
SCHUR MULTIPLIERS OF n-ENGEL GROUPS

PRIMOŽ MORAVEC

Abstract. We find a bound for the exponent of the Schur multiplier of a finite

p-group in terms of the exponent and Engel length of the given group. It is also
proved that if G is a 3-Engel group of finite exponent, then the exponent of

H2(G) divides exp G. When G is a 4-Engel group of exponent e, the exponent

of H2(G) divides 10e.

1. Introduction

Let G be a group. The second integral homology group H2(G,Z) of G (or H2(G)
in shorthand notation) is known as the Schur multiplier of G. When the group
G is finite, H2(G) is isomorphic to the cohomology group H2(G,C×). This group
has several important applications in the theory of projective representations and
the theory of central extensions. For a thorough account on the theory of Schur
multipliers see e.g. Beyl and Tappe [3], Huppert [15], or Karpilovsky [16].

One of the fundamental problems regarding Schur multipliers is the determina-
tion of the exponent of H2(G). Schur proved that if G is a finite group and if
expH2(G) = e, then e2 divides the order of G [15, Satz V.23.9]. This bound is best
possible, since H2(Ze ⊕ Ze) ∼= Ze. On the other hand, this simple example shows
that the exponent of the Schur multiplier is in a sense close to the exponent of the
given group. In fact, it had been conjectured for a long time that the exponent
of H2(G) divides expG for every finite group G, see [16, p. 152]. By standard
homological arguments [3] it suffices to consider this question for finite p-groups.
It is now known that the conjecture is false in general. Namely, Bayes et al. [2]
constructed a finite group G of exponent 4 with expH2(G) = 8 (see also [22, 24]).
Surprisingly, examples of this kind are relatively rare. For instance, it is still not
known whether or not the above conjecture holds true for all groups of odd order.
On the other hand, the conjecture holds true for all finite groups that are nilpotent
of class ≤ 3 (cf. Jones [18] and [24]), and for groups of odd order that are nilpotent
of class ≤ 4 [24].

The above mentioned result of Schur, together with Zelmanov’s solution of the
restricted Burnside problem [29], implies that for all positive integers d and e there
exists an integer f = f(d, e) depending only on d and e such that for every finite
d-generator group G of exponent e, the exponent of H2(G) divides f . It is proved
in [22] that we can actually bound expH2(G) by a function depending only on e

for every locally finite group G of exponent e. In some cases, precise bounds can
be obtained. A sample result is that if G is any group of exponent 4, then the
exponent of H2(G) divides 8 [22]. In general it is possible to prove [22] that if G
is a locally finite group of exponent e, then expH2(G) ≤ |R(2, e)|, where R(2, e) is
the restricted 2-generator Burnside group of exponent e, yet this estimate is highly
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unrealistic. Much better bounds can be obtained in terms of the nilpotency class
of the group in question. Ellis [7] showed that if G is a finite p-group of class c ≥ 2
and exponent pe, then the exponent of H2(G) divides pedc/2e. It is shown in [22]
that this can be slightly improved; one can replace dc/2e with 2blog2 cc.

A groupG is said to be n-Engel if it satisfies the law [x, ny] = 1. Groups satisfying
the n-Engel condition are analogs of n-Engel Lie algebras. It is an important open
problem whether n-Engel groups are locally nilpotent. This is now known to be
true for n ≤ 4. Hopkins [14] showed that 2-Engel groups are nilpotent of class ≤ 3
(this result is usually attributed to Levi). Even before that, Burnside [6] had proved
that every 2-Engel group without elements of order 3 is nilpotent of class ≤ 2. The
local nilpotency of 3-Engel groups was proved by Heineken [13]. The corresponding
result for 4-Engel groups was obtained recently by Havas and Vaughan-Lee [11],
based on the work of Traustason [26, 27, 28]. On the other hand, finite n-Engel
groups are always nilpotent by a result of Zorn [30].

The purpose of this paper is to study the relationship between the exponent of
H2(G) and the Engel length of a finite p-group G. At first we note that, given a
positive integer n, there exists an integer m = m(n), such that, for every prime p >
m, the exponent of H2(G) divides expG for every finite n-Engel p-group G. Then
we obtain a bound for expH2(G), where G is a finite n-Engel group of exponent pe,
which involves n, p, e, and certain invariants corresponding to the action of G on
some of its power subgroups. Here we apply results from Abdollahi and Traustason
[1], as well as the nonabelian exterior product of groups, a topological construction
introduced by Brown and Loday [4]. Then we focus on n-Engel groups for n ≤ 4.
As every 2-Engel group is nilpotent of class ≤ 3, it follows from [24] that expH2(G)
divides the exponent of G for every finite 2-Engel group G. We generalize this result
by proving that for every 3-Engel group G of finite exponent, the exponent of H2(G)
divides the exponent of G. A similar result fails to be true for 4-Engel groups. An
example of a finite group G of class 4 and exponent 4 with expH2(G) = 8 was
constructed in [24]. What we prove is that if G is a 4-Engel group of exponent
e, then expH2(G) divides 10e. When e is not divisible by 2 or 5, then expH2(G)
divides e. It is not clear whether this result is best possible. In particular, we do
not know whether expH2(G) divides expG for every finite 4-Engel 5-group G. If
so, then we could replace the bound 10e by 2e.

