GROUPS OF PRIME POWER ORDER AND THEIR
NONABELIAN TENSOR SQUARES

PRIMOZ MORAVEC

ABSTRACT. We prove that the nonabelian tensor square of a powerful p-group
is again a powerful p-group. Furthermore, If G is powerful, then the exponent
of G ® G divides the exponent of G. New bounds for the exponent, rank, and
order of various homological functors of a given finite p-group are obtained.
In particular, we improve the bound for the order of the Schur multiplier of a
given finite p-group obtained by Lubotzky and Mann.

1. INTRODUCTION

The concept of the nonabelian tensor product of groups was introduced by Brown
and Loday in [1], following the ideas of Dennis [3]. This construction generalizes
the notion of the usual ‘abelian’ tensor product of groups, and has its origins in the
algebraic K-theory and homotopy theory. Group theoretical aspects of nonabelian
tensor products have been studied extensively by several authors, starting with
Brown, Johnson and Robertson [2]. We also mention here a survey paper by Kappe
[9] for a rather thorough overview of known results and literature. Two important
special cases of the above notion are the nonabelian tensor square G®G and exterior
square G A G of a group G. Their interest lies in the fact that the Schur multiplier
H>(G) of G is isomorphic to the kernel of the commutator map GAG — G, whereas
the kernel of the commutator map G ® G — G’ is isomorphic to w3(SK(G, 1)), the
third homotopy group of the suspension of an Eilenberg MacLane space K(G,1)
[1].

When G is a finite p-group, both G® G and G A G are finite p-groups as well [2].
The nonabelian tensor squares of finite p-groups have been studied, for instance, in
[2, 4, 7, 12]. In this paper we consider the nonabelian tensor squares of powerful
p-groups. Recall that a finite p-group G is said to be powerful if p > 2 and G’ < GP,
or p=2and G' < G The theory of these groups, which have proven to have
fruitful applications in the theory of finite p-groups, was developed by Lubotzky
and Mann [10]. One of our main results is that if G is a powerful p-group, then its
nonabelian tensor square GR G is powerfully embedded in a group v(G) introduced
by Ellis and Leonard [6] and Rocco [12]. This result then enables us to prove that
if G is a powerful p-group, the exponent of G ® G divides the exponent of G. This
generalizes a result of Lubotzky and Mann [10]. We then use techniques developed
in [10] to estimate the order, exponent, and rank of G®G and G AG in terms of the
exponent and rank of an arbitrary finite p-group G. Our bounds improve previously
obtained estimates obtained by Jones [8], Rocco [12], and Ellis [4]. Furthermore,
we obtain new bounds for |H2(G)| and |r3(SK(G,1))|. We mention here that our
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bound for the order of Hs(G) is asymptotically better than the one obtained by
Lubotzky and Mann [10].

The paper is organized as follows. In Section 2 we briefly recall the definition
and basic properties of nonabelian tensor squares of groups. Then we deal with
tensor squares of powerful p-groups. The bounds for the order of the nonabelian
tensor square of a given p-group are obtained in Section 3.

2. POWERFUL p-GROUPS

At first we recall some basic properties of the nonabelian tensor squares of groups.
We refer to [1, 2] for a more thorough account on the theory. Let G be a group and
N a normal subgroup of G. We form the group N ® G, generated by the symbols
n ® g, where g € G and n € N, subject to the following relations:

nn' @ g=("n"®"g)(n®yg),
n®gy =n®g)(nxy),

for all n,n; € N and g, ¢; € G. Here we use the notation *y = zyxz~! for conjuga-
tion from the left (left hand actions are commonly used in this setting). We also
define NAG = (N®G)/V(N,G), where V(N,G) = (n®n :n € N). Note that we
can similarly define G® N and GAN, and that G N 2 NRG and GAN = NAG,
this follows from the first principles of the more general construction of the non-
abelian tensor product [1]. When N = G, the groups G ® G and G A G are said to
be the nonabelian tensor square and the nonabelian exterior square of G. We also
denote V(G) = V(G, G). By definition, the commutator maps k : G® G — G’ and
E:GANG — G given by g® h — [g,h] and g A h — [g, h], respectively, are well
defined homomorphisms of groups. Here the commutator [g, h] of elements g and
h is defined by [g,h] = ghg=*h~!. Clearly kerx is a central subgroup of G ® G,
and ker % is central in G A G. Furthermore, it turns out that ker x = n3(SK(G, 1))
and ker & = Hy(G) [1]. We usually denote J2(G) = ker k, and we clearly have that
J2(G) is an extension of V(G) by Ha(G).

