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We study powerful 2-Engel groups. We show that every powerful

2-Engel group generated by three elements is nilpotent of class at

most two. Surprisingly the result does not hold when the number of

generators is larger than three. In this paper and its sequel we classify

powerful 2-Engel groups of class three that are minimal in the sense

that every proper powerful section is nilpotent of class at most two.

1 Introduction

Every finite n-Engel group is nilpotent [7]. However if n ≥ 3, the class is not
n-bounded. In contrast we know that the class is n-bounded if one adds the
further condition that the group is powerful [1]. (Recall that a finite p-group,
p odd, is said to be powerful if [G, G] ≤ Gp. We refer to [6] for further infor-
mation and description of their many abelian like properties). The proof of
this result relies on deep results on Lie algebras. It does not give any precise
information how the property of being powerful affects the structure of the
group and in particular we have no good bounds for the nilpotence class,
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not even for small values of n. In this paper and its sequel we carry out a
detailed analysis of powerful 2-Engel groups.

We recall that a group is said to be 2-Engel if it satisfies the commutator
law [[y, x], x] = 1 or equivalently the law [xy, x] = 1, i.e. any two conjugates
commute. These groups have their origin in Burnside’s paper [2]. In that
paper Burnside proved that all groups of exponent three are locally finite
and in order to obtain this result he observed that these groups are 2-Engel.
Burnside wrote a sequel to this paper where he studies 2-Engel groups in
general [3]. This paper seems to have received surprisingly little attention,
being the first paper written on Engel groups. In this paper Burnside proves
that any 2-Engel group satisfies the laws

[x, y, z] = [y, z, x] (1)

[x, y, z]3 = 1. (2)

In particular every 2-Engel group without elements of order 3 is nilpotent
of class at most 2. Burnside failed however to observe that these groups
are in general nilpotent of class at most 3, although he proved (in modern
terminology) that any periodic 2-Engel group is locally nilpotent. It was C.
Hopkins [4] that seems to have been the first to show that the class is at
most 3. So any 2-Engel group also satisfies

[x, y, z, t] = 1. (3)

Hopkins also observes that (1)-(3) characterize 2-Engel groups. This trans-
parent description of the variety of 2-Engel groups is usually attributed to
Levi [5], although his paper appears much later.

Of course this settles the study of 2-Engel groups no more than knowing
that the variety of abelian groups is characterized by the law [x, y] = 1 set-
tles the study of abelian groups. For example, the following well known
problems raised by Caranti still remain unsolved.

Problem. (a) Let G be a group of which every element commutes with all
its endomorphic images. Is G nilpotent of class at most 2?

(b) Does there exist a finite 2-Engel 3-group of class three such that AutG =
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AutcG · Inn G where AutcG is the group of central automorphisms of G.

The class of powerful p-groups is quite a special class of p-groups. In some
sense the groups are very abelian like and share many of the properties that
abelian groups have. These groups are however also at the same time quite
typical p-groups and generate for example the variety of all groups as they
satisfy no non-trivial group law. For this reason one is often able to reduce
problems on p-groups to the class of powerful p-groups where one can make
use of all the abelian like properties. Our belief is therefore that understand-
ing the structure of powerful 2-Engel groups should be helpful in tackling the
various open problems on 2-Engel groups like the problems mentioned above.

Let us now describe the main results of this paper. We mentioned above
that every 2-Engel group is nilpotent of class at most 3 and the third term of
the lower central series has exponent dividing 3. In particular, it follows that
in the case when a 2-Engel group has no elements of order 3, we get the best
possible bound for the nilpotence class, namely 2. From Burnside we know
that every group of exponent 3 is a 2-Engel group and one can think of these
groups in some sense as the generic examples of 2-Engel groups where the
class goes up to 3. Any powerful 3-group of exponent 3 is however abelian.
One might therefore expect that all the examples of class 3 would disappear
if we add the condition that the 2-Engel group is powerful. We will see that
this is true when the group is generated by three elements. Surprisingly this
is not true however in general. We will classify the minimal powerful 2-Engel
groups, where by minimal we mean that all proper powerful sections have
class at most 2. For a powerful 3-group G we have that [G, G] ≤ G3 and
therefore γ3(G) ≤ [G, G]3. It will be useful to divide the minimal counterex-
amples into two subclasses.

