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PRIMOŽ MORAVEC

Abstract. We prove that the nonabelian tensor square of a powerful p-group
is again a powerful p-group. Furthermore, If G is powerful, then the exponent

of G⊗G divides the exponent of G. New bounds for the exponent, rank, and

order of various homological functors of a given finite p-group are obtained.
In particular, we improve the bound for the order of the Schur multiplier of a

given finite p-group obtained by Lubotzky and Mann.

1. Introduction
intro

The concept of the nonabelian tensor product of groups was introduced by Brown
and Loday in [1], following the ideas of Dennis [3]. This construction generalizes
the notion of the usual ‘abelian’ tensor product of groups, and has its origins in the
algebraic K-theory and homotopy theory. Group theoretical aspects of nonabelian
tensor products have been studied extensively by several authors, starting with
Brown, Johnson and Robertson [2]. We also mention here a survey paper by Kappe
[9] for a rather thorough overview of known results and literature. Two important
special cases of the above notion are the nonabelian tensor square G⊗G and exterior
square G∧G of a group G. Their interest lies in the fact that the Schur multiplier
H2(G) of G is isomorphic to the kernel of the commutator map G∧G→ G′, whereas
the kernel of the commutator map G⊗G→ G′ is isomorphic to π3(SK(G, 1)), the
third homotopy group of the suspension of an Eilenberg MacLane space K(G, 1)
[1].

When G is a finite p-group, both G⊗G and G∧G are finite p-groups as well [2].
The nonabelian tensor squares of finite p-groups have been studied, for instance, in
[2, 4, 7, 12]. In this paper we consider the nonabelian tensor squares of powerful
p-groups. Recall that a finite p-group G is said to be powerful if p > 2 and G′ ≤ Gp,
or p = 2 and G′ ≤ G4. The theory of these groups, which have proven to have
fruitful applications in the theory of finite p-groups, was developed by Lubotzky
and Mann [10]. One of our main results is that if G is a powerful p-group, then its
nonabelian tensor square G⊗G is powerfully embedded in a group ν(G) introduced
by Ellis and Leonard [6] and Rocco [12]. This result then enables us to prove that
if G is a powerful p-group, the exponent of G⊗G divides the exponent of G. This
generalizes a result of Lubotzky and Mann [10]. We then use techniques developed
in [10] to estimate the order, exponent, and rank of G⊗G and G∧G in terms of the
exponent and rank of an arbitrary finite p-group G. Our bounds improve previously
obtained estimates obtained by Jones [8], Rocco [12], and Ellis [4]. Furthermore,
we obtain new bounds for |H2(G)| and |π3(SK(G, 1))|. We mention here that our

Date: January 31, 2008.
2000 Mathematics Subject Classification. 20J99, 20D15.
Key words and phrases. finite p-groups, the nonabelian tensor square.
The author was partially supported by the Ministry of Higher Education, Science and Tech-

nology of Slovenia.

1



2 PRIMOŽ MORAVEC

bound for the order of H2(G) is asymptotically better than the one obtained by
Lubotzky and Mann [10].

The paper is organized as follows. In Section 2 we briefly recall the definition
and basic properties of nonabelian tensor squares of groups. Then we deal with
tensor squares of powerful p-groups. The bounds for the order of the nonabelian
tensor square of a given p-group are obtained in Section 3.

2. Powerful p-groups
powerful

At first we recall some basic properties of the nonabelian tensor squares of groups.
We refer to [1, 2] for a more thorough account on the theory. Let G be a group and
N a normal subgroup of G. We form the group N ⊗G, generated by the symbols
n⊗ g, where g ∈ G and n ∈ N , subject to the following relations:

nn′ ⊗ g = (nn′ ⊗ ng)(n⊗ g),

n⊗ gg′ = (n⊗ g)(gn⊗ gg′),

for all n, n1 ∈ N and g, g1 ∈ G. Here we use the notation xy = xyx−1 for conjuga-
tion from the left (left hand actions are commonly used in this setting). We also
define N ∧G = (N ⊗G)/∇(N,G), where ∇(N,G) = 〈n⊗n : n ∈ N〉. Note that we
can similarly define G⊗N and G∧N , and that G⊗N ∼= N⊗G and G∧N ∼= N∧G;
this follows from the first principles of the more general construction of the non-
abelian tensor product [1]. When N = G, the groups G⊗G and G∧G are said to
be the nonabelian tensor square and the nonabelian exterior square of G. We also
denote ∇(G) = ∇(G,G). By definition, the commutator maps κ : G⊗G→ G′ and
κ̄ : G ∧ G → G′, given by g ⊗ h 7→ [g, h] and g ∧ h 7→ [g, h], respectively, are well
defined homomorphisms of groups. Here the commutator [g, h] of elements g and
h is defined by [g, h] = ghg−1h−1. Clearly kerκ is a central subgroup of G ⊗ G,
and ker κ̄ is central in G∧G. Furthermore, it turns out that kerκ ∼= π3(SK(G, 1))
and ker κ̄ ∼= H2(G) [1]. We usually denote J2(G) = kerκ, and we clearly have that
J2(G) is an extension of ∇(G) by H2(G).