The basic idea behind the proofs of the above results is first to reduce the question
to finite p-groups. Then, instead of estimating expH2(G) directly, we try to bound
the exponent of the derived subgroup of a covering group H of G which always
contains a copy of H2(G). If G is n-Engel, then H is center-by-n-Engel. Thus we
describe the power commutator structure of such groups. This method is convenient
as it allows us to exploit the full power of commutator calculus in n-Engel groups.
Its downside lies in the fact that the exponent of H ′ can be larger than expH2(G),
cf. [23]. We also mention here that computer calculations with GAP [9] are used
in the arguments. Nevertheless, their use is reduced to the minimum.

2. A general bound

We first recall a notion that is closely related to the Schur multiplier of a given
group. Let G be a group. Then H is a covering group of G if there exists Z ≤
H ′∩Z(H) such that Z ∼= H2(G) and H/Z ∼= G. It is known that every finite group
has a covering group. Covering groups of a given group need not be unique, yet
they have isomorphic derived subgroups. For further details on the subject cf. [3]
or [15].
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Let G be a finite group and let p be a prime. Then it is well known that the
p-part of the abelian group H2(G) can be embedded into H2(P ), where P is a
Sylow p-subgroup of G [15, Satz V.25.1]. This result shows that, when estimating
the exponent of the Schur multiplier, one can obtain bounds by considering only
finite p-groups. In [24] we showed that if G is a finite p-group of nilpotency class c
with p > c+ 1, then the exponent of H2(G) divides expG. Here we slightly extend
this by showing that a similar result holds true for groups of fixed Engel length.

Proposition 2.1. For every positive integer n there exists an integer m = m(n)
such that if p is a prime larger than m, and G is a finite n-Engel p-group, then
expH2(G) divides expG.

Proof. By a result of Endimioni [8, Theorem 1], there exist integers k = k(n) and
c = c(n) such that, for all primes p > k, every (locally) finite n-Engel p-group is
nilpotent of class ≤ c. Let m = max{k, c+ 1}, p > m, and let G be a finite n-Engel
p-group. Then G is nilpotent of class < p−1. By [24, Proposition 11], the exponent
of H2(G) divides expG, as required. �

In general it is hard to determine precise values of m in Proposition 2.1. When
n ≤ 4, some estimates are known [13, 26]. We will elaborate on these in sections 4
and 5.

Let G be a finite n-Engel p-group of exponent pe. It is known [22] that expH2(G)
can be bounded in terms of p and e only. Explicit bounds of this type are however
not known in general, or they are rather crude as they depend on the solution of
the restricted Burnside problem [29]. In the rest of the section we find a more
realistic bound for expH2(G) which depends only on n, p, e, and certain invariants
of G which will be introduced below. In order to do that, we recall the notion
of the nonabelian exterior product of groups which comes from the notion of the
nonabelian tensor product of groups introduced by Brown and Loday [4]. What we
need is only a rather special case of this construction. Let G be a group and N a
normal subgroup of G. Let N ∧ G be the group generated by the symbols x ∧ g,
where x ∈ N and g ∈ G, subject to the following relations:

x1x ∧ g = (xx1 ∧ gx)(x ∧ g),

x ∧ g1g = (x ∧ g)(xg ∧ gg1),

x ∧ x = 1,

for all x, x1 ∈ N and g, g1 ∈ G. It is a common practice in the theory of nonabelian
exterior (or tensor) products that groups act upon each other from the left. For
our purposes it is convenient to use the so called ‘right hand action’ notation. From
the defining relations it becomes clear that G acts on N ∧G via (x∧ g)h = xh ∧ gh,
where x ∈ N and g, h ∈ G. Moreover, the commutator map κN,G : N ∧G→ [N,G],
defined by x∧g 7→ [x, g], is a surjective homomorphism of groups. What relates this
construction to Schur multipliers of groups is a result of Miller [20] which states that
H2(G) is isomorphic to kerκG,G for any group G. Furthermore, Brown, Johnson,
and Robertson [5] proved that when G is a finite group, G∧G is isomorphic to the
derived group of any covering group of G. Thus it suffices to find an estimate for
the exponent of the group G ∧G to obtain a bound for expH2(G).