(I) The minimal examples G where γ3(G) < [G, G]3.
(II) The minimal examples G where γ3(G) = [G, G]3.

In this paper we deal only with the minimal examples of type I. We will
give a concrete classification by listing them all as three infinite families, one
with groups of rank 5 and two with groups of rank 4. It turns out that the
second case is very different and those of type II will use a different approach
and will be dealt with in another paper. The minimal examples of type II
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will form an infinite family, described in terms of irreducible polynomials
over the field of three elements and including examples of any even rank
greater than or equal to 4, plus one isolated minimal group of rank 5. It is
a curious fact that the only minimal examples of odd rank are those of rank 5.

It had been our hope that within this rich class of minimal examples we
would find some counter examples to the problems above raised by Caranti.
This turns out not to be the case. It seems to suggest that such counter ex-
amples do not exists and perhaps there is a way of reducing these problems
to powerful 2-Engel groups.

2 Powerful 2-Engel groups generated by three

elements

We show that every 3-generator powerful 2-Engel group is nilpotent of class
at most 2. Notice that the class of powerful p-groups is not closed under
taking subgroups and it does not follow from this result that all powerful
2-Engel groups are nilpotent of class at most 2. In fact we will see later that
there is a rich class of counter examples.

Theorem 2.1 Every 3-generator powerful 2-Engel group is nilpotent of class

at most 2.

Proof We argue by contradiction and let G be a counter example of minimal
order. By minimality, Z(G) is cyclic (any quotient of a powerful group is
powerful), and since G is 2-Engel we know that [G, G]3 ≤ Z(G). Suppose
that [G, G]3 = 〈z〉. Without loss of generality, we can choose the generators
x1, x2, x3 of G so that

[x2, x1]
3 = z (4)

[x3, x1]
3 = zm1

[x3, x2]
3 = zm2

for some integers m1, m2. Since G is 2-Engel, we know that [x1, x2, x3] =
[x2, x3, x1] = [x3, x1, x2] and that the third term of the lower central series is
〈[x1, x2, x3]〉. By our assumption [x1, x2, x3] 6= 1.
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Since G is powerful, we have an equation of the form

[x2, x1] = x3α1

1 x3α2

2 x3α3

3 (5)

for some integers α1, α2, α3. Using the 2-Engel property, (4) and (5) we
deduce that

1 = [x2, x1, x1]

= [x2, x1]
3α2 [x3, x1]

3α3

= zα2+m1α3 .

1 = [x2, x1, x2]

= [x2, x1]
−3α1 [x3, x2]

3α3

= z−α1+m2α3 .

But then (using (5))

[x2, x1, x3] = [x3, x1]
−3α1 [x3, x2]

−3α2

= z−m1α1−m2α2

= (z−α1+m2α3)m1 · (zα2+m1α3)−m2

= 1.

This contradicts the assumption that γ3(G) 6= {1}. 2

3 Minimal counterexamples I

In this section we start the classification of the minimal examples of class
three. As we said in the beginning we will here only deal with the minimal
examples of type I. We will see that these are all of rank either 4 or 5 and
that these form three infinite families.

3.1 Reduction to 4 or 5 generators

Let G be a minimal group of type I. By minimality we have that the center
of G is cyclic and thus in particular we have that [G, G]3 = 〈z〉 for some
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z ∈ Z(G). By Theorem 2.1, G has rank r at least 4. For a right choice of
generators, we have

G/[G, G] = 〈x̄1〉 × 〈x̄2〉 × · · · × 〈x̄r〉 (6)

with o(x̄1) ≥ o(x̄2) ≥ · · · ≥ o(x̄r), where x̄i is the image of xi in G/[G, G].