There is another approach to the nonabelian tensor squares, introduced by Ellis
and Leonard [6], and independently by Rocco [12]. Let G be a group and let Gϕ

be an isomorphic copy of G via the mapping ϕ : g → gϕ for all g ∈ G. We define
the group ν(G) to be

ν(G) = 〈G,Gϕ | x[g, hϕ] = [xg, (xh)ϕ] = xϕ

[g, hϕ],∀x, g, h ∈ G〉.

The motivation for considering ν(G) relative to the nonabelian tensor square is the
fact that the map φ : G⊗G→ [G,Gϕ] defined by φ(g⊗ h) = [g, hϕ] for all g and h
in G is an isomorphism of groups [6, 12]. Note that if G is a finite group (p-group),
then ν(G) is also a finite group (p-group); this follows from the exact sequence [6]

1 −→ [G,Gϕ] −→ ν(G) −→ G×G −→ 1.

Similarly we can define

τ(G) = 〈G,Gϕ | x[g, hϕ] = [xg, (xh)ϕ] = xϕ

[g, hϕ], [g, gϕ] = 1,∀x, g, h ∈ G〉,

and we have that the subgroup [G,Gϕ] of τ(G) is naturally isomorphic to G ∧G.
Let G be a finite p-group and let N be a normal subgroup of G. Recall that N

is powerfully embedded in G if p is odd and [N,G] ≤ Np, or p = 2 and [N,G] ≤ N4.
It is well known [2] that G∧G is isomorphic to the derived subgroup of a covering
group H of G. From [10, Theorem 2.1] it therefore follows that if G is a powerful p-
group, an isomorphic copy of G∧G can be powerfully embedded in H. In particular,
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we conclude that G∧G is a powerful p-group. The main result of this section goes
as follows.

main Theorem 2.1. Let G be a powerful p-group. Then the groups [ν(G), ν(G)] and
[G,Gϕ] are powerfully embedded in ν(G).

Proof. We only prove the assertion for [ν(G), ν(G)], the proof for [G,Gϕ] follows
along the same lines. Assume that p is odd and that [ν(G), ν(G)]p = 1. We want
to prove that γ3(ν(G)) = 1. We may assume without loss of generality that ν(G)
is nilpotent of class ≤ 3. By the assumption we have that [G,G]p = [Gϕ, Gϕ]p =
[G,Gϕ]p = 1. Since G is powerful, it follows from here that γ3(G) ≤ [G,G]p = 1,
hence G is nilpotent of class ≤ 2. As ν(G) = ([G,Gϕ] oG) oGϕ [6] and [G,Gϕ] is
normal in ν(G), we have

γ3(ν(G)) = γ3(G)γ3(Gϕ)[G,G,Gϕ][Gϕ, Gϕ, G] = [G,G,Gϕ][Gϕ, Gϕ, G].

Furthermore, for any g, h ∈ G we have that [g, hϕ][h, gϕ] is central in ν(G) [12].
As G is nilpotent of class ≤ 2 and ν(G) is nilpotent of class ≤ 3, we thus get 1 =
[[g, hϕ][h, gϕ], k] = [g, hϕ, k][h, gϕ, k] for all k ∈ G. Therefore [g, hϕ, k] = [gϕ, h, k] =
[g, h, kϕ] (the last equality follows from [12]). We obtain that [gϕ, hϕ, k] = [g, hϕ, k] =
[g, h, kϕ] for all g, h, k ∈ G. This implies that γ3(ν(G)) = [G,G,Gϕ]. As G is nilpo-
tent of class ≤ 2, induction argument yields

A1A1 (2.1.1) [gm, (hϕ)n] = [g, hϕ]mn[h, [g, h]ϕ]m(n
2)[g, [g, h]ϕ]n(m

2 )

for all integers m and n and g, h ∈ G. Let now g, h, k ∈ G and consider the element
[g, h, kϕ]. Since G is powerful, we have that [g, h] ∈ Gp, hence [g, h] = xp for some
x ∈ G [10, Proposition 1.7]. Since G = G2, we can write k =

∏
i y

2
i for some yi ∈ G.

