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Abstract. In this paper we detail a computational proof that the
normal closure of the set of commutators in any basic sequence of
commutators of weight five in a free group F is equal to the fifth
term in the lower central series of F . The weight less than five cases
were answered affirmatively by Sims using computational methods.
Sims was unable to prove the weight five case. In a recent paper
by Jackson, Gaglione and Spellman, the weight five case has been
settled affirmatively using commutator calculus. Using reduction
results from Sims, we computationally show the result is true for
the rank three case and using inductive results from Jackson et al.
the result holds for arbitrary rank.

1. Introduction

In his the seminal paper “Verifying Nilpotence” [4], Charles Sims
provides a method for verifying the nilpotence of a finitely presented
group. The two main ingredients of Sims’s method are finding maxi-
mal nilpotent quotients of finitely presented groups and term rewriting
processes. His method has been recently applied in providing a positive
answer that all 4-Engel groups are locally nilpotent [1]. One can also
find a discussion and illustration of Sims’s method in [2].

In [4], to illustrate his method for verifying nilpotence, Sims con-
siders the problem of determining whether, given a basic sequence of
commutators in a free group, the normal closure of those basic commu-
tators of exactly weight k is equal to the kth term of the lower central
series. He reduces the problem to determining whether the finitely pre-
sented group with basic commutators of weight exactly k as relations
is nilpotent or not. Sims then applies the computational processes he
earlier developed in the paper for verifying nilpotency to show this is
true for k ≤ 4. Sims was also able to show that for k = 5 and rank 2
the result holds.
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A complete traditional “hand” proof for k = 5 case is given by Jack-
son, Gaglione, and Spellman [3]. The bulk of their paper deals with
the rank 3 case. The purpose of this note is to revisit the analysis
and computations of Sims in a modern setting utilizing computational
tools, readily available to mathematicians, such as GAP and its pack-
ages, particularly Holt’s Knuth-Bendix package KBMAG and Nickel’s nq
package for computing nilpotent quotients of finitely presented groups.
Using the analysis of Sims we computationally prove the result for
k = 5 ranks 2 and 3 and then apply the induction arguments in [3] to
obtain the full result.

2. Preliminaries

Let r > 1 and let F be the free group on the ordered finite alphabet
X = {x1, x2, . . . , xr}. Let C be a basic sequence of commutators over
the alphabet X that begins with the ordered alphabet. Set RC,k to be
the elements of the basic sequence C of weight exactly k.

Proving the equality (RC,k)F = γk(F ), where γk(F ) is the kth term
of the lower central series of F , is equivalent to showing the finitely
presented group

Gk(r) = 〈X | RC,k〉
is nilpotent. The group Gk(r) as defined is dependent on k, C and the
rank r. To apply computational methods in proving Gk(r) is nilpotent,
we remove its dependence on C. Hence if Gk(r) can be shown to be
nilpotent for one given basic sequence of commutators, it is nilpotent
for any basic sequence of commutators. Sims proves this independence
for k ≤ 9:

Theorem 1 ([4]). For k ≤ 9, the isomorphism type of Gk(r) depends
on only k and r.

To show that for a fixed k the group Gk(r) is nilpotent, we need only
to consider a fixed number of ranks. The following is again found in
[4].

Proposition 2. To show that Gk(r) is nilpotent, it is enough to con-
sider the case |X| ≤ k.

We are now able to state our main result

Theorem 3. Let F be the free group on the finite set X and let RC,5

be the set of commutators of weight 5 from any basic sequence of com-
mutators C over X. Then (RC,5)

F = γ5(F ).
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Following Theorem 1 and Proposition 2, for k = 5 we need to verify
the nilpotency of the following groups G5(r) for 2 ≤ r ≤ 5 and a fixed
basic sequence of commutators of weight r. In the next section we set
up our computational environment to verify the nilpotence of G5(r).

3. Computational infrastructure

In this section we provide the computational infrastructure needed
to in proving Theorem 3. This consists primarily of a several GAP
functions and fixing our mathematical objects and GAP objects.

Our fixed basic sequence of commutators begin with the ordered
alphabet X and the ordering of those commutators of equal weight is
done lexicographically. We define a fully bracketed commutator over
the symbol set X as follows: if x ∈ X then [x] is fully bracketed, and if
c and d are fully bracketed commutators then [c, d] is fully bracketed.
This definition translates directly into GAP as a list of lists. We can
then recursively compute the weight of such a commutator as given
below.

