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Abstract. The purpose of this note is to prove that if a completely regular
semigroup with finite H -classes posesses an idempotent-fixing automorphism
of prime order, then it is an over-nilpotent semigroup.

1. Introduction

One of the prominent results in the theory of finite groups is the following theorem
proved by Thompson:

Theorem 1.1 ([7]). Let G be a finite group and α a fixed-point-free automorphism
of G of prime order p. Then G is nilpotent, and its nilpotency class can be bounded
in terms of p.

This result was generalized to finite inverse semigroups by Araújo and Kinyon:

Theorem 1.2 ([1]). Let S be a finite inverse semigroup that has an automorphism
of prime order whose set of fixed points is precisely E(S). Then S is a nilpotent
Clifford semigroup.

A problem posed in [1] asks about possible extensions of the above result to other
classes of regular semigroups. For a start, the notion of nilpotency would need to
be suitably adapted. One of the possible ways originates from a paper by Neumann
and Taylor [5] and goes as folows. Let F be a free semigroup of countable rank. For
x, y, z0, z1, . . . in F define a sequence of words qn(x, y, z0, . . . , zn−1) by q0(x, y) = x
and

qn+1(x, y, z0, . . . , zn) = qn(x, y, z0, . . . , zn−1)znqn(y, x, z0, . . . , zn−1)

for n ≥ 0. A semigroup S is said to be nilpotent of class c if it satisfies the identity
qc(x, y, z0, . . . , zc−1) = qc(y, x, z0, . . . , zc−1) for all x, y ∈ S, zi ∈ S1, and c is the
least positive integer with this property. Neumann and Taylor [5] showed that a
group is nilpotent of class ≤ c in the classical sense if and only if it satisfies the
above identity.

We show the following:

Theorem 1.3. Let S be a completely regular semigroup with finite H -classes. If
S has an automorphism of prime order p whose set of fixed points is precisely E(S),
then there exists c = c(p) such that the H -classes of S are nilpotent of class ≤ c,
and thus S satisfies the identity

qc(exe, eye, ez0e, . . . , ezc−1e) = qc(eye, exe, ez0e, . . . , ezc−1e),

where e = (xyz0 . . . zc−1)0.
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If S is as in Theorem 1.3, then its H -classes are nilpotent of class ≤ c; we say
that S is an over-(nilpotent of class ≤ c) semigroup. However, S itself need not be
nilpotent (in the sense of Neumann and Taylor). We will exhibit an example of a
finite completely simple semigroup with an automorphism of prime order that fixes
all idempotents, but is not nilpotent.

Araújo and Kinyon [1] also show that if S is a uniquely 2-divisible inverse
semigroup with an automorphism α of order 2 whose set of fixed points is precisely
E(S), then xα = x−1 for all x ∈ S. They pose a conjecture [1, Conjecture 1] that
a similar result holds true for completely regular semigroups. We confirm this by
showing the following result:

Theorem 1.4. Let S be a uniquely 2-divisible completely regular semigroup with an
automorphism α of order 2 that fixes precisely E(S). Then xα = x−1 for all x ∈ S.

As noted by Araújo and Kinyon [1], the above conclusion does not imply that S
is commutative, as opposed to the case of inverse semigroups. The proof of Theorem
1.4 implies that, under the above assumptions, S is over-abelian and thus satisfies
the identity (xyx)0yx = xy(xyx)0, see [6, Proposition II.7.2].

2. Proofs

We briefly collect some facts on completely regular semigroups. A reference for
this is for instance a book of Petrich and Reilly [6]. A semigroup S is said to be
completely regular if every H -class of S is a subgroup. Given x ∈ S, we denote by
x0 the identity element of the H -class Hx, and x−1 stands for the inverse of x in
Hx.

Proof of Theorem 1.3. Let α be an automorphism of S of prime order whose set of
fixed points is precisely E(S), and let x ∈ S. Then [6, Lemma II.2.4], together with
the fact that α fixes the idempotents of S, implies x0 = (x0)α = (xα)0. By [6, p.63],
this implies that xα ∈ Hx. Thus the restriction of α to Hx is a fixed-point-free
automorphism of prime order p of the group Hx. By Thompson’s theorem, Hx is
a nilpotent group whose nilpotency class can be bounded uniformly in terms of p
only. This, together with [6, Proposition II.7.1], concludes the proof. �

A special class of completely regular semigroups are completely simple semigroups.
These can be described as Rees matrix semigroups S = M(I,G,Λ;P ) over a
group G with Λ × I sandwich matrix P = (pλi). Elements of this semigroup are
triples (i, g, λ), where i ∈ I, g ∈ G, λ ∈ Λ, and the multiplication is given by
(i, g, λ)(j, h, µ) = (i, gpλjh, µ). Moreover, P may be taken to be normalized, i.e.,
there exist 1 ∈ I and 1 ∈ Λ such that p1i = pλ1 = e for all i ∈ I, λ ∈ Λ; here e is the
identity element of G. If x = (i, g, λ), then Hx = {(i, h, λ) : h ∈ G} is isomorphic to
G. By [3, Proposition 4.1] therefore have:

Corollary 2.1. Let S be a completely simple semigroup with a finite structure
group. If S has an automorphism of prime order p that fixes E(S), then there exists
c = c(p) such that S satisfies the identity

qc(a0, a, x0, . . . , xc−1) = qc(a, a0, x0, . . . , xc−1)

for all a, x0, . . . , xc−1 ∈ S.