By (2.1.1) we get

[xp, (yϕ
i )2] = [x, yϕ

i ]2p[yi, [x, yi]ϕ]p[x, [x, yi]ϕ]2(
p
2) = 1,

hence [xp, kϕ] = 1 by straightforward expansion. It follows from here that [G,G,Gϕ] =
1, therefore ν(G) is nilpotent of class ≤ 2, as required.

The proof in the case p = 2 requires slight modifications. We may assume that
[ν(G, ν(G)]4 = γ4(ν(G)) = 1. Again we have that G is nilpotent of class ≤ 2
and γ3(ν(G)) = [G,G,Gϕ]. Consider an element [g, h, kϕ] of [G,G,Gϕ]. Since G
is powerful, there exists x ∈ G such that [g, h] = x4. As G = G3, it suffices to
consider the case when k = y3 for some y ∈ G. Using (2.1.1), we obtain

[g, h, kϕ] = [x4(, yϕ)3] = [x, y]12[y, [x, y]ϕ]12[x, [x, y]ϕ]18 = [x, [x, y]ϕ]2.

Again [x, y] = z4 for some z ∈ G, and we only need to consider the case when
x = w3 for some w ∈ G. Now we get

[w3, (zϕ)4] = [w, zϕ]12[z, [w, z]ϕ]18[w, [w, z]ϕ]12 = [z, [w, z]ϕ]2,

hence expansion gives that [g, h, kϕ] = 1. This proves the theorem. �

When G is a powerful p-group, ν(G) need not be powerful. For example, if G is a
cyclic group of order p, then ν(G) is the nonabelian group of order p3 and exponent
p. Clearly ν(G) is not powerful. We also mention here that a similar argument as
above shows that if G is powerful, the group [τ(G), τ(G)] is powerfully embedded
in τ(G).

If G is a group and N a normal subgroup of G, then we have canonical homo-
morphisms ι1 : N ⊗ G → G ⊗ G and ι2 : G ⊗ N → G ⊗ G. Their images are
normal subgroups of G⊗G. A similar argument as above can be used to prove the
following result:
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pe Proposition 2.2. Let G be a finite p-group and let N be powerfully embedded in
G. Then im ι1 and im ι2 are powerfully embedded in G⊗G.

For a finite p-group G denote |G : Φ(G)| = pd(G). Lubotzky and Mann [10]
proved that if G is a powerful p-group with d(G) = d, then G ∧G and H2(G) can
be generated by

(
d
2

)
generators. By Theorem 2.1 we get the following extension of

this result:

powergen Corollary 2.3. Let G be a powerful p-group with d(G) = d. Then d([ν(G), ν(G)]) ≤
d(2d− 1), d(G⊗G) ≤ d2, and d(J2(G)) ≤ d2.

Proof. Let G be generated by {x1, . . . , xd}. Then [ν(G), ν(G)] is the normal closure
in ν(G) of the set S = {[xi, xj ], [xϕ

i , y
ϕ
j ], [xi, x

ϕ
k ] : 1 ≤ j < i ≤ d, 1 ≤ k ≤ d}.

Similarly, the group [G,Gϕ] is the normal closure in ν(G) of the set T = {[xi, x
ϕ
j ] :

1 ≤ i, j ≤ d}. Since both [ν(G), ν(G)] and [G,Gϕ] are powerfully embedded in ν(G)
by Theorem 2.1, it follows that [ν(G), ν(G)] is actually generated by S, and that
[G,Gϕ] is generated by T [10, Proposition 1.10]. This gives bounds for the number
of generators of [ν(G), ν(G)] and G ⊗ G. As J2(G) is a subgroup of a powerful
p-group G ⊗ G, it follows that d(J2(G)) ≤ d(G ⊗ G) [10, Theorem 1.12]. This
concludes the proof. �

Note that the bounds obtained in Corollary 2.3 are sharp; the equalities are
attained for instance when G is a finite abelian p-group.

From [10, Theorem 2.1] it can be inferred that if G is a powerful p-group, then
exp(G ∧G) divides expG. Our next theorem generalizes this result.

powerexp Theorem 2.4. Let G be a powerful p-group. Then the exponent of [ν(G), ν(G)]
divides expG.