## Compute the weight for a fully bracketed commutator <comm>.
##
Weight :=
function(comm)
if Length(comm)=1 then return 1; fi;
return Weight(comm[1])+Weight(comm[2]);

end;

The actual elements of X can be any totally ordered data type in
GAP. We choose integers so that we can use the natural lexicographical
ordering of lists of lists of integers available in GAP. The following
function creates fully bracketed commutators of a given weight from
the lexicographical basic sequence.

## Build the lexicographical basic sequence of commutators of
## the given <weight> and rank <r>. The symbol set is the list
## of integers [1..r]
##
BasicComSeq :=
function(r, weight)

if weight=1 then
return List([1..r], x->[x]);

fi;
return
Concatenation

( List
( Partitions(weight,2),
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p->Filtered
( Cartesian
( BasicComSeq(r, Maximum(p)),

BasicComSeq(r, Minimum(p))
),
C->(p[1]=p[2] and C[1]>C[2]) or

(p[1]<>p[2] and C[1][2]<=C[2])
)

)
);

end;

The following function uses BasicComSeq give a full sequence up to
the given weight.

## Build the lexicographical basic sequence of commutators
## of all weights up to <w> and rank <r>.
##
FullBasicComSeq :=

function(r, w)
return Concatenation(List([1..w], w->BasicComSeq(r,w)));

end;

The basic commutators over the symbols [1,2,3] of weight at most 2
are

gap> PrintArray(FullBasicComSeq(3,2));
[ [ 1 ],

[ 2 ],
[ 3 ],
[ [ 2 ], [ 1 ] ],
[ [ 3 ], [ 1 ] ],
[ [ 3 ], [ 2 ] ] ]

We use the integer entries of such fully bracketed commutators as in-
dices for the generators of the free group to construct their associated
words in the free group. The following function constructs this associ-
ated word.

## The integer entries of the fully bracketed commutator
## <comm> are associated with the same generator of the free
## group <F>. The commutator is then evaluated to a word in <F>.
##
Eval :=

function(F,comm)
if Length(comm)=1 then return F.(comm[1]); fi;
return Comm(Eval(F,comm[1]), Eval(F,comm[2]));

end;

Here is an example to compute the commutator [[f3, f1], f1].
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gap> F := FreeGroup(3);;
gap> Wrd := Eval(F,[[[3],[1]],[1]]);
f1^-1*f3^-1*f1*f3*f1^-1*f3^-1*f1^-1*f3*f1^2
gap> Wrd = Comm(Comm(F.3,F.1),F.1);
true

The function Eval is used to create a presentation for G5(2)

gap> F := FreeGroup(2);;
gap> # Evaluate as words in the free group F the words in
gap> # the basic sequence of length 5.
gap> R := List(BasicComSeq(2,5),c->Eval(F,c));;
gap> G_5_2 := F/R;
<fp group on the generators [ f1, f2 ]>

The group G 5 2 has a maximal nilpotent quotient of class 4 and we
give its simplified presentation for later comparison.

gap> NilpotencyClassOfGroup(NilpotentQuotient(G_5_2));
4
gap> PresentationFpGroup(SimplifiedFpGroup(G_5_2));
<presentation with 2 gens and 6 rels of total length 154>

To show that G5(2) is nilpotent we create a group isomorphic to
G5(2) with generators associated with the commutators in a basic se-
quence of up to weight 4. Here is the general situation. Let C be a
basic sequence of commutators over the set X = {x1, . . . , xr}. Let
x1, . . . , xr, cr+1, . . . , cn be basic sequence of commutators up to weight
less then k with x1, . . . , xr being an ordering of the generating set X
and n =

∑k−1
w=1W (r, w), where W (r, w) is Witt’s formula for computing

the number of basic commutators of weight w of rank r. Set

G = 〈x1, . . . , xn | xr+1 = cr+1, . . . , xn = cn,RC,k〉.