Let Hi = 〈xi, . . . , xr〉[G, G]. Notice that (6) still holds if xi is replaced by
xihi for any hi ∈ Hi+1. We claim that with such changes, we can assume
that

[x1, x2, x3] 6= 1 (7)

[x2, x1]
3 = z. (8)

First we turn to (7). As 〈G \ H2〉 = G we can, by replacing x1 by some
x1h1 with h1 ∈ H2 if necessary, assume that x1 6∈ Z2(G). Similarly as
H2 = 〈H2 \H3〉, by replacing x2 by some x2h2 with h2 ∈ H3, we can assume
that [x1, x2] 6∈ Z(G). Notice that as G is 2-Engel there must be some u3 ∈ H3

for which [x1, x2, u3] 6= 1. As H3 = 〈H3 \ H4〉, by replacing x3 by some x3h3

with h3 ∈ H4 we can assume that [x1, x2, x3] 6= 1.

We now turn to (8). Since [G, G]3 = 〈z〉 there must be some u ∈ G such that
[u3, G] 6≤ 〈z3〉. As γ3(G)3 = {1} it follows that [(uv)3, G] = [u3, G][v3, G]. If
[x3

1, G] ≤ 〈z3〉 it therefore follows that [h3, G] = 〈z〉 for some h ∈ H2. Now one
of [x1h, x2, x3], [x1h

−1, x2, x3] is non-trivial since otherwise we would get the
contradiction that [x1, x2, x3] = 1. Without loss of generality we can assume
that [x1h, x2, x3] 6= 1. Then also [(x1h)3, G] 6≤ 〈z3〉. By replacing x1 by x1h
we have that both (7) and [x3

1, G] 6≤ 〈z3〉 are satisfied. Similarly by replacing
x2 by some x2k or x2k

−1 if necessary, we can assume that [x2, x1]
3 /∈ 〈z3〉

while (7) still holds. By replacing x1 by a suitable power of itself we can
assume that [x2, x1]

3 = z. We have thus seen that x1, x2, x3 can be chosen
such that both (7) and (8) hold.

Let
H = 3

√

[G, G] = {u ∈ G : u3 ∈ [G, G]}.

As G is powerful, we have that [G, G] = H3. From this fact and (6) it follows
that

H = 〈x3n1−1

1 , x3n2−1

2 , . . . , x3nr−1

r 〉
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where 3ni = o(x̄i). If H ≤ K ≤ G then K is powerful since [K, K] ≤ [G, G] =
H3 ≤ K3. In particular it follows that the group

K = 〈x1, x2, x3, x
3n4−1

4 , . . . , x3nr−1

r 〉

is powerful and nilpotent of class 3. By the minimality of G, we must have
K = G and thus n4 = . . . = nr = 1. Hence it follows also that x3

4, . . . , x
3
r ∈

[G, G] and thus
[x4, g]3, . . . , [xr, g]3 ∈ γ3(G)

for all g ∈ G. Let

R = {a ∈ G : [a, g]3 ∈ γ3(G) for all g ∈ G}.

Notice that R is a normal subgroup of G and that we have just seen that
x4, . . . , xr ∈ R. As [G, G]3 > γ3(G) we must have that o(z) = 3m where
m ≥ 2 and since γ3(G)3 = {1} we also have γ3(G) = 〈z3m−1

〉. This m will
remain fixed for the rest of the paper. Notice that [G, G]3

m

≤ 〈z3m−1

〉 and
thus G3m−1

≤ R. We conclude that

〈x4, . . . , xr〉G
3m−1

≤ R.

For 4 ≤ i ≤ r, we know that [xi, x1]
3, [xi, x2]

3 ∈ γ3(G) = 〈z3m−1

〉. Also

[x2, x1]
3m

= z3m−1

. This implies that by replacing xi by a suitable xix
3m−1αi

1 x3m−1βi

2

we can assume that

[xi, x1]
3 = [xi, x2]

3 = 1, 4 ≤ i ≤ r. (9)

As G3m−1

≤ R we still have that x4, . . . , xr are in R after these replacements.
It is possible that (6) is not valid anymore but we still have that (7),(8) are
valid.

We next replace x3 by some x3x
α
1 xβ

2 to enforce

[x3, x1]
3 = [x3, x2]

3 = 1. (10)

Notice that after this change x3 ∈ R since [x3, xi]
3 ∈ γ3(G) for 4 ≤ i ≤ r.