Proof. Let H = ν(G) and expG = pe. By Theorem 2.1, the group H ′ is powerfully
embedded in H. Thus it follows from [10] that γk(H)pi

= [γ2(H)pi

, k−2H] for all
nonegative integers i and k ≥ 2. Assume first that p is odd. Then [γ2(H)pi

, k−2H] ≤
(γ2(H)pi

)pk−2
= γ2(H)pi+k−2

. This therefore gives

A2A2 (2.4.1) γk(H)pi

≤ γ2(H)pi+k−2
for k ≥ 2.

This equation implies that if expH ′ = pn, then exp γk(H) divides pn−k+2 for all
k ≥ 2. Let a, b ∈ H. Expanding [apn−1

, b] using Hall’s Collection Process, we get

A3A3 (2.4.2) [apn−1
, b] ≡ [a, b]p

n−1
γ2(〈a, [a, b]〉)pn−1

n−1∏
i=1

γpi(〈a, [a, b]〉)pn−i−1
.

We have that γ2(〈a, [a, b]〉)pn−1 ≤ γ3(〈a, b〉)pn−1
= 1. Similarly we also have that

γpi(〈a, [a, b]〉)pn−i−1 ≤ γpi+1(〈a, b〉)pn−i−1
= 1, since p ≥ 3 and pi ≥ i+ 2. It follows

that [apn−1
, b] = [a, b]p

n−1
for all a, b ∈ H. In order to prove that the exponent of

H ′, we may assume without loss of generality that γ2(H)pe+1
= 1. The group H ′ is

generated by the elements of the form [g, h], [gϕ, hϕ], and [g, hϕ], where g, h ∈ G.
As expG = pe, we have that [g, h]p

e

= [gϕ, hϕ]p
e

= 1. Besides, the above argument
shows that [g, hϕ]p

e

= [gpe

, hϕ] = 1. It follows that H ′ is generated by elements of
order pe. But H ′ is powerful, hence expH ′ divides pe by [10, Corollary 1.9].

For 2-groups, the equation (2.4.1) needs to be replaced with

A4A4 (2.4.3) γk(H)2i

≤ γ2(H)2i+2(k−2)
for k ≥ 2.

Thus, if expH ′ = 2n, it follows that exp γk(H) divides 2n−2(k−2). Using (2.4.2)
with p = 2 and observing that 2i+1 ≥ i+ 3, we conclude as above that [a2n−1

, b] =
[a, b]2

n−1
for all a, b ∈ H. This again implies that expH ′ divides 2e. �
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Theorem 2.4 and Corollary 2.3, together with [10, Proposition 2.5], yield the
following result:

powerord Corollary 2.5. Let G be a powerful p-group, with d(G) = d and expG = pe. Then
|[ν(G), ν(G)]| ≤ ped(2d−1), |G⊗G| ≤ ped2

, and |G ∧G| ≤ ped(d−1)/2.

Again, these bounds are best possible, since the equalities hold when G is an
abelian p-group.

3. Bounds
bounds

Throughout this section (unless otherwise stated) let G be a finite p-group of ex-
ponent pe, and let r = sr(G) be its special rank, i.e., sr(G) = max{d(H) : H ≤ G}.
Note that d(G) ≤ sr(G) ≤ log2 |G|. Let

m =
{
dlog2 re : p > 2
dlog2 re+ 1 : p = 2 .

Lubotzky and Mann [10] found estimates for the order of G and H2(G) in terms of
r and e. Their arguments were based on the following fact.

char Lemma 3.1 ([10]). Let G be a p-group of exponent pe, with sr(G) = r. Then G

contains a characteristic powerful subgroup H such that |G : H| ≤ prm.

nabla Lemma 3.2. Let G be a group generated by the set {x1, . . . , xr}. Then ∇(G) is
generated by {xi ⊗ xi, (xi ⊗ xj)(xj ⊗ xi) : i, j = 1, . . . , r, j < i}.

Proof. Define the map φ : G × G → G ⊗ G by the rule φ(g, h) = (g ⊗ h)(h ⊗ g)
for all g, h ∈ G. It is straightforward to verify that φ is bimultiplicative, i.e.,
φ(gg′, h) = φ(g, h)φ(g′, h) and φ(g, hh′) = φ(g, h)φ(g, h′) for all g, g′, h, h′ ∈ G.
Using this fact and the identity gh⊗ gh = (g ⊗ g)(h⊗ h)φ(g, h), which holds true
for all g, h ∈ G, the result follows. �

genrankodd Proposition 3.3. Let G be as above. Then we have:
(a) d(J2(G)) ≤ r2(1 +m).
(b) sr(G ∧G) ≤

(
r+1

2

)
+ r2m.

(c) sr(G⊗G) ≤ r + r2(1 +m).