There is another approach to the nonabelian tensor squares, introduced by Ellis
and Leonard [6], and independently by Rocco [12]. Let G be a group and let G¥
be an isomorphic copy of G via the mapping ¢ : g — ¢¥ for all g € G. We define
the group v(G) to be

v(G) = (G,G? | “[g,h?] = [g, ("h)?] = *"[9,h*],Var, g, h € G).

The motivation for considering v(G) relative to the nonabelian tensor square is the
fact that the map ¢ : G® G — [G, G¥] defined by ¢(g ® h) = [g, h¥] for all g and h
in G is an isomorphism of groups [6, 12]. Note that if G is a finite group (p-group),
then v(G) is also a finite group (p-group); this follows from the exact sequence [6]

1— [G,G¥] —v(G) — Gx G — 1.
Similarly we can define
7(G) = (G,G¥ | *lg,h*] = ["g. (*h)*] = *"[g.h¥], [9.9"] = 1,¥a, 9, € G),

and we have that the subgroup [G, G¥] of 7(G) is naturally isomorphic to G A G.
Let G be a finite p-group and let N be a normal subgroup of G. Recall that N
is powerfully embedded in G if p is odd and [N, G] < NP, or p =2 and [N, G] < N*.
It is well known [2] that G A G is isomorphic to the derived subgroup of a covering
group H of G. From [10, Theorem 2.1] it therefore follows that if G is a powerful p-
group, an isomorphic copy of GAG can be powerfully embedded in H. In particular,
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we conclude that G A G is a powerful p-group. The main result of this section goes
as follows.

Theorem 2.1. Let G be a powerful p-group. Then the groups [v(G),v(G)] and
[G, G?] are powerfully embedded in v(G).

Proof. We only prove the assertion for [v(G),v(G)], the proof for [G, G¥] follows
along the same lines. Assume that p is odd and that [v(G),v(G)]P = 1. We want
to prove that v3(v(G)) = 1. We may assume without loss of generality that v(G)
is nilpotent of class < 3. By the assumption we have that [G, G]P = [G¥,G¥]P =
[G,G?]P = 1. Since G is powerful, it follows from here that v3(G) < [G,G]P = 1,
hence G is nilpotent of class < 2. As v(G) = ([G,G?] x G) x G¥ [6] and [G,G¥] is
normal in v(G), we have

13(V(G)) = 73(G)73(G¢)[G7 G, G%’] [Gﬂpa G?, G] = [G7 G, G@] [GLP’ G?, G]

Furthermore, for any g,h € G we have that [g, h¥][h, g¥] is central in v(G) [12].
As @G is nilpotent of class < 2 and v(G) is nilpotent of class < 3, we thus get 1 =
[lg, h?][h, g¥], k] = [g, h?, k|[h, g%, k] for all k € G. Therefore [g, h¥, k] = [¢¥, h, k] =
[9, h, k%] (the last equality follows from [12]). We obtain that [¢g¥, h¥, k] = [g, h¥, k] =
[g, h, k?] for all g, h, k € G. This implies that v3(v(G)) = [G, G, G¥]. As G is nilpo-
tent of class < 2, induction argument yields

(2.1.1) g™, (h#)"] = g, h?]"™" [h, [g, ] ¥) ") (g, [g, h)#)"(3)

for all integers m and n and g, h € G. Let now g, h, k € G and consider the element
[g, h, k¥]. Since G is powerful, we have that [g, h] € GP, hence [g, h] = aP for some
z € G [10, Proposition 1.7]. Since G = G2, we can write k = [, y? for some y; € G.
By (2.1.1) we get

[0, (49)%) = [o 91"l [, 9 Pl [ )2 0) = 1,
hence [2P, k¥] = 1 by straightforward expansion. It follows from here that [G, G, G¥] =
1, therefore v(G) is nilpotent of class < 2, as required.