Let G be a finite n-Engel p-group of exponent pe. Let r be the integer satisfying
pr−1 < n ≤ pr. Let N = 0r(G) if p is odd, or N = 0r+1(G) when p = 2. Here we
use the notation 0k(G) = 〈gpk

: g ∈ G〉. By a result of Abdollahi and Traustason
[1], we have that N is a powerful p-group, i.e., N/01(N) is abelian if p is odd or
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N/02(N) is abelian when p = 2 (we refer to a paper of Lubotzky and Mann [17]
for further details). By [7] we have an exact sequence

(2.1.1) N ∧G −→ G ∧G −→ G/N ∧G/N −→ 1.

Denote

f(p, e, n) = sup{expG ∧G | G is a finite n-Engel p-group of exponent pe}.
From the short exact sequence

0 −→ H2(G) −→ G ∧G −→ G′ −→ 1

and [22] it follows that f(p, e, n) <∞, moreover, f(p, e, n) can be bounded in terms
of p and e only (this can also be inferred from a result of Mann [19]). Note that the
group G/N has exponent dividing pr if p is odd, or 2r+1 when p = 2. The sequence
(2.1.1) thus implies that exp(G ∧ G) divides exp(N ∧ G)f(p, r, n) if p is odd, or
exp(N ∧ G)f(2, r + 1, n) if p = 2. Note also that since N is powerful, we have
that 0i(N) = 0r+i(G) for all i in the case when p is odd, and 0i(N) = 0r+i+1(G)
when p = 2. Thus expN divides pe−r. A result of Ellis [7, Proposition 9] gives the
following theorem.

Theorem 2.2. Let G be a finite n-Engel p-group and let the function f be defined
as above. Denote by r be the integer satisfying pr−1 < n ≤ pr, and let g be equal
to f(p, r, n) if p is odd, or to f(2, r + 1, n) if p = 2. Let N = 0r(G) if p is odd, or
N = 0r+1(G) if p = 2. For each 1 ≤ i ≤ e − r let ki be the smallest integer such
that [0i−1(N), kiG] ≤ 0i(N). Then

expH2(G) divides pdk1/2e+···+dke−r/2eg.

Note that the number g in Theorem 2.2 is bounded in terms of p and n. On the
other hand, the values of ki depend on the action of G upon N . For instance, if N
is powerfully embedded in G, then ki = 1 for all i [17].

Precise values of f are also known in some cases. For instance, Mann [19] showed
that f(2, 1, n) = 2 and f(3, 1, n) = 3. It is also known that f(2, 2, n) = 4 for n ≤ 3
and f(2, 2, n) = 8 for n > 3 [22], and that f(5, 1, n) = 25 for n large enough [24].

3. Two-generator center-by-4-Engel groups

Havas and Vaughan-Lee [11] proved that 4-Engel groups are locally nilpotent. It
follows from here that, in principle, one can construct relatively free r-generator
center-by-4-Engel groups using Nickel’s nilpotent quotient algorithm implemented
in GAP [9]. In reality however, free center-by-4-Engel groups of rank ≥ 3 seem
to be out of reach of GAP. On the other hand, the free 2-generator center-by-4-
Engel group C can be constructed within minutes. Relations satisfied by this group
represent two variable identities satisfied by any center-by-4-Engel group.

By [12], finite 4-Engel 5-groups are regular. A corresponding result for center-by-
4-Engel groups is that every finite center-by-4-Engel 7-group is regular. This follows
from the following lemma that can be proved by straightforward computation in
the group C using GAP.

Lemma 3.1. Let G be a center-by-4-Engel group and x, y ∈ G. Then

(xy)7 = x7y7[y, x]21[y, x, x]35[y, x, y]91[y, x, x, x]35[y, x, y, x]175[y, x, y, y]175

× [y, x, x, x, x]21[y, x, x, x, y]−42[y, x, y, x, x]231[y, x, y, x, y]−546[y, x, y, y, x]917

× [y, x, y, y, y]189[y, x, y, x, x, x]−7[y, x, y, y, x, x]3031[y, x, y, y, x, y]28

× [y, x, y, x, x, y, x]−21[y, x, y, y, x, x, x]42[y, x, y, y, x, x, y]−3269.
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4. 4-Engel groups

As already mentioned in the introduction, our approach to estimating expH2(G)
is to obtain a bound for the exponent of H ′, where H is a covering group. Note
that H is a central extension of G. In this section we deal with the case when G is
a 4-Engel group. Thus we first determine the power structure of finite center-by-4-
Engel p-groups. Our main result is the following.

Theorem 4.1. Let H be a finite p-group and let Z be a central subgroup of H such
that G = H/Z is a 4-Engel group. If p 6= 2, 5, then 0e(H ′) ≤ [0e(H), H]. For
p = 2 or p = 5 we have that 0e+1(H ′) ≤ [0e(H), H].

Before embarking on the proof, we mention the following consequence of this
result:

Corollary 4.2. Let G be a 4-Engel group of exponent e. If e is not divisible by 2
or 5, then expH2(G) divides e. Otherwise, expH2(G) divides 10e.