Proof. We have an exact sequence

B1B1 (3.3.1) 0 −→ ∇(G) −→ J2(G) −→ H2(G) −→ 0,

hence d(J2(G)) ≤ d(∇(G))+d(H2(G)). From [10, Theorem 2.3 and Theorem 4.2.3]
we get that d(H2(G)) ≤

(
r
2

)
+ r2m. Besides, Lemma 3.2 implies that d(∇(G)) ≤(

r+1
2

)
. This gives (a). To prove (b) and (c), note that we have central extensions

B2B2 (3.3.2) 0 −→ H2(G) −→ G ∧G −→ G′ −→ 1

and

B3B3 (3.3.3) 0 −→ J2(G) −→ G⊗G −→ G′ −→ 1,

from which it is not difficult to get the assertions. �

Next we estimate the exponents of J2(G), G∧G, and G⊗G. We note here that
Ellis [4] proved that if G is any finite group, then expJ2(G) divides the order of G,
and that the exponent of G ⊗ G divides |G| expG′. On the other hand, it follows
from [11] that if G is a locally finite group of finite exponent, then the exponent of
G⊗G can be bounded in terms of expG only. Precise bounds are however known
only in some particular cases, cf. [11] for further details. Our aim here is to prove
the following result.
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genexpodd Proposition 3.4. With the above notations, let

k =
{
dlog2 re : p > 2
dlog2 re2 + 1 : p = 2 .

Then we have:

(a) exp(J2(G)) ≤ p2e+rk.
(b) exp(G ∧G) ≤ p2e+rk.
(c) exp(G⊗G) ≤ p3e+rk.

Proof. At first note that (g ⊗ g)pe

= gpe ⊗ g = 1 for all g ∈ G, therefore exp∇(G)
divides pe. By [10, Proposition 2.6 and Proposition 4.2.6], the exponent of H2(G)
divides pe+rk. From the exact sequence (3.3.1) it follows that exp J2(G) divides
expH2(G) exp∇(G), which immediately gives (a). Similarly, (b) and (c) can now
be proved by referring to the exact sequences (3.3.2) and (3.3.3). �

Now we focus on the order of G⊗G and G∧G. In principle we could use the above
arguments to obtain the bounds. However, it turns out that a direct application of
Lemma 3.1 provides substantially better estimates. Before formulating the result,
we mention that Jones [8] proved that if G is a d-generator finite p-group of order
pn, then pd(d−1)/2 ≤ |G ∧ G| ≤ pn(n−1)/2. Rocco [12] (see also Ellis [4]) proved
that if G is a d-generator finite p-group of order pn, with |G′| = pm, then pd2 ≤
|G ⊗ G| ≤ pn(n−m). Similar bounds have been obtained by Ellis and McDermott
[7] and Ellis [5] in a more general setting. We will apply here the following result:

EM Lemma 3.5 ([5]). Let G be a finite p-group and N a normal subgroup of G. Sup-
pose that |N | = pn, d = d(G), and |N/N ∩Φ(G)| = pt. Then |G∧N | ≤ pdn−t(t+1)/2

and |G⊗N | ≤ pdn.

genorderodd Theorem 3.6. With the above notations we have:

(a) |G ∧G| ≤ pr2(e+m).
(b) |G⊗G| ≤ pr2(2e+m).

Proof. Let H be as in Lemma 3.1. By the identity g ∧ h = (h ∧ g)−1 which holds
in G ∧G for all g, h ∈ G we get an exact sequence

G ∧H −→ G ∧G −→ G/H ∧G/H −→ 1.

By Lemma 3.5 we have that |G ∧ H| ≤ |H|r. As H is powerful, we have that
|H| ≤ per [10, Proposition 2.5]. Thus |G ∧H| ≤ per2

. As |G : H| ≤ prm, Lemma
3.5 implies that |G/H ∧ G/H| ≤ pr2m, hence |G ∧ G| ≤ pr2(e+m), as required. To
prove the corresponding statement for G⊗G, we use the exact sequence [5]

(G⊗H)(H ⊗G) −→ G⊗G −→ G/H ⊗G/H −→ 1,

which gives |G ⊗ G| ≤ |G ⊗ H|2|G/H ⊗ G/H|. Using similar estimates as above,
we get the result. �

It is proved in [10] that |H2(G)| ≤ p(
r
2)e+er2m. On the other hand, Theorem 3.6

implies slightly better bounds:

H2J2p Corollary 3.7. With the above notations we have that |H2(G)| ≤ pr2(e+m) and
|J2(G)| ≤ pr2(2e+m).
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