The proof in the case p = 2 requires slight modifications. We may assume that
V(G v(G)]* = v4(v(G)) = 1. Again we have that G is nilpotent of class < 2
and v3(v(G)) = [G,G,G¥]. Consider an element [g, h, k¥] of [G, G, G¥]. Since G
is powerful, there exists z € G such that [g,h] = z%. As G = G3, it suffices to
consider the case when k = y3 for some y € G. Using (2.1.1), we obtain

9.7, k9] = [ (9%)°] = [2, 9] Py, [2, 9)9) 2L, [2, y)9]"° = [, [, y)9)2
Again [z,y] = 2* for some z € G, and we only need to consider the case when
x = w> for some w € G. Now we get
[w?, ()] = [w, 2°)2 [z, [w, 2]%]*[w, [w, 2]*]"? = [z, [w, 2]*)?,
hence expansion gives that [g, h, k¥] = 1. This proves the theorem. O

When G is a powerful p-group, v(G) need not be powerful. For example, if G is a
cyclic group of order p, then v(G) is the nonabelian group of order p* and exponent
p. Clearly v(G) is not powerful. We also mention here that a similar argument as
above shows that if G is powerful, the group [7(G), 7(G)] is powerfully embedded
in 7(G).

If G is a group and N a normal subgroup of G, then we have canonical homo-
morphisms ¢ : N® G - G®G and 13 : G® N — G ® G. Their images are
normal subgroups of G ® G. A similar argument as above can be used to prove the
following result:



powergen

powerexp

4 PRIMOZ MORAVEC

Proposition 2.2. Let G be a finite p-group and let N be powerfully embedded in
G. Then imt; and im 1o are powerfully embedded in G ® G.

For a finite p-group G denote |G : ®(G)| = pX(©@). Lubotzky and Mann [10]
proved that if G is a powerful p-group with d(G) = d, then G A G and Hy(G) can
be generated by (g) generators. By Theorem 2.1 we get the following extension of
this result:

Corollary 2.3. Let G be a powerful p-group with d(G) = d. Then d([v(G),v(G)]) <
d(2d — 1), d(G ® G) < d?, and d(J2(G)) < d>.

Proof. Let G be generated by {z1,...,z4}. Then [v(G),v(G)] is the normal closure
in v(G) of the set 8 = {[v;, )], [xf,y7 ], [xi, 2] : 1 < j < i <d 1<k <d}
Similarly, the group [G, G¥] is the normal closure in v(G) of the set T = {[z;, 2] :
1 <14,j < d}. Since both [v(G), v(G)] and [G, G¥] are powerfully embedded in v(G)
by Theorem 2.1, it follows that [¥(G),v(G)] is actually generated by 8, and that
[G, G?] is generated by T [10, Proposition 1.10]. This gives bounds for the number
of generators of [V(G),rv(G)] and G ® G. As J3(G) is a subgroup of a powerful
p-group G ® G, it follows that d(J2(G)) < d(G ® G) [10, Theorem 1.12]. This
concludes the proof. O

Note that the bounds obtained in Corollary 2.3 are sharp; the equalities are
attained for instance when G is a finite abelian p-group.

From [10, Theorem 2.1] it can be inferred that if G is a powerful p-group, then
exp(G A G) divides exp G. Our next theorem generalizes this result.
Theorem 2.4. Let G be a powerful p-group. Then the exponent of [V(G),v(G)]
divides exp G.
Proof. Let H = v(G) and exp G = p°. By Theorem 2.1, the group H' is powerfully
embedded in H. Thus it follows from [10] that vz (H)?" = [VQ(H)pl,k_zH] for all
nonegative integers i and k > 2. Assume first that p is odd. Then [yo(H)?", o2 H] <

iy, k—2 ithk—2

(2 (H)P )P~ =72 (H)P
(2.4.1) e (H)P' < Ao(H)P ™ for k > 2.

This equation implies that if exp H' = p", then expyx(H) divides p"~**2 for all

. This therefore gives

k> 2. Let a,b € H. Expanding [GJPTHI ,b] using Hall’s Collection Process, we get

n—1
n—1

(242) @0 = [0 e b)) T (e b))

i=1

n—i—1

We have that v2((a, [a,b]))?" " < v3({a,b))?" " = 1. Similarly we also have that
i ({a, [a, B))P" " < ypi g ({a, B))P =1, since p > 3 and p* > i + 2. It follows
that [a?" " ,b] = [a,b]P" " for all a,b € H. In order to prove that the exponent of
H', we may assume without loss of generality that o (H )pEJr1 = 1. The group H' is
generated by the elements of the form [g, h], [¢¥, h¥], and [g, h¥], where g,h € G.
As exp G = p°, we have that [g, h]?" = [¢¥, h¥]P" = 1. Besides, the above argument
shows that [g, h?]P" = [¢P",h¥] = 1. Tt follows that H' is generated by elements of
order p¢. But H' is powerful, hence exp H’' divides p® by [10, Corollary 1.9].
For 2-groups, the equation (2.4.1) needs to be replaced with

(2.4.3) Ye(H)?' < 7o (H) for k > 2.