Proof. Since the functor H2 commutes with direct limits [3, Proposition I.5.10], we
may assume that G is finitely generated. As 4-Engel groups are locally nilpotent
[11], it follows that G is finite. For each prime p, the p-part of the abelian group
H2(G) embeds into H2(P ), where P is any Sylow p-subgroup of G [15, Satz V.25.1].
Let e have the prime decomposition e = pe11 · · · p

ek

k . Given i ∈ {1, . . . , k}, let Pi be a
Sylow pi-subgroup of G and let Hi be a covering group of Pi. Then Hi is center-by-
4-Engel and [0ei

(Hi), Hi] = 1. From Theorem 4.1 it follows that 0ei
(H ′i) = 1 when

pi 6= 2, 5, and 0ei+1(H ′i) = 1 when pi ∈ {2, 5}. As H2(Pi) can be embedded into
H ′i, it follows that expH2(Pi) divides pei

i for pi 6= 2, 5, or pei+1
i when pi ∈ {2, 5}.

This proves the assertion. �

Let H be a finite p-group and let Z be a central subgroup of H such that the
group G = H/Z is 4-Engel. If p ≥ 7, then G is nilpotent of class ≤ 7 by a result of
Traustason [26, Corollary 1]. In this case, the nilpotency class of H does not exceed
8. If p > 7, then H is regular by [15, Satz III.10.2]. For p = 7, H is also regular by
Lemma 3.1. Using [15, Satz III.10.8], we conclude that 0e(H ′) = [0e(H), H] for
p ≥ 7. Thus it suffices to prove Theorem 4.1 for 2-groups, 3-groups and 5-groups.
We may assume that [0e(H), H] = 1, and it then suffices to prove that 0e(H ′) = 1
when p = 3, and 0e+1(H ′) = 1 for p ∈ {2, 5}. Before going into particular cases,
we mention some auxiliary results.

Lemma 4.3 ([25]). Let Er be a free 4-Engel group on r generators.
(a) E2 is torsion-free and nilpotent of class 6.
(b) γ8(E3)30 = γ9(E3)3 = γ10(E3) = 1.

Lemma 4.4. Let a, b ∈ H. Then

[ak, b] = [a, b]k[a, b, a](
k
2)[a, b, a, a](

k
3)[a, b, a, [a, b]](

k
2)+2(k

3)[a, b, a, a, a](
k
4)

× [a, b, a, a, [a, b]]2(
k
3)+3(k

4)[a, b, a, [a, b], [a, b]]2(
k
3)+3(k

4)

for all nonnegative integers k.

Proof. The group 〈a, [a, b]〉 = 〈a, ab〉 is center-by-metabelian and nilpotent of class
≤ 5; this follows from a result of Traustason [27], or from the presentation of the free
2-generator center-by-4-Engel group (see Section 3). Expanding (ab)k = (a[a, b])k

using the collection process [15, Satz III.9.3], we get the result. �
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4-Engel 5-groups. Let H be a 5-group satisfying the above assumptions. First
of all we note that Lemma 4.3 implies that every 2-generator subgroup of H is
nilpotent of class ≤ 7, and every 3-generator subgroup is nilpotent of class ≤ 9.
Moreover, if r > 3, every r-generator subgroup of H is nilpotent of class ≤ 2r + 1
by [12, Theorem 3.3].

Let x, y ∈ H. As 〈x, y〉 has class ≤ 7, we have 1 = [[x1, x2, x3, x4]5
e

, x5] =
[x1, x2, x3, x4, x5]5

e

for all xi ∈ 〈x, y〉. Thus we conclude that 0e(γ5(〈x, y〉)) = 1.
Lemma 4.4 now yields

(4.4.1) 1 = [x, y]5
e

[x, y, x](
5e

2 )[x, y, x, x](
5e

3 ).

Replacing x by [y, x] in (4.4.1), we get [y, x, y]5
e

= 1. Thus we conclude that
[x, y]5

e

= 1 for all x, y ∈ H.
Now let x, y ∈ H and ω ∈ H ′. Then we have

([x, y]ω)5e+1
≡ [x, y]5

e+1
ω5e+1

mod 0e+1(γ2(〈[x, y], ω〉))
e+1∏
i=1

0e+1−i(γ5i(〈[x, y], ω〉)).

By the above argument and Lemma 4.3 we conclude that 0e(γ3(〈[x, y], ω〉)) =
01(γ9(〈[x, y], ω〉)) = 1, hence the last equation gives ([x, y]ω)5e+1

= ω5e+1
. This

implies that 0e+1(H ′) = 1, hence Theorem 4.1 is proved for p = 5.
It is not clear whether or not we actually have that 0e(H ′) ≤ [0e(H), H] in the

case when p = 5. A potential counterexample would have to be, in a sense, rather
large, as the following argument shows. Note that for every x, y, z, w ∈ H we have
that K = 〈x, y, z, w〉 is nilpotent of class ≤ 9 [12], hence K ′ is nilpotent of class
≤ 4. It follows that K ′ is regular [15, Satz III.10.2], therefore 0e(K ′) ≤ [0e(K),K].
Thus a counterexample, if it exists, would have to be at least a 5-generator center-
by-4-Engel 5-group of class ≥ 10. These groups seem to be out of reach of the
computational functionality currently available.