Using (7) we can now without violating any of (7)-(10) replace each xi,
4 ≤ i ≤ r by some xix

γi

3 to enforce further that

[x1, x2, xi] = 1, 4 ≤ i ≤ r. (11)
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By replacing x3 by a suitable power, we can assume that [x1, x2, x3] = z3m−1

.
It is time to summarize. We have shown that we can choose the generators
x1, . . . , xr of G such that

[x1, x2, x3] = z3m−1

[x1, x2, xi] = 1, 4 ≤ i ≤ r

[x2, x1]
3 = z (A)

[xi, x1]
3 = [xi, x2]

3 = 1, 3 ≤ i ≤ r

[xj, xi]
3 ∈ 〈z3m−1

〉, 3 ≤ i < j ≤ r.

Let S = 〈x4, x5, . . . , xr〉. We want to clarify the structure from the last line
of (A) further. We can think of V = S/S3[S, S] as a vector space over the
field of three elements and we can identify W = 〈z3m−1

〉 with the field of
three elements. This leads to the alternating form

Φ : V × V → W, (ā, b̄) 7→ [a, b]3.

From the properties of G one sees readily that this is well defined. Choosing
a standard basis with respect to this alternating form, we can replace the
generators of S such that the following holds (for some 1 ≤ n ≤ r−1

2
)

[x5, x4]
3 = z3m−1

... (12)

[x2n+1, x2n]3 = z3m−1

[xu, xv]
3 = 1 otherwise.

Replacing x3 by a suitable x3x
α4

4 · · ·x
α2n+1

2n+1 , we can assume that

[x3, x1]
3 = [x3, x2]

3 = . . . = [x3, x2n+1]
3 = 1.

But x3
3 6∈ Z(G), since otherwise x3 ∈ CG(G3) and as G is powerful this would

lead to the contradiction that [x1, x2, x3] = 1. Hence 2n + 1 < r and we can
after rearranging the generators assume that

[x3, x2n+2]
3 = z3m−1

.

Replacing xi, 2n + 3 ≤ i ≤ r, by the appropriate xix
βi

2n+2, we can assume
that

[x3, x2n+3]
3 = . . . = [x3, xr]

3 = 1.
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Notice that this does not affect (A) or (12). By reordering the generators of
G, we see that they can be chosen such that

[x1, x2, x3] = z3m−1

[x1, x2, xi] = 1, 4 ≤ i ≤ r

[x2, x1]
3 = z (B)

[xi, x1]
3 = [xi, x2]

3 = 1, 3 ≤ i ≤ r

[x4, x3]
3 = z3m−1

...

[x2n+2, x2n+1]
3 = z3m−1

[xj, xi]
3 = 1 otherwise

where 1 ≤ n ≤ r−2
2

and o(z) = 3m where m ≥ 2.

The next aim is to show that n = 1. First we need few lemmas.

Lemma 3.1 We have that the subgroups 〈x3
1, x2, x3, . . . , xr〉 and 〈x1, x

3
2, x3, . . . , xr〉

are powerful.

Proof Firstly, for any 1 ≤ i < j ≤ r, we have that if (using the fact that G
is powerful)

[xj, xi] = x3α1

1 · · ·x3αr

r

then modulo 〈z3〉 we get using (B) that

1 ≡ [xj, xi, x2] = [x2, x1]
−3α1 = z−α1 .

This implies that 3|α1 and therefore

[xj, xi] ∈ 〈x3
1, x2, x3, . . . , xr〉

3.

This shows that the first subgroup of the lemma is powerful. Similar argu-
ment shows that the same is true for the latter. 2

In particular, by the minimality of G, it follows from the lemma that these
subgroups are nilpotent of class at most 2.