Thus, if exp H' = 27, it follows that expyy(H) divides 2"~2(*=2) Using (2.4.2)
with p = 2 and observing that 2i7! > i + 3, we conclude as above that [aQWl,b] =
[a,b]2"" for all a,b € H. This again implies that exp H' divides 2°. O

n—i—1

9i+2(k—2)
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Theorem 2.4 and Corollary 2.3, together with [10, Proposition 2.5], yield the
following result:

Corollary 2.5. Let G be a powerful p-group, with d(G) = d and exp G = p°. Then
[(G), v(G)]] < p=i®=D), |G ® G| < p%, and |G A G| < pedld=D/2,

Again, these bounds are best possible, since the equalities hold when G is an
abelian p-group.

3. BOUNDS

Throughout this section (unless otherwise stated) let G be a finite p-group of ex-
ponent p°, and let r = sr(G) be its special rank, i.e., str(G) = max{d(H) : H < G}.
Note that d(G) < sr(G) < log, |G|. Let
_— [log, 7] Dop>2
| [logyr]l+1 : p=2
Lubotzky and Mann [10] found estimates for the order of G and H»(G) in terms of
r and e. Their arguments were based on the following fact.

Lemma 3.1 ([10]). Let G be a p-group of exponent p¢, with st(G) = r. Then G
contains a characteristic powerful subgroup H such that |G : H| < p™.

Lemma 3.2. Let G be a group generated by the set {x1,...,2,}. Then V(G) is
generated by {z; ® x;, (v; @ xj)(x; @ x;) 14,5 =1,...,r,j <i}.

Proof. Define the map ¢ : G x G — G ® G by the rule ¢(g,h) = (¢ ® h)(h ® g)
for all g,h € G. It is straightforward to verify that ¢ is bimultiplicative, i.e.,

P(99'.h) = d(g,h)p(g',h) and ¢(g, hh') = ¢(g,h)d(g, h') for all g.g',h, k" € G.
Using this fact and the identity gh ® gh = (¢ ® g)(h ® h)¢(g, h), which holds true
for all g, h € G, the result follows. O

Proposition 3.3. Let G be as above. Then we have:

(a) d(2(G)) < 7°(1+m).

(b) st(GAG) < (TJQFI) +7r2m.

(c) st(G®G) <r+7r31+m).
Proof. We have an exact sequence
(3.3.1) 0 — V(G) — J2(G) — Hy(G) — 0,
hence d(J2(G)) < d(V(G))+d(H=2(G)). From [10, Theorem 2.3 and Theorem 4.2.3]
we get that d(H2(G)) < (5) + r*m. Besides, Lemma 3.2 implies that d(V(G)) <
(T‘gl). This gives (a). To prove (b) and (c), note that we have central extensions

(3.3.2) 0— Hy(G) — GANG — G — 1

and

(3.3.3) 0— L(G) — GG — G —1,

from which it is not difficult to get the assertions. O

Next we estimate the exponents of Jo(G), G A G, and G ® G. We note here that
Ellis [4] proved that if G is any finite group, then exp J>(G) divides the order of G,
and that the exponent of G ® G divides |G|exp G'. On the other hand, it follows
from [11] that if G is a locally finite group of finite exponent, then the exponent of
G ® G can be bounded in terms of exp G only. Precise bounds are however known
only in some particular cases, cf. [11] for further details. Our aim here is to prove
the following result.
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Proposition 3.4. With the above notations, let

_ [ [logyr] op>2
[log,r]?+1 : p=2

Then we have:
(a) exp(Jo(@)) < p*tr.
(b) exp(G A G) < p2etrk,
() exp(G ® G) < pPetr,

Proof. At first note that (¢ ® g)?" = g?° ® g = 1 for all g € G, therefore exp V(G)
divides p°. By [10, Proposition 2.6 and Proposition 4.2.6], the exponent of Hs(G)
divides p*T™*. From the exact sequence (3.3.1) it follows that exp Jo(G) divides
exp Hy(G) exp V(G), which immediately gives (a). Similarly, (b) and (c) can now
be proved by referring to the exact sequences (3.3.2) and (3.3.3). O