Applying Tietze transformations we see that our presentation for G
simplifies to Gk(r). Sims’s procedure for verifying the nilpotency of
Gk(r) requires us to show that Gk(r) has a maximal nilpotent quotient
and that G has a consistent polycyclic presentation. The group G5(2)
has a maximal nilpotent quotient of class 4. What remains to be done
is to set up G for this case and apply the Knuth-Bendix rewriting
procedure to show it has consistent polycyclic presentation.

We can build G using the infrastructure in place. Moreover, we
can express each basic commutator on G of weight 2 or greater as a
commutator in two generators. The following GAP function does this
recursive substitution.

## Express each basic commutator as a fully bracketed
## commutator with indices in the lexicographical basic
## sequence.
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##
Recursive :=

function(r,w)
if w=1 then return BasicComSeq(r,w); fi;
return

List
( BasicComSeq(r,w), c->
[ [ Position

( FullBasicComSeq(r, Weight(c[1])),
c[1]

)
],
[ Position
( FullBasicComSeq(r, Weight(c[2])),
c[2]

)
]

]
);

end;

We now create G as a GAP object.

gap> # Build the generators of the group.
gap> gencoms := Concatenation(
> List([1..4], w->Recursive(2,w)));;
gap> # Create the free group and the relations for each
gap> # generators
gap> F:= FreeGroup(Length(gencoms));;
gap> rels := List([1..Length(gencoms)],
> i->F.(i)/Eval(F,gencoms[i]));;
gap> # Create the relations of G_5(2) and append them
gap> # to the relations already created and form the FP group.
gap> Append(rels,List(Recursive(2,5),c->Eval(F,c)));;
gap> G := F/rels;
<fp group on the generators [ f1, f2, f3, f4, f5, f6, f7, f8 ]>
gap> # Gives a similar simplified presentation as G_5_2
gap> PresentationFpGroup(SimplifiedFpGroup(G));
<presentation with 2 gens and 6 rels of total length 154>

From the GAP group G we can create a rewriting system and check
to see if it is confluent. However, as the group is presented neither
the rewriting algorithms in GAP or using the KBMAG package gives an
answer. In the next section we discuss some strategies to show that G

has a consistent polycyclic presentation.
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4. Knuth Bendix rewriting procedure

Let G = F/R be a finitely presented group. The Knuth-Bendix
procedure is designed to construct a normal form for the elements of
G in terms of the generators of F . The normal form of an element is
the least word in the generators of F and their inverses that represents
the element in G, with respect to a specific ordering on the set of all
words in F . This procedure has its ring theoretic analogue, namely the
Gröbner bases of ideals of polynomial rings.

KBMAG offers four types of orderings used in rewriting systems.
These are shortlex, recursive, wtlex and wreathprod. Wreath product
orderings are the ones on which reduction to normal form in polycyclic
groups is based ([5], page 395). Thus they are particularly well suited
for finding rewriting systems of polycyclic groups. A special case of
wreath product orderings is the so called recursive ordering. This can
be described as follows. Let u and v be strings in the generators of G.
If one of u and v, say v, is empty, then u � v. Otherwise, let u = u′a
and v = v′b, where a and b are generators. Then u � v if and only if
one of the following holds:

(1) a = b and u′ � v′,
(2) a � b and u � v′,
(3) b � a and u′ � v.

It becomes clear that the recursive ordering is the one that follows the
spirit of the concept of basic commutators. Thus we use this ordering
as our primary choice.

We order the generators of the group in reverse order. This is mo-
tivated by a similar trick used commonly in computations of Gröbner
bases.

Using the GAP infrastructure in Section 3, we create the same group
G as before but reverse the ordering of the generators of the free group
in creating it. We need only one more function to help us relabel the
basic commutators in this reverse ordering.

## Treat each numeric entry in each commutator as a difference
## value from which a new number (label) can be created.
##
Relabel :=
function(d,comm)
if Weight(comm)=1 then return [d-comm[1]]; fi;
return [Relabel(d,comm[1]),Relabel(d,comm[2])];

end;
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We now create G in GAP whose recursive presentation is ordered in
reverse for r = 2. We know that there are 8 commutators that will be
generators of G from our previous analysis.