Corollary 3.2 Let 1 ≤ i < j < k ≤ r. Then the subgroup 〈xi, xj, xk〉 is

nilpotent of class at most 2 if {i, j, r} 6= {1, 2, 3}.
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Proof If 1 6∈ {i, j, k} or 2 6∈ {i, j, k} then it follows from Lemma 3.1
that 〈xi, xj, xk〉 is nilpotent of class at most 2. We are left with the group
〈x1, x2, xi〉 where i ≥ 4. But it follows from (B) that this group is also
nilpotent of class at most 2. This finishes the proof. 2

Proposition 3.3 We have that n = 1 and that 4 ≤ r ≤ 5. Furthermore we

can choose the generators such that the following relations hold:

[x1, x2, x3] = z3m−1

[x1, x2, xi] = 1, 4 ≤ i ≤ r

[xi, xj, xk] = 1, {i, j, k} ⊆ {1, . . . , r}, {i, j, k} 6= {1, 2, 3}

[x2, x1]
3 = z

[xi, x1]
3 = [xi, x2]

3 = 1, 3 ≤ i ≤ r

[x4, x3]
3 = z3m−1

x3
r ∈ Z(G), r > 4.

Here o(z) = 3m where m ≥ 2.

Proof First we show that n = 1. We argue by contradiction and suppose
that n ≥ 2. We claim that

L = 〈x1, x2, x3, x4, x
3
5, x6, . . . , xr〉

is powerful. To see this, let 1 ≤ i < j ≤ r and use the fact that G is powerful
to get an equation of the form

[xj, xi] = x3α1

1 · · ·x3α5

5 · · ·x3αr

r .

Then using Corollary 3.2 and (B) we conclude that

1 = [xj, xi, x6] = z−3m−1α5

which implies that α5 must be divisible by 3 and thus [xj, xi] ∈ L3. This
shows that L is powerful and by minimality of G we then must have that L is
nilpotent of class at most 2 and we get the contradiction that [x1, x2, x3] = 1.
Hence we must have that n = 1.

It follows that
x3

5, . . . , x
3
r ∈ Z(G)
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and thus linearly dependent if r ≥ 6. Let us see that this is impossible. Ar-
guing again by contradiction, suppose that r ≥ 6. Without loss of generality
we can suppose that

x3
r ∈ 〈x3

5, . . . , x
3
r−1〉.

Using this and the fact that G is powerful we see that [G, G] is generated by
x3

1, x
3
2, . . . x

3
r−1 which implies in particular that the subgroup 〈x1, . . . , xr−1〉 is

powerful. Again using minimality of G we must then have that 〈x1, . . . , xr−1〉
is nilpotent of class at most 2 which gives again the contradiction that
[x1, x2, x3] = 1. Hence r ≤ 5. Finally the relations come from (B). 2

So we see that minimal examples of type I are either of rank 4 or 5. In
the remainder of this paper we classify these.

3.2 The 5-generator groups

From Proposition 3.3 we already have some detailed information about the
structure. In particular we know that [x5, x1], [x5, x2], [x5, x3], [x5, x4] are of
order 3 and in the center of G. But we know that the center must be cyclic
generated by [x1, x2, x3] = [x2, x3, x1] = [x3, x1, x2] = [x4, x3]

3. Hence we get
equations of the form

[x5, x1] = [x2, x3, x1]
α1

[x5, x2] = [x3, x1, x2]
α2

[x5, x3] = [x1, x2, x3]
α3

[x5, x4] = [x3, x4]
3α4

for some integers α1, α2, α3, α4. It follows from this and the relations from
Proposition 3.3 that

x5[x2, x3]
−α1 [x3, x1]

−α2 [x1, x2]
−α3x−3α4

3 ∈ Z(G).

By replacing x5 by this element we can thus assume that x5 ∈ Z(G). Notice
that the relations of Propositions 3.3 are not affected by this.

As the center of G is cyclic, either x5 ∈ 〈z〉 or z ∈ 〈x3
5〉. But G has rank 5,

so we can’t have x5 ∈ 〈z〉 ≤ 〈x1, x2, x3, x4〉. Hence z ∈ 〈x3
5〉. In fact we must

have z ∈ 〈x9
5〉, since otherwise it follows from Proposition 3.3 that

x3
5 = [x2, x1]

3α ⇒ (x5[x2, x1]
−α)3 = 1
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for some integer α. But then 〈x1, x2, x3, x4〉 would be powerful, contradicting
the minimality of G. So z ∈ 〈x9

5〉 which implies in particular that the order
of x5 is divisible by 3m+2.