Now we focus on the order of GRG and GAG. In principle we could use the above
arguments to obtain the bounds. However, it turns out that a direct application of
Lemma 3.1 provides substantially better estimates. Before formulating the result,
we mention that Jones [8] proved that if G is a d-generator finite p-group of order
p", then pXd=1/2 < |G A G| < p*(™™=D/2. Rocco [12] (see also Ellis [4]) proved
that if G is a d-generator finite p-group of order p”, with |G’| = p™, then de <
|G ® G| < p™™™). Similar bounds have been obtained by Ellis and McDermott
[7] and Ellis [5] in a more general setting. We will apply here the following result:

Lemma 3.5 ([5]). Let G be a finite p-group and N a normal subgroup of G. Sup-
pose that |[N| = p", d = d(G), and [N/NN®(G)| = pt. Then |GAN| < pin—tt+1)/2
and |G ® N| < pi".

Theorem 3.6. With the above notations we have:
(a) |GAG| < prletm),
(b) |G G| <pCetm),

Proof. Let H be as in Lemma 3.1. By the identity g A h = (h A g)~! which holds
in GAG for all g,h € G we get an exact sequence

GNH —GNG— G/HNG/H — 1.

By Lemma 3.5 we have that |G A H| < |H|". As H is powerful, we have that
|H| < p°" [10, Proposition 2.5]. Thus |G A H| < P, As |G : H| < p™™, Lemma
3.5 implies that |G/H AN G/H| < przm7 hence |G A G| < p’"Q(e“‘m), as required. To
prove the corresponding statement for G ® G, we use the exact sequence [5]

(GeoH)(H®G) —GE®GE@ — G/H®G/H — 1,
which gives |G ® G| < |G ® H|*|G/H ® G/H|. Using similar estimates as above,
we get the result. O

It is proved in [10] that |Hz(G)| < p(g)e"’”jm. On the other hand, Theorem 3.6
implies slightly better bounds:

Corollary 3.7. With the above notations we have that |Hy(G)| < p™"(+™) and
| 12(G)] < prierm),



NONABELIAN TENSOR SQUARES 7

REFERENCES
(1] R. Brown, and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26
(1987), no. 3, 311-335.
[2] R. Brown, D. L. Johnson, and E. F. Robertson, Some computations of nonabelian tensor
products of groups, J. Algebra 111 (1987), no. 1, 177-202.
[3] R. K. Dennis, In search of new “homology” functors having a close relationship to K-theory,

Preprint, Cornell University, Ithaca, NY, 1976.

E110 [4] G. Ellis, On the tensor square of a prime power group, Arch. Math 66 (1996), 467-469.

E112 [5] G. Ellis, On the relation between upper central quotients and lower central series of a group,
Trans. Amer. Math. Soc. 353 (2001), no. 10, 4219-4234.

E113 [6] G. Ellis, and F. Leonard, Computing Schur multipliers and tensor products of finite groups,
Proc. Royal Irish Academy (95A) 2 (1995), 137-147.

El114 [7] G. Ellis, and A. McDermott, Tensor products of prime-power groups, J. Pure Appl. Algebra
132 (1998), 119-128.

Jonl [8] M. R. Jones, Some inequalities for the multiplicator of a finite group, Proc. Amer. Math.
Soc. 39 (1973), 450-456.

Kap1l [9] L.-C. Kappe, Nonabelian tensor products of groups: the commutator connection, Proc.

Groups St. Andrews 1997 at Bath, London Math. Soc. Lecture Notes 261 (1999), 447-454.
Lubil [10] A. Lubotzky, and A. Mann, Powerful p-groups. I. Finite groups, J. Algebra 105 (1987),
484-505.

Mor1 [11] P. Moravec, The exponents of nonabelian tensor products of groups, J. Pure Appl. Algebra,
to appear. Available at http://www.sciencedirect.com/.

Roc1l [12] N. R. Rocco, On a construction related to the nonabelian tensor square of a group, Bol. Soc.
Brasil. Mat. (N.S.) 22 (1991), 63-79.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LJUBLJANA, JADRANSKA 21, 1000 LJUBLJANA,
SLOVENIA
E-mail address: primoz.moravec@fmf.uni-1j.si