4-Engel 3-groups. If H is a center-by-4-Engel 3-group, then every two-generator
subgroup of H has class at most 7, whereas every three-generator subgroup of K of
H has class ≤ 10 and 01(γ9(K)) = 1 by Lemma 4.3. As groups of exponent 3 are
nilpotent of class ≤ 3, we may assume that e > 1. We will also need the following
result.

Lemma 4.5. Let G be a 4-Engel 3-group and a, b, c ∈ G. If expG = 3e, then
0e−1(γ4(〈a, b, c〉)) = 1.

Proof. As above we can assume that e > 1. Besides, we can assume without
loss of generality that 0e−1(γ5(〈a, b, c〉)) = 1. By a result of Traustason [27], the
group 〈a, [a, b]〉 = 〈a, ab〉 has class ≤ 4 and is thus metabelian. We can expand
b−1a3e

b = (a[a, b])3e

as in the proof of Lemma 4.4. Since G is 4-Engel, we get

1 = [a3e

, b]

= [a, [a, b]](
3e

2 )[a, [a, b], [a, b]](
3e

3 )[a, [a, b], a](
3e

3 )

= [a, [a, b], a](
3e

3 ),

whence [a, b, a, a]3
e−1

= 1. Replacing a by ab, we get [a, b, a, b]3
e−1

[a, b, b, a]3
e−1

= 1.
On the other hand, the Hall-Witt identity implies that [a, b, a, b]3

e−1
= [a, b, b, a]3

e−1
.

This implies [a, b, a, b]3
e−1

= 1, from which it follows that 0e−1(γ4(〈a, b〉)) = 1 for
all a, b ∈ G.
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As [a, bc, bc, bc]3
e−1

= 1, we get

1 = [a, b, b, c]3
e−1

[a, b, c, b]3
e−1

[a, b, c, c]3
e−1

× [a, c, b, c]3
e−1

[a, c, c, b]3
e−1

[a, c, b, b]3
e−1

.
(4.5.1)

Similarly, from [a, bc, a, bc]3
e−1

= 1 it follows that

(4.5.2) 1 = [a, b, a, c]3
e−1

[a, c, a, b]3
e−1

.

Replacing c by ac in (4.5.1) and using (4.5.1) and (4.5.2), we obtain

(4.5.3) 1 = [a, b, c, a]3
e−1

[a, c, b, a]3
e−1

.

By the Hall-Witt identity, the equation (4.5.3) implies

(4.5.4) [c, a, b, a]3
e−1

= [b, c, a, a]3
e−1

.

Replacing a by ca in (4.5.3), we conclude that

(4.5.5) 1 = [a, b, c, c]3
e−1

[c, b, c, a]3
e−1

[a, c, b, c]3
e−1

,

which together with (4.5.4) implies [c, b, c, a]3
e−1

= 1. From here one readily ob-
tains [c, b, b, a]3

e−1
= 1. Replacing a by ca in (4.5.4), we now get, after relabeling,

[c, a, b, a]3
e−1

= [a, b, c, a]3
e−1

. In other words, if ai ∈ {a, b, c}, 1 ≤ i ≤ 4, then the
value of [a1, a2, a3, a4]3

e−1
is invariant with respect to cyclic permutations of the

first three arguments of the commutator. Observe that

[a, b, c, a]3
e−1

[a, b, c, b]3
e−1

[a, b, c, c]3
e−1

= [a, abc, c, abc]3
e−1

.

Replacing a by ab and c by bc, we get [a, b, c, a]3
e−1

[a, b, c, c]3
e−1

= 1. If we re-
place c by bc in this equation, we obtain [a, b, c, b]3

e−1
= 1. This shows that

0e−1(γ4(〈a, b, c〉)) = 1. �

Let x, y, z ∈ H and denote K = 〈x, y, z〉. From Lemma 4.5 it follows that
0e−1(γ4(K)) ≤ Z(K). This gives

1 = [[x1, x2, x3, x4]3
e−1

, x5]

= [x1, x2, x3, x4, x5]3
e−1

[x1, x2, x3, x4, x5, [x1, x2, x3, x4]](
3e−1

2 )

= [x1, x2, x3, x4, x5]3
e−1

.

As γ5(K) is nilpotent of class ≤ 2, we obtain 0e−1(γ5(K)) = 1. By Lemma 4.4 we
have

(4.5.6) 1 = [x, y]3
e

[x, y, x](
3e

2 )[x, y, x, x](
3e

3 ).