Proposition 2.2. Let S =M(I,G,Λ;P ) with P normalized. An automorphism α
of S fixes E(S) if and only if α is of the form (i, g, λ)α = (i, gω, λ), where ω ∈ AutG
and the set of fixed points of ω contains 〈P 〉, the subgroup of G generated by all
entries of P .
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Proof. Let (ϕ, ω, ψ) ∈ T (I)× End(G)× T (Λ) be a triple satisfying

pλiω = p1ψ,1ϕp
−1
λψ,1ϕpλψ,iϕp

−1
1ψ,iϕ.

Define a map θ = θ(ϕ, ω, ψ) : S → S by the rule

(i, g, λ)θ = (iϕ, p−1
1ψ,iϕ(gω)p1ψ,1ϕp

−1
λψ,1ϕ, λψ).

Then θ is an endomorphism of S. Moreover, every endomorphism of S can be
obtained uniquely in this way [6, Lemma III.3.11].

Let α = α(ϕ, ω, ψ) ∈ AutS fix E(S). This means that

(i, p−1
λi , λ) = (i, p−1

λi , λ)α = (iϕ, p−1
1ψ,iϕ((p−1

λi )ω)p1ψ,1ϕp
−1
λψ,1ϕ, λψ)

for all λ ∈ Λ, i ∈ I. It follows that ϕ and ψ are identity mappings, ω ∈ AutG, and
pλiω = pλi, therefore 〈P 〉 is fixed by ω. The converse is obvious. �

Example 2.3. Let G be the Heisenberg group of 3× 3 unitriangular matrices over
GF(p), where p is an odd prime. It is generated by the matrices

a =

1 1 0
0 1 0
0 0 1

 and b =

1 0 0
0 1 1
0 0 1

 .

The group G is finite of order p3, non-abelian and nilpotent. Denote c = [a, b].
There is an automorphism ω of G defined by

a 7→ ab−1, b 7→ bc−1.

It is easily verified that ω has order p and the set of fixed points of ω is 〈c〉 =
{1, c, c−1}. Now let Λ = I = {1, 2, 3} and

P =

1 1 1
1 c c
1 c c−1

 .

Put S =M(I,G,Λ;P ) and define α : S → S by the rule (i, g, λ)α = (i, gω, λ). By
Proposition 2.2, α is an automorphism of order p of S whose set of fixed points is
precisely I × 〈c〉 × Λ. The semigroup S is not nilpotent, as can be easily seen by
plugging in, for example, x = (1, a, 2) and y = (2, b, 3) into qn(x, y, z) and qn(y, x, z)
and comparing the first and last components.

We note here that nilpotent completely (0)-simple semigroups were considered
by Jespers and Okninski [2]. It is for example easy to see that a rectangular band
S = I × Λ =M(I, {1},Λ; 1) is not nilpotent if |I| > 1 or |Λ| > 1. Since non-trivial
left and right zero semigroups are not nilpotent, and the property of being nilpotent
is preserved under taking sub- semigroups and quotients, it follows that a completely
regular semigroup is nilpotent (of class ≤ c) if and only if it is a semilattice of
nilpotent groups (each of which is of class ≤ c).

Proof of Theorem 1.4. Given x ∈ S, denote by
√
x the unique element y ∈ S such

that y2 = x. By [1] we have that
√
xα = (

√
x)α and

√
x−1 = (

√
x)−1 for all x ∈ S.

Given x ∈ S, we can show as above that (Hx)α ⊆ Hx. Furthermore, we claim
that the equality holds. namely, if y ∈ Hx and z = yα−1, then x0 = y0 = (zα)0 =
(z0)α = z0, hence z ∈ Hx. Thus the restriction of α to Hx is a fixed-point-free
group automorphism of order 2 of Hx. We now claim that Hx is uniquely 2-divisible.
Choose y ∈ Hx, that is, y0 = x0. We need to show that √y ∈ Hx. Note that
(√y)0 = √y · (√y)−1 = √y

√
y−1. It is easy to see that if

√
a and

√
b commute, then√

a ·
√
b =
√
ab. Thus (√y)0 =

√
yy−1 =

√
y0. As y0 is an idempotent, it follows

that
√
y0 = y0 = x0, hence √y ∈ Hx. Now we can apply a result of Neumann
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[4] to conclude that xα = x−1. Since α induces an automorphism a 7→ a−1 of any
H -class of S, it follows that S is over-abelian. �
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