn, 3).

Proof. For n 6 3 the claim can be veri�ed directly, so let n > 4 in the following. Schur (1911)
proved that the Schur multiplier of Symn is cyclic of order 2 for n > 4, and trivial otherwise, see
[Karpilovsky 1987, �eorem 2.12.3]. Now Corollary 5.3 proves the claim for Symn. Similarly, if
n /∈ {4, 6, 7}, then the claim for Altn follows from [Karpilovsky 1987, �eorem 2.12.5] and Corollary
5.3 for Altn. �e case n = 4 can be checked directly, and if n ∈ {6, 7}, then the outer automorphism
extending Altn to Symn inverts the Schur multiplier: this also follows directly from the presentations
given in [Karpilovsky 1987, �eorem 2.12.5]. �

�e next result shows that �eorem 5.1 cannot be applied to abelian groups G in general. Recall
that if M is a trivial G-module of exponent 2, then a 2-coboundary δ ∈ B2(G,M) is a function
G×G→M de�ned by a map κ : G→M with κ(1) = 1 such that δ(g, h) = κ(gh)κ(g)κ(h) for all
g, h ∈ G. In the following, for an abelian group G, we write G = G2 × G2′ where G2 is the Sylow
2-subgroup of G.

Proposition 5.9. Let G be an abelian group with Schur cover H , say H/M = G. �en H admits
an AI-automorphism whose restriction to M is inversion if and only if G2′ is cyclic, M has exponent
dividing 2, and the mapG2×G2 → G2∧G2 de�ned by (g, h) 7→ g∧h is a 2-coboundary; in particular,
any such AI-automorphism has order dividing 2.

Proof. First suppose thatH admits an AI-automorphism, say α, whose restriction toM is inversion.
Since G is abelian, H ′ 6 M , and now M 6 H ′ ∩ Z(H) implies M = H ′ 6 Z(H). We decompose
G = G2 × G2′ as above. It follows from [Karpilovsky 1987, Lemma 2.9.1] that the Schur cover H
of G is the direct product of Schur covers of G2 and G2′ , respectively. �us, we �rst assume that
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G = G2′ and show that G is cyclic. By assumption, for every h ∈ H we can write α(h) = h−1ch for
some ch ∈ H ′. Now

h−1g−1cgh = α(gh) = α(g)α(h) = g−1cgh
−1ch = h−1g−1[g−1, h−1]cgch

implies that cgh = [g−1, h−1]cgch for all g, h ∈ H . Note that [g, h] = [g−1, h−1]gh = [g−1, h−1]
since H ′ is central, so cgh = cgch[g, h]. Moreover, 1 = c1 = cgg−1 yields cg−1 = (cg)

−1. �is can
be used to show that α2n+1(g) = g−1c2n+1

g and α2n(g) = gc−2n
g for all g ∈ H and n > 1. Since

G = G2′ has odd order, m = |M | = |G ∧G| is odd, and so αm(g) = g−1 describes an isomorphism
of H . �is is only possible if H is abelian, that is, if G is cyclic, see Section 2.3. Back to the general
case G = G2 ×G2′ , the same argument shows that G2′ must be cyclic, hence it remains to consider
the case G = G2 in the following. Since

[h, g] = α([g, h]) = [α(g), α(h)] = [g−1cg, h
−1ch] = [g−1, h−1] = [g, h]h

−1g−1
= [g, h]

for all g, h ∈ H , we must have that H ′ = M has exponent 2. �us, α is the identity on M , and
so α2(h) = α(h−1ch) = hch−1ch = h for all h ∈ H proves that α has order 2. Note also that
[g, h] = cghcgch. �e map γ : H ×H → H ′, (g, h) 7→ [g, h], is a 2-cocycle in Z2(H,H ′). Since H ′
is central, γ induces a 2-cocycle δ ∈ Z2(G,H ′). Since G is abelian, an isomorphism G ∧ G → H ′