Replacing x by [y, x], we get [y, x, y]3
e

= 1, and since γ3(〈x, y〉) is nilpotent of
class ≤ 2, this implies 0e(γ3(〈x, y〉)) = 1. Therefore (4.5.6) can be rewritten as

1 = [x, y]3
e

[x, y, x, x](
3e

3 ). Replacing x by yx in this equation, we obtain 1 =

[x, y, x, y](
3e

3 )[x, y, y, x](
3e

3 )[x, y, y, y](
3e

3 ). By the Hall-Witt identity we have that

[x, y, x, y](
3e

3 ) = [x, y, y, x](
3e

3 ), whence [x, y, y, y](
3e

3 ) = [x, y, x, y](
3e

3 ). Replacing
x by yx in this equation, we conclude that [x, y, y, y]3

e−1
= 1, which implies

0e−1(γ4(〈x, y〉)) = 1. As a consequence we also obtain that [x, y]3
e

= 1. Now
we prove that 0e−1(γ4(K)) = 1. As [x, yz, yz, yz]3

e−1
= 1, we get

1 = [x, y, y, z]3
e−1

[x, y, z, y]3
e−1

[x, y, z, z]3
e−1

× [x, z, y, z]3
e−1

[x, z, z, y]3
e−1

[x, z, y, y]3
e−1

.
(4.5.7)



8 PRIMOŽ MORAVEC

The relation [x, yz, x, yz]3
e−1

= 1 implies

(4.5.8) 1 = [x, y, x, z]3
e−1

[x, z, x, y]3
e−1

.

If we substitute z by xz in (4.5.7) and apply (4.5.7) and (4.5.8), we arrive at

(4.5.9) 1 = [x, y, z, x]3
e−1

[x, z, y, x]3
e−1

.

Using the Hall-Witt identity, we get

(4.5.10) [z, x, y, x]3
e−1

= [y, z, x, x]3
e−1

.

Next we replace x by zx in (4.5.9) and get

(4.5.11) 1 = [x, y, z, z]3
e−1

[z, y, z, x]3
e−1

[x, z, y, z]3
e−1

.

This [z, y, z, x]3
e−1

= 1, therefore also [z, y, y, x]3
e−1

= 1. Replacing x by zx in
(4.5.10), we get [z, x, y, x]3

e−1
= [x, y, z, x]3

e−1
. Now we replace x by xy and z by yz

in [x, y, z, x]3
e−1

[x, y, z, y]3
e−1

[x, y, z, z]3
e−1

= [x, xyz, z, xyz]3
e−1

. After expansion
we obtain [x, y, z, x]3

e−1
[x, y, z, z]3

e−1
= 1. If we replace z by yz once again, we

obtain [x, y, z, y]3
e−1

= 1. From here it follows 0e−1(γ4(K)) = 1.
Let ω ∈ H ′. By the Hall-Petrescu formula [15, Satz III.9.4] we get

([x, y]ω)3e

= ω3e

[ω, [x, y], [x, y]](
3e

3 )[ω, [x, y], ω]−(3e

3 ) = ω3e

,

hence 0e(H ′) = 1.

4-Engel 2-groups. Assume now that p = 2. Then Lemma 4.3 implies that every
two-generator subgroup of H is nilpotent of class ≤ 7, and every three-generator
subgroup has class ≤ 9 and the ninth term of the lower central series of exponent
2. It is clear that the result holds true if e = 1, and when e = 2, Theorem 4.1
holds true even without assuming that G is 4-Engel [22]. Thus we may assume that
e > 2.

Let x, y ∈ H. At first note that, as above, 0e(γ5(〈x, y〉) = 1. We claim
that 0e−1(γ5(〈x, y〉) = 1. Because of the class restriction we may assume that
0e−1(γ6(〈x, y〉) = 1. As [x, y, x] commutes with [x, y, x, x], expansion of [x2e

, y, x] =
1 using Lemma 4.4 yields

(4.5.12) [x, y, x, x](
2e

2 )[x, y, x, x, x](
2e

3 ) = 1.

Commuting (4.5.12) with x and y, respectively, we get

(4.5.13) [x, y, x, x, x]2
e−1

= [x, y, x, x, y]2
e−1

= 1.

Similarly, expanding [x2e

, y, y] = 1, we get [x, y, x, y]2
e−1

= 1, and this, together
with (4.5.13), clearly implies that 0e−1(γ5(〈x, y〉) = 1. Moreover, from (4.5.12) we
now conclude that [x, y, x, x]2

e−1
= 1. As γ4(〈x, y〉) is abelian, we therefore have

that 0e−1(γ4(〈x, y〉)) = 1. Applying Lemma 4.4 for [x2e+1
, y] = 1, we get

(4.5.14) [x, y]2
e+1

[x, y, x](
2e+1

2 ) = 1.

Replacing x by yx in the equation (4.5.14), we see that [x, y]2
e+1

= [x, y, x]2
e

= 1.
From here it is not difficult to conclude that 0e(γ3(〈x, y〉)) = 1.