Next consider the elements x9
3, x

9
4. Again it follows from Proposition 3.3

that these are in Z(G). Now again, as the rank of G is 5 we can’t have
x5 ∈ 〈x9

3〉 or 〈x9
4〉. Hence we must have x9

3, x
9
4 ∈ 〈x3

5〉 and if we don’t have
that x9

3, x
9
4 ∈ 〈x9

5〉 then either x3
5 = x9α

3 or x3
5 = x9α

4 for some integer α. But
this would give (x5x

−3α
3 )3 = 1 or (x5x

−3α
4 )3 = 1 and 〈x1, x2, x3, x4〉 would be

powerful contradicting the minimality of G. Hence

x9
3, x

9
4 ∈ 〈x9

5〉.

Suppose that x9
3 = x9α

5 and x9
4 = x9β

5 . Then (x3x
−α
5 )9 = (x4x

−β
5 )9 = 1.

Replacing x3, x4 by x3x
−α
5 , x4x

−β
5 we see that the relations of Proposition 3.3

are not affected. We can thus assume that x9
3 = x9

4 = 1. As [x4, x3]
3 6= 1, we

thus have
o(x3) = o(x4) = 9. (13)

From Proposition 3.3 it follows that [x4, x1], [x4, x2] are in Z(G) and [x4, x1]
3 =

[x4, x2]
3 = 1. Hence there exist some integers α1, α2 such that

[x4, x1] = [x2, x3, x1]
α1

[x4, x2] = [x3, x1, x2]
α2 .

It follows that x4[x2, x3]
−α1 [x3, x1]

−α2 commutes with x1 and x2. Replacing
x4 by this element does not affect the relations of Proposition 3.3 nor does
it affect (13). So we can assume that

[x4, x1] = [x4, x2] = 1. (14)

We have already seen that the order of x5 is divisible by 3m+2. Replacing x1

by x1x5 if necessary, we can then assume that x1 has order divisible by 3m+2.
As the relations from Proposition 3.3 are symmetrical in x1, x2 (swapping
x1 and x2 and replacing z, x4 by z−1, x−1

4 gives us the same relations), we
can assume that o(x1) ≥ o(x2). Since x3m+1

2 , x3m+1

1 ∈ Z(G) as one sees from
Proposition 3.3, it follows then that x3m+1

2 = x3m+1α
1 , for some integer α, and

(x2x
−α
1 )3m+1

= 1. Again the relations of Proposition 3.3 are not affected if
we replace x2 by x2x

−α
1 . As [x2, x1]

3m

= z3m−1

6= 1, we can thus assume that

o(x2) = 3m+1. (15)
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We have seen previously that we can assume that o(x1) is divisible by 3m+2.
So x3m+1

1 is a non-trivial element in the center of G. Using the minimality of
G as we have done previously we see that we can’t have x3

5 ∈ 〈x3m+1

1 〉 and as
the center is cyclic we must have

x3m+1

1 ∈ 〈x9
5〉. (16)

We now turn to the commutator relations. As G is powerful we have a
relation of the form

[x2, x1] = x3α1

1 x3α2

2 x3α3

3 x3α4

4 x3α5

5 .

Taking commutator on both sides with x4 and using the relations from Propo-
sition 3.3, we see that 1 = z−3m−1α3 . As o(z) = 3m it follows that 3|α3. Taking
commutators with x1 and x2 shows similarly that α1 and α2 are divisible by
3m. It now follows from (13)-(16) that

[x2, x1] = x3α4

4 x3α5

5

for some integers α4, α5. As [x2, x1, x3] = z−3m−1

we see that we can take
α4 = −1 (remember that o(x4) = 9). So we have

[x2, x1] = x−3
4 x3α

5 (17)

for some integer α. Next consider

[x3, x2] = x3α1

1 x3α2

2 x3α3

3 x3α4

4 x3α5

5

Arguing in a similar way as we did before, taking commutators with x4, x3, x2, x1,
shows that we get an equation of the form

[x3, x2] = x−3m

2 x3α5

5 .