is given by g ∧ h → [g′, h′], where g′, h′ ∈ H are li�s of g, h ∈ G. �is shows that the induced
2-cocycle δ lies in Z2(G,G ∧ G) and δ(g, h) = g ∧ h for all g, h ∈ G. Recall that if h ∈ H and
z ∈ H ′, then α(h) = h−1ch and (hz)−1chz = α(hz) = α(h)α(z) = h−1chz, which shows that
chz = ch. �us for g ∈ G we can de�ne κ(g) = cg′ where g′ ∈ H is a li� of g. �is shows that
δ(g, h) = κ(gh)κ(g)κ(h) with κ(1) = 1, that is, δ is a 2-coboundary in B2(G,G ∧G).
Conversely, letG = G2×G2′ be abelian with cyclicG2′ andG∧G of exponent 2 such that δ(g, h) =
g ∧ h de�nes a 2-coboundary in B2(G2, G2 ∧G2); by what is said above, it is su�cient to consider
G = G2. Since δ de�nes a 2-coboundary, we have g ∧ h = δ(g, h) = κ(gh)κ(g)κ(h) for some map
κ : G → G ∧ G with κ(1) = 1. Let H be a Schur cover of G with natural projection π : H → G,
such that M = kerπ satis�es M = H ′ 6 Z(H). Note that under the isomorphism H ′ → G ∧ G,
[h, k] 7→ π(h) ∧ π(k) we have [h, k] = δ(π(h), π(k)) = κ(π(hk))κ(π(h))κ(π(k)). Now de�ne
α ∈ Aut(H) by α(h) = h−1ch where ch = κ(π(h)); note that
α(hk) = k−1h−1chk = h−1k−1[k−1, h−1]chk = h−1k−1[k, h]chk = h−1chk

−1ck = α(h)α(k),

so α is indeed a homomorphism. Clearly, α acts as inversion (that is, as identity) on M , and as
inversion on H/M . �is proves the claim. �

Proposition 5.10. If G is an abelian 2-group such that exp(G ∧ G) divides 2, then G ∼= Cn2 × C2m

for some n,m and τ(G) ∼= K̃(G, 3).

Proof. It is straightforward to see that an abelian G as in the statement must be isomorphic to
Cn2 × C2m for some n and m. If m ∈ {0, 1}, then G is elementary abelian and Corollary 5.3 proves
the claim. Now let m > 2 and let {x1, . . . , xn, y} ⊆ G be a generating set with y of order 2m and
each xi of order 2. A Schur cover of G is H = 〈x′1, . . . , x′n, y′,M〉 where

M = 〈zi,j , zk : 1 6 i < j 6 n, 1 6 k 6 n〉 ∼= M(G) ∼= G ∧G

is 2-elementary abelian and central in H , subject to the relations (x′i)
2 = (y′)2m = 1, [x′i, x

′
j ] = zi,j

and [x′k, y
′] = zk. Now inversion of G li�s to an AI-automorphism of H that �xes M element-wise,

and therefore τ(g) ∼= K̃(G, 3) by �eorem 5.1. �

Example 5.11. ForA = C3
4 , we determine τ(A) 6∼= K̃(A, 3) by computing with GAP that Aut(τ(A))

and Aut(K̃(G, 3)) have orders 94575592174780416 and 283726776524341248, respectively. Since
A ∧ A has exponent 4, this is also an example showing that the assumptions in Proposition 5.10
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cannot be relaxed. Similarly, it shows that Proposition 5.12 cannot be extended to higher rank. A
comparison of the automorphism group orders also shows that τ(B) 6∼= K̃(B, 3) for B = C3

5 .

Proposition 5.12. Let G be an abelian group.

a) Suppose all Sylow p-subgroups of G have rank at most 2. �en τ(G) ∼= K̃(G, 3) if and only if the
Sylow 3-subgroup of G is cyclic.

b) If the Sylow 3-subgroup of G has rank at least 2, then τ(G) 6∼= K̃(G, 3).