Now let x, y ∈ H and ω ∈ H ′. Expanding ([x, y]ω)2e+1
using the Hall-Petrescu

formula [15] and above relations, we get

(4.5.15) ([x, y]ω)2e+1
= ω2e+1

[ω, [x, y]](
2e+1

2 ).

We prove that for any x, y, z ∈ H, [x, y, z] has order dividing 2e. At first we show
that 0e−1(γ5(〈x, y, z〉)) = 1. To do this we need the following lemma.
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Lemma 4.6. Let G a 4-Engel 2-group of exponent 2e. Then 0e−1(γ4(〈a, b, c〉)) = 1
for all a, b, c ∈ G.

Proof. Let a, b, c ∈ G and put K = 〈a, b, c〉. By Lemma 4.3 we have 01(γ8(K)) =
γ9(K) = 1. For e = 1 the conclusion is clear, for e = 2 it follows directly from the
polycyclic presentation of B(3, 4). So we may assume that e > 2. Because of the
class restriction we may assume without loss of generality that 0e−1(γ5(K)) = 1.
Since 0e−1(γ4(〈ab, c〉)) = 1 (see above), we have

1 = [ab, c, ab, c]2
e−1

= [a, c, b, c]2
e−1

[b, c, a, c]2
e−1

= [a, b, c, c]2
e−1

,

Replacing c by ac in this relation, we get

(4.6.1) [a, b, a, c]2
e−1

[a, b, c, a]2
e−1

= 1.

This equation is equivalent to

(4.6.2) [a, b, b, c]2
e−1

[a, b, c, b]2
e−1

= 1.

By a result of Traustason [27], the group 〈a, [a, b]〉 = 〈a, ab〉 has class ≤ 4 and is
thus metabelian. Expanding b−1a2e

b = (a[a, b])2e

as in the proof of Lemma 4.4 and
using the fact that G is 4-Engel, we get

1 = [a2e

, b]

= [a, [a, b]](
2e

2 )[a, [a, b], [a, b]](
2e

3 )[a, [a, b], a](
2e

3 )

= [a, [a, b]](
2e

2 ),

hence [a, b, a]2
e−1

= [a, b, b]2
e−1

= 1. Now we have

1 = [[a, b, a]2
e−1

, c] = [a, b, a, c]2
e−1

[a, b, a, c, [a, b, a]](
2e−1

2 ).

From the polycyclic presentation of E3 we see that [a, b, a, c, [a, b, a]] = 1, therefore
also [a, b, a, c]2

e−1
= 1. Similarly we get that [a, b, b, c]2

e−1
= 1. The equations

(4.6.1) and (4.6.2) now imply that [a, b, c, a]2
e−1

= [a, b, c, b]2
e−1

= 1. This concludes
the proof. �

This result in particular implies that 0e−1(γ4(〈x, y, z〉)) ≤ Z(〈x, y, z〉). For any
x1, x2, x3, x4 and x5 in 〈x, y, z〉 we have

1 = [[x1, x2, x3, x4]2
e−1

, x5]

= [x1, x2, x3, x4, x5]2
e−1

[x1, x2, x3, x4, x5, [x1, x2, x3, x4]](
2e−1

2 )

= [x1, x2, x3, x4, x5]2
e−1

,

since e > 2 and 01(γ9(〈x, y, z〉)) = 1. It follows that 0e−1(γ5(〈x, y, z〉)) = 1, as
required.

Expanding 1 = [[x, y]2
e

, z] using Lemma 4.4, we get

(4.6.3) 1 = [x, y, z]2
e

[x, y, z, [x, y]](
2e

2 )[x, y, z, [x, y], [x, y], [x, y]](
2e

4 ).

As H is center-by-4-Engel, we have that [x, y, z, [x, y], [x, y], [x, y]] = 1. Further-
more, since 0e−1(γ5(〈x, y, z〉)) = 1, the equation (4.6.3) becomes [x, y, z]2

e

= 1,
as required. It follows now from (4.5.15) that ([x, y]ω)2e+1

= ω2e+1
which clearly

implies that 0e+1(H ′) = 1. This concludes the proof.
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5. 3-Engel groups

In this section we show that for every 3-Engel group G of finite exponent, the
exponent of H2(G) divides expG. Standard argument shows that we may assume
that G is a finite p-group. Furthermore, Corollary 4.2 shows that we only need to
consider the cases when p = 2 or p = 5. At first we deal with 5-groups.

Theorem 5.1. Let H be a finite 5-group and let Z be a central subgroup of H such
that G = H/Z is a 3-Engel group. Then 0e(H ′) ≤ [0e(H), H].

Proof. Assume that [0e(H), H] = 1. Let x, y ∈ H. As every 2-generator 3-Engel
2-torsion-free group is nilpotent of class ≤ 3 [13], the group 〈x, y〉 is nilpotent of
class ≤ 4. Thus

(5.1.1) 1 = [x, y5e

] = [x, y]5
e

[x, y, y](
5e

2 )[x, y, y, y](
5e

3 ).