gap> F := FreeGroup(8);;
gap> # Build the generating set of commutators
gap> gencoms := Concatenation(List(([1..4]), w->Recursive(2,w)));;
gap> # For r=2 we will have 1-8 generators -- reverse the labels
gap> gencoms := Reversed(List(gencoms,c->Relabel(9,c)));;
gap> rels := List([1..8], i->F.(i)/Eval(F,gencoms[i]));;
gap> # Build the relations of weight 5
gap> coms := List(Recursive(2,5),c->Relabel(9,c));;
gap> Append(rels, List(coms, c->Eval(F,c)));;
gap> G := F/rels;
<fp group on the generators [ f1, f2, f3, f4, f5, f6, f7, f8 ]>

We can do some simple checks to see that we have the right group.
It has a maximal nilpotent quotient of class 4 and after applying Tietze
transformations we arrive back to a similar presentation with G5(2).

gap> # The maximal nilpotent quotient is 4
gap> NilpotencyClassOfGroup(NilpotentQuotient(G));
4
gap> PresentationFpGroup(SimplifiedFpGroup(G));
<presentation with 2 gens and 6 rels of total length 154>

We now apply the Knuth-Bendix procedure to the GAP object G
using the recursive ordering and it finds a confluent system of relations.

gap> R := KBMAGRewritingSystem(G);;
gap> SetOrderingOfKBMAGRewritingSystem(R,"recursive");;
gap> KnuthBendix(R);
true

The set up for the rank 3 case follows exactly the same as the rank 2
case. There are 32 commutators that will be the generators of G with
48 relations which are the basic commutators of weight 5 and rank 3.

gap> F := FreeGroup(32);;
gap> # Build the generating set of commutators
gap> gencoms := Concatenation(List(([1..4]), w->Recursive(3,w)));;
gap> # For r=3 we will have 1-32 generators -- reverse the labels
gap> gencoms := Reversed(List(gencoms,c->Relabel(33,c)));;
gap> rels := List([1..32], i->F.(i)/Eval(F,gencoms[i]));;
gap> # Build the relations of weight 5
gap> coms := List(Recursive(3,5),c->Relabel(33,c));;
gap> Append(rels, List(coms, c->Eval(F,c)));;
gap> G := F/rels;
<fp group with 32 generators>
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Our check again works out.

gap> # The maximal nilpotent quotient is 4
gap> NilpotencyClassOfGroup(NilpotentQuotient(G));
4
gap> PresentationFpGroup(SimplifiedFpGroup(G));
<presentation with 3 gens and 48 rels of total length 1276>

We now have to set up some more parameters in KBMAG in particu-
lar a bound on the length of the equations and the number of equations
and states allowed before starting the rewriting process.

gap> R := KBMAGRewritingSystem(G);;
gap> SetOrderingOfKBMAGRewritingSystem(R,"recursive");;
gap> O:=OptionsRecordOfKBMAGRewritingSystem(R);;
gap> O.maxstoredlen:=[50,50];;
gap> O.maxstates:=2^20;;
gap> O.maxeqns:=2^20;;
gap> KnuthBendix(R);
#WARNING: Because of the control parameters you set,
# the system may
# not be confluent. Unbind the parameters and
# re-run KnuthBendix to check!
#I System computed is NOT confluent.
false
gap> KnuthBendix(R);
true

This finishes in about 8 minutes or so. In the next section we will
use this result along with the analytical work from Jackson, Gaglione,
and Spellman [3] to complete the proof of Theorem 3.

5. Proof of Theorem 3 and Conclusion

We complete the proof of Theorem 3. Our computations in Section
4 show that result is true for r = 3. Theorems 4.53 and 5.10 in [3] give
the result for r = 4 r = 5 respectively using the inductive result on
r = 3 and r = 4 respectively. This completes the proof of the theorem.

Our computations above show that finding a maximal nilpotent quo-
tient is relatively automatic to compute, at least in the finitely pre-
sented groups we are working with. However, the “naive” use of rewrit-
ing procedures provide no results even for the r = 2 case. However with
some finesse we are able to settle the question for r = 3. This case take
up nearly 20 pages in [3]. While even the r = 2 case took some work,
Sims in [4] was able to make this computation. For r = 3 we assume it
was out of reach for the computational power available to him at the
time.
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We attempted the weight 6 and rank 2 case and made no progress
at all. This is still an open question as is all other weights greater than
5. Possible other approaches are to show that Gk(r) is a homomorphic
image of a nilpotent group or use the Sievers’s Free Group Algorithms
package, FGA, to assist in making the computations found in [3].
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