Proof. Let G =
∏
pGp be the decomposition of G into its Sylow subgroups. By [Liedtke 2008,

Proposition 4.1] and [Rocco 1991, Corollary 3.7], we can also decompose τ(G) =
∏
p τ(Gp) and

K̃(G,n) =
∏
p K̃(Gp, n), and every isomorphism τ(G) → K̃(G,n) induces an isomorphism from

τ(Gp) to K̃(Gp, n) for every p. (We note that [Rocco 1991, Corollary 3.7] considers ν(G), but it
implies the fact needed for τ(G).) �us it is su�cient to assume that G is an abelian p-group.

a) We have G ∼= Cm×Cn with m = pa and n = pb for a > b. Recall from Section 2.3 that M(G) ∼=
G ∧ G ∼= Cn. Let g and h be generators of Cm and Cn, respectively. Considering the description
of τ(G) as in Proposition 3.11, set g1 = (g, 1; 1), h1 = (h, 1; 1), g2 = (1, g; 1), h2 = (1, h; 1), and
k = (1, 1;h∧g). �ese elements form a polycyclic generating sequence of τ(G), with corresponding
polycyclic presentation

τ(G) = pc〈g1, h1, g2, h2, k | gm1 , gm2 , hn1 , hn2 , kn, g
h1
2 = g2k

−1, hg12 = h2k〉.

Using the identi�cation of K̃(G, 3) = G2.(G ∧G) as in Proposition 3.10, we obtain

K̃(G, 3) = pc〈g1, h1, g2, h2, k | gm1 , gm2 , hn1 , hn2 , kn, h
g1
1 = h1k

2,

gh12 = g2k
−1, hg12 = h2k, h

g2
2 = h2k

2〉.

If p 6= 3, then, by von Dyck’s �eorem, (g1, h1, g2, h2, k) 7→ (g1g
2
2, h1, g2g

2
1, h2, k) extends to an

isomorphism K̃(G, 3) → τ(G). If p = 3 and G has rank 2, then τ(G) 6∼= K̃(G, 3), see part b). If G
is a cyclic 3-group, then M(G) = 1, hence τ(G) = K̃(G, 3) by �eorem 5.1.
b) Let G be an abelian 3-group. As G is not cyclic, hence Z∧(G) 6= G, it follows that there exists
u ∈ G \ Z∧(G) with u3 ∈ Z∧(G). Now Propositions 3.10 and 3.11 imply τ(G) 6∼= K̃(G, 3). �

Proposition 5.12a) together with Proposition 5.9 shows that there are in�nitely many abelian groups
G such that τ(G) ∼= K̃(G, 3), but no Schur cover of G has an AI-automorphism whose restriction
to the Schur multiplier is inversion.

6. Bogomolov multiplier

Let G be a group with AI-automorphism α, and let Φα : τ(G) → K(G, 3) be the epimorphism in
Section 4.2. Set

M [(G) = 〈[x, y∗] : x, y ∈ G, [x, y] = 1〉τ(G)

and note thatM [(G) is contained in the kernel of the commutator map κ : [G,G∗]τ(G) → G′. De�ne

τ [(G) = τ(G)/M [(G).

If x and y commute in G, then Φα([x, y∗]) = (x−1x, y−1y, α([x, y])) = (1, 1, 1), therefore Φα

induces an epimorphism Φ[
α : τ [(G) → K(G, 3). �eorem 4.3 implies that the kernel of this map is

(kerκ)/M [(G), which is isomorphic to the Bogomolov multiplier B0(G) of G, see [Moravec 2012].
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Corollary 6.1. �e existence of an AI-automorphism of G yields a central extension

1 B0(G) τ [(G) K(G, 3) 1.

Proposition 6.2. Let H be a Schur cover of a group G with H/M = G. If α is an AI-automorphism
of H , then K̃(G, 3) ∼= τ [(H)/ im ι for the monomorphism ι : M2 → τ [(H) given by

(m1,m2) 7→ m1m
∗
2

∏`

i=1
[α−1(ki), (α

−1(hi))
∗]τ [(H),

where the elements hi, ki ∈ G are de�ned by α(m1m2) = m−1
2 m−1

1 [h`, k`] . . . [h1, k1].