Commuting (5.1.1) with y, we get that [x, y]5
e

= 1. For ω ∈ H ′ we now get

(ω[x, y])5e

= ω5e ∏
0<i+j<5e

[ω, i[y, x], jω](
5e

i+j+1)[y, x]5
e

= ω5e

.

It follows that 0e(H ′) = 1, as required. �

It remains to consider 2-groups. We prove the following result.

Theorem 5.2. Let H be a finite 2-group and let Z be a central subgroup of H such
that G = H/Z is a 3-Engel group. Then 0e(H ′) ≤ [0e(H), H].

Lemma 5.3. Let H be as in Theorem 5.2.

(a) Every r-generator subgroup of H is nilpotent of class ≤ r + 3.
(b) All commutators in H with a triple entry are central.
(c) H satisfies the laws [x, y, z, [w, t], u, v] = 1 and [x, y, z, w, [x, y, z]] = 1.

Proof. As H/Z(H) is a 3-Engel 2-group, (a) follows directly from [10, Theorem 4.1
(a)], whereas (b) is a direct consequence of the fact that in every 3-Engel group, all
commutators with a triple entry are trivial [10, Corollary 2.5]. The first law of (c)
is a consequence of [10, Theorem 4.1 (b)]. To prove the second law, one can use the
nilpotent quotient algorithm implemented in GAP to construct the largest class 7
quotient Q of the free 4-generator group satisfying the law [x, y, y, y, z] = 1. Then
it can be verified that [x, y, z, w, [x, y, z]]5 = 1 is a law in Q. As H is a 2-group, the
assertion is proved. �

Lemma 5.4. Let G be a 3-Engel group of exponent 2e and a, b, c ∈ G. Then
[a, b, c]2

e−1
= 1.

Proof. Since the group 〈c, [a, b]〉 is nilpotent of class ≤ 4 [13], it is metabelian. Then

1 = (c[a, b])2e

=
∏

0<i+j<2e

[c, i[b, a], jc](
2e

i+j+1)

= [c, [b, a]](
2e

2 ),

and the result follows. �
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Proof of Theorem 5.2. Assume that [0e(H), H] = 1. For x, y ∈ H we have that
〈x, y〉 is nilpotent of class ≤ 5. Since [x2e

, y] = 1, we can apply [24, Lemma 9] to
obtain

(5.4.1) 1 = [x, y]2
e

[x, y, x](
2e

2 )[x, y, x, x](
2e

3 )[x, y, x, [x, y]]α(2e),

where α(n) = n(n − 1)(2n − 1)/6. Commuting (5.4.1) with z ∈ H, we get
[x, y, x, z]2

e−1
= 1. Thus the equation (5.4.1) can be rewritten as

(5.4.2) 1 = [x, y]2
e

[x, y, x](
2e

2 ).

Replacing x by yx in (5.4.2) and using (5.4.2), we see that [x, y, y]2
e−1

= 1, hence
also [x, y, x]2

e−1
= 1 and [x, y]2

e

= 1. Now let ω ∈ H ′. We can expand (ω[x, y])2e

us-
ing the collection process and above obtained relations. Since the class of 〈ω, [x, y]〉
is at most 5, we get (cf. [24, Lemma 9])

(5.4.3) (ω[x, y])2e

= ω2e

[x, y, ω](
2e

2 )[x, y, ω, ω, ω](
2e

4 )[x, y, ω, ω, [x, y]]3(
2e

4 ).

The commutator [x, y, ω, ω, ω] is a product of conjugates of commutators of the form
[x, y, [x1, y1], [x2, y2], [x3, y3]]±1, where xi, yi ∈ H. By Lemma 5.3, the commutator
[x, y, [x1, y1], [x2, y2]] belongs to Z2(H), therefore [x, y, [x1, y1], [x2, y2], [x3, y3]] =
1. It follows that [x, y, ω, ω, ω] = 1. A similar argument also shows that the
commutator [x, y, ω, ω, [x, y]] is trivial. Let z, w ∈ H. Using Lemma 5.3 and Lemma
5.4, we get

1 = [[x, y, z]2
e−1

, w]

= [x, y, z, w]2
e−1

[x, y, z, w, [x, y, z]](
2e−1

2 )

= [x, y, z, w]2
e−1

.

By the Hall-Witt identity this implies [[x, y], [z, w]]2
e−1

= 1. As H ′′′ = 1 by Lemma
5.3, it follows that [x, y, ω]2

e−1
= 1. Hence (5.4.3) implies (ω[x, y])2e

= ω2e

. It
follows from here that 0e(H ′) = 1, as required. �

As in Section 4 we get the following result.

Corollary 5.5. Let G be a 3-Engel group of exponent e. Then expH2(G) divides
e.
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