IDEMPOTENT-FIXING AUTOMORPHISMS OF COMPLETELY
REGULAR SEMIGROUPS

PRIMOZ MORAVEC

ABSTRACT. The purpose of this note is to prove that if a completely regular
semigroup with finite J#-classes posesses an idempotent-fixing automorphism
of prime order, then it is an over-nilpotent semigroup.

1. INTRODUCTION

One of the prominent results in the theory of finite groups is the following theorem
proved by Thompson:

Theorem 1.1 ([7]). Let G be a finite group and « a fized-point-free automorphism
of G of prime order p. Then G is nilpotent, and its nilpotency class can be bounded
in terms of p.

This result was generalized to finite inverse semigroups by Aratjo and Kinyon:

Theorem 1.2 ([1]). Let S be a finite inverse semigroup that has an automorphism
of prime order whose set of fized points is precisely E(S). Then S is a nilpotent
Clifford semigroup.

A problem posed in [1] asks about possible extensions of the above result to other
classes of regular semigroups. For a start, the notion of nilpotency would need to
be suitably adapted. One of the possible ways originates from a paper by Neumann
and Taylor [5] and goes as folows. Let F' be a free semigroup of countable rank. For
x,Y, 20, 21, - - - in F define a sequence of words g, (z, vy, 20, ..., 2n—1) by qo(z,y) =
and

Qn+1(x7y7 20y Zn) = Qn(ﬂ%y’ 20y -y Zn—l)ZnQn(ya Ty 20y, Zn—l)

for n > 0. A semigroup S is said to be nilpotent of class c if it satisfies the identity
4e(T,Y, 20,y Ze—1) = Qe(Y, T, 20, - - 2e_1) for all z,y € S, z; € S1, and ¢ is the
least positive integer with this property. Neumann and Taylor [5] showed that a
group is nilpotent of class < ¢ in the classical sense if and only if it satisfies the
above identity.

We show the following:

Theorem 1.3. Let S be a completely regular semigroup with finite € -classes. If
S has an automorphism of prime order p whose set of fized points is precisely E(S),
then there exists ¢ = c(p) such that the F-classes of S are nilpotent of class < ¢,
and thus S satisfies the identity

gc(exe,eye, ezpe, ... ez.—1€) = q.(eye, exe, ezpe, . .., ez._1€),

where e = (y2o ... 2e—1)°.
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If S is as in Theorem 1.3, then its #7-classes are nilpotent of class < ¢; we say
that S is an over-(nilpotent of class < ¢) semigroup. However, S itself need not be
nilpotent (in the sense of Neumann and Taylor). We will exhibit an example of a
finite completely simple semigroup with an automorphism of prime order that fixes
all idempotents, but is not nilpotent.

Aratjo and Kinyon [1] also show that if S is a uniquely 2-divisible inverse
semigroup with an automorphism « of order 2 whose set of fixed points is precisely
E(S), then za = 2! for all z € S. They pose a conjecture [1, Conjecture 1] that
a similar result holds true for completely regular semigroups. We confirm this by
showing the following result:

Theorem 1.4. Let S be a uniquely 2-divisible completely reqular semigroup with an
automorphism o of order 2 that fizes precisely E(S). Then xa =z~ for all x € S.

As noted by Aratjo and Kinyon [1], the above conclusion does not imply that S
is commutative, as opposed to the case of inverse semigroups. The proof of Theorem
1.4 implies that, under the above assumptions, S is over-abelian and thus satisfies
the identity (zyz)’yx = xy(xyx)?, see [6, Proposition I1.7.2].

2. PROOFS

We briefly collect some facts on completely regular semigroups. A reference for
this is for instance a book of Petrich and Reilly [6]. A semigroup S is said to be
completely reqular if every J#-class of S is a subgroup. Given z € S, we denote by
20 the identity element of the #7-class H,, and 2z~ ! stands for the inverse of = in
H,.

Proof of Theorem 1.3. Let o be an automorphism of S of prime order whose set of
fixed points is precisely E(S), and let € S. Then [6, Lemma I1.2.4], together with
the fact that « fixes the idempotents of S, implies 2° = (2°)a = (za)?. By [6, p.63],
this implies that xa € H,. Thus the restriction of o to H, is a fixed-point-free
automorphism of prime order p of the group H,. By Thompson’s theorem, H, is
a nilpotent group whose nilpotency class can be bounded uniformly in terms of p
only. This, together with [6, Proposition II.7.1], concludes the proof. (]