Proof. Since M is abelian, M2 ∼= K(M, 3) with isomorphism (m1,m2) 7→ (m1,m2,m
−1
1 m−1

2 ).
Note that K(M, 3) is naturally embedded in K(H, 3). From [MM 1999, Proposition 6.12] we con-
clude that B0(H) is trivial, therefore Φ[

α : τ [(H) → K(H, 3) is an isomorphism by Corollary 6.1.
Note that ι is the map that makes the following diagram commutative; in particular, ι is an injective
homomomorphism, and the results follows from taking quotients in diagram:

M2 K(M, 3)

τ [(H) K(H, 3).

∼=

ι

Φ[α

�

7. Computations

IfG is a �nite polycyclic group, then also K̃(G, 3) is polycyclic, see [Liedtke 2008, Proposition 1.5]. In
this situation, the algorithms described in [EN 2008] can be used to compute τ(G); these algorithms
are implemented in the so�ware package Polycyclic, distributed with the computer algebra system
GAP [GAP]. Our explicit formulas in Section 3 can be used to compute a polycyclic presentation for
K̃(G, 3). We have done this to test whether τ(G) and K̃(G, 3) are isomorphic for certain examples
of groups (abelian, Frobenius, extra-special, . . . ). Even though there exist powerful algorithms for
working with polycyclic groups, approaching this isomorphism problem with conventional methods
poses a serious computational challenge. �is is due to the fact that if G is an abelian group of order
pn, then K̃(G, 3) and τ(G) are both large central extensions of G ∧ G by G2; they have class 2,
order p2n|G ∧ G|, and o�en seem indistinguishable. �e la�er is not a surprise, given the folklore
conjecture that most p-groups have class 2: for example, note that among the 49499125314 groups
of order at most 1024 (up to isomorphism), 99.976% of these are 2-groups and 98.595% are 2-groups
of class 2, see [CDO 2008, Section 4]. A computational isomorphism test for these groups reduces
to orbit calculations of huge matrix groups on very large vector spaces; o�en these computations
turn out to be infeasible. For example, the powerful implementations of the p-group algorithms for
automorphism groups and isomorphisms (provided by the GAP package Anupq) struggle to compute
automorphisms and isomorphisms for τ(G) and K̃(G, 3) already for moderately sized p-groups such
as G = C3

7 . Most of our computer experiments have therefore focused on groups of cubefree order,
that is, groups whose order is not divisible by any prime power p3.

Example 7.1. In Table 1 we report on some example computations: there are 237 cubefree groups
of order at most 100. Of these, 113 groups are abelian, 123 groups are non-abelian solvable, and 1
group is simple. Every abelian G admits AI-automorphisms and, being cubefree, τ(G) ∼= K̃(G, 3)
if and only if G has a cyclic Sylow 3-subgroup, see Proposition 5.12. Our computations show that,
with two exceptions, τ(G) ∼= K̃(G, 3) if and only if G has AI-automorphisms. �e exceptions are
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A = C3 × Alt4 and B = C2
3 × D10; we have Z(K̃(A, 3)) = C6 × C3 and Z(τ(A)) = C6, and

Z(K̃(B, 3)) = C3
3 and Z(τ(B)) = C3.

Table 1. Statistics for solvable non-abelian groups of cubefree order at most 100

τ ∼= K̃ has AI # groups
yes yes 96
yes no 0
no yes 2
no no 25

Example 7.2. Running over GAP’s group database, there are 6505 non-abelian solvable groups of
order< 256; of these groups, 6127 have AI-automorphisms. Note that every simple and every abelian
group admits AI-automorphisms. �is computation suggests that for many groups we can apply
Corollary 4.4 to describe τ(G) as a central extension of H2(G,Z) by K(G, 3). Table 1 suggests that
the existence of AI-automorphisms for G is strongly connected to the property τ(G) ∼= K̃(G, 3); cf.
also Proposition 5.5b,c).
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