A special class of completely regular semigroups are completely simple semigroups.
These can be described as Rees matrix semigroups S = M(I,G, A; P) over a
group G with A x I sandwich matrix P = (py;). Elements of this semigroup are
triples (i,g,\), where i € I, g € G, A € A, and the multiplication is given by
(4,9, N\) (4, h, ) = (4, 9pr;h, 1). Moreover, P may be taken to be normalized, i.e.,
there exist 1 € I and 1 € A such that p1; = pyx1 = eforalli € I, A € A; here e is the
identity element of G. If x = (i,g,A), then H, = {(, h, A) : h € G} is isomorphic to
G. By [3, Proposition 4.1] therefore have:

Corollary 2.1. Let S be a completely simple semigroup with a finite structure
group. If S has an automorphism of prime order p that fixres E(S), then there exists
¢ = c(p) such that S satisfies the identity

0 0
QC(a aavxo;-“axc—l) :qC(a7a 7x07~~-;zc—1)
forall a,xzqg,...,zc_1 € 8S.

Proposition 2.2. Let S = M(I,G,A; P) with P normalized. An automorphism «
of S fixres E(S) if and only if « is of the form (i, g, \)a = (i, gw, \), where w € Aut G
and the set of fized points of w contains (P), the subgroup of G generated by all
entries of P.
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Proof. Let (¢,w,¥) € T(I) x End(G) x T(A) be a triple satisfying
Driw = plw,lpp,(j,,lcppw,z@opl_z;,w~
Define a map 6 = 0(p,w, ) : S — S by the rule
(1,9, MO = (10, D1 i0p (99)P1 10D A 100 M)

Then 6 is an endomorphism of S. Moreover, every endomorphism of S can be
obtained uniquely in this way [6, Lemma IIL.3.11].
Let @ = a(p,w, ) € Aut S fix E(S). This means that

(i,p;ila A) = (ivp;\ilv Na = (igoapi/},i@((p;il)w)plw,lwp;1i71<p7 )
forall A € A, i € I. Tt follows that ¢ and v are identity mappings, w € Aut G, and
DPaiw = Py, therefore (P) is fixed by w. The converse is obvious. O

Ezample 2.3. Let G be the Heisenberg group of 3 x 3 unitriangular matrices over
GF(p), where p is an odd prime. It is generated by the matrices

1 10 100
a=10 1 0 andb=1[(0 1 1
0 01 0 0 1

The group G is finite of order p3, non-abelian and nilpotent. Denote ¢ = [a, b].
There is an automorphism w of G defined by

a— ab™ !, b be L.

It is easily verified that w has order p and the set of fixed points of w is (¢) =
{1,¢,c7'}. Now let A =1 = {1,2,3} and

1 1 1
P=11 ¢ ¢
1 ¢ ¢t

Put S = M(I,G, A; P) and define a: S — S by the rule (i,g, \)a = (i, gw, A). By
Proposition 2.2, a is an automorphism of order p of S whose set of fixed points is
precisely I x {c) x A. The semigroup S is not nilpotent, as can be easily seen by
plugging in, for example, x = (1, a,2) and y = (2,b, 3) into g, (z,y, z) and ¢, (y,z, 2)
and comparing the first and last components.

We note here that nilpotent completely (0)-simple semigroups were considered
by Jespers and Okninski [2]. It is for example easy to see that a rectangular band
S=1IxA=M(I,{1},A;1) is not nilpotent if |I| > 1 or |A| > 1. Since non-trivial
left and right zero semigroups are not nilpotent, and the property of being nilpotent
is preserved under taking sub- semigroups and quotients, it follows that a completely
regular semigroup is nilpotent (of class < ¢) if and only if it is a semilattice of
nilpotent groups (each of which is of class < ¢).

Proof of Theorem 1.4. Given x € S, denote by /7 the unique element y € S such
that y2 = z. By [1] we have that /za = (y/z)a and Va—! = (y/z) ' forall z € S.
Given x € S, we can show as above that (H,)a C H,. Furthermore, we claim
that the equality holds. namely, if y € H, and z = ya~!, then 2° = 3 = (2a)° =
(z%)a = 2°, hence z € H,. Thus the restriction of a to H, is a fixed-point-free
group automorphism of order 2 of H,. We now claim that H, is uniquely 2-divisible.
Choose y € H,, that is, 4° = 2°. We need to show that VY € H;. Note that

(vV9)° =vy-(Vy)~ ' = y/y~ ' It is easy to see that if \/a and v/b commute, then
Va -vb=+/ab. Thus (vy)° = Vyy~' = /y°. As ¢ is an idempotent, it follows

that v/y° = 3y° = 2%, hence VY € H;. Now we can apply a result of Neumann
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[4] to conclude that za = 271. Since a induces an automorphism a — a~! of any
F-class of S, it follows that S is over-abelian. O
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