(Notice that [x3, x2, x1] = z−3m−1

, o(x2) = 3m+1 and that [x2, x1]
3m

= z3m−1

).
Taking the third power on both sides gives

1 = x−3m+1

2 x9α5

5 = x9α5

5

and as we had established before that o(x5) is divisible by 3m+2, we can
deduce that α5 = 3ml for some integer β. Thus

[x3, x2] = x−3m

2 x3m+1l
5 = (x2x

−3l
5 )−3m

.
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Replacing x2 by x2x
−3l
5 does not change the relations in Proposition 3.3

nor does it change the relations (13)-(17). (Notice that o((x2x
−3l
5 )3m

) =
o([x3, x2]) = 3 and thus o(x2x

−3l
5 ) = o(x2)). So we can assume that

[x3, x2] = x−3m

2 . (18)

Next we analyse
[x4, x3] = x3α1

1 x3α2

2 x3α3

3 x3α4

4 x3α5

5 .

Taking commutators with x3, x4, x1, x2 and using Proposition 3.3 and (13)-
(18) shows that we can replace this by an equation of the form

[x4, x3] = x3α5

5 .

This means that [x4, x3] is an element of 〈x3
5〉 of order 9 and as o(x5) is

divisible by 3m+2 we get an equation of the form

[x4, x3] = x3mγ
5 (19)

for some integer γ. We are now only left with the commutator

[x3, x1] = x3α1

1 x3α2

2 x3α3

3 x3α4

4 x3α5

5 .

Taking commutators with x3, x4, x1, x2 and using previous relations gives an
equation of the form

[x3, x1] = x−3m

1 x3β
5 (20)

for some integer β (notice that x3m+1

1 ∈ 〈x9
5〉).

We have seen earlier that o(x5) is divisible by 3m+2. Suppose that o(x5) =
3m+2+i where i is some non-negative integer. From the relations of Proposi-
tion 3.3 we know that o([x2, x1]) = 3m+1 which implies that α in (17) is of
the form 3i · ᾱ where ᾱ is not divisible by 3. From Proposition 3.3 we also
know that o([x4, x3]) = 9 and thus γ from (19) is of the form γ = 3iγ̄ where
γ̄ is not divisible by 3. Let us summarize the commutator relations. These
as we have seen can be written of the form

[x2, x1] = x−3
4 x3i+1α

5

[x3, x1] = x−3m

1 x3β
5

[x3, x2] = x−3m

2

[x4, x1] = 1 (C)
[x4, x2] = 1

[x4, x3] = x3m+iγ
5
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where o(x5) = 3m+2+i and m ≥ 2. Let us analyse these more closely. Firstly
notice that β is not divisible by 3 since otherwise the commutator relations
show that

〈x1, x2, x3, x
−1
4 x3i

·α
5 , x3

5〉

is powerful. Hence none of α, β, γ is divisible by 3. Replacing x5 by xα
5 we

can assume that α = 1. It follows in particular that

z3m−1

= [x2, x1]
3m

= x3m+i+1

5 .

From Proposition 3.3 and (C) we then also have

x3m+i+1

5 = z3m−1

= [x4, x3]
3 = x3m+i+1γ

5 .

We can take γ to be an integer between 0 and 9 and by this equation γ is
a unit modulo 9 (being 1 modulo 3). Now let τ be the inverse of γ modulo
9. Replacing x4 by xτ

4 we can assume that γ = 1. Notice that the other
equations of (C) are unaffected and the same is true for Proposition 3.3 and
(13), (15)-(16). Having seen that we can take α, γ to be 1 we turn to β. Now
x3

5 has order 3m+1+i and as β is not divisible by 3 it is a unit modulo 3m+i+1.
Let σ be the inverse of β modulo 3m+i+1. Replace x1 by xβ

1 and x2 by xσ
2 .

With this change we can assume that β in (C) is 1 and it is easy to check
that all the other relations remain the same. Notice that the second relation
of (C) together with the established fact that [x3, x1]

3 = 1 (Proposition 3.3)
implies that

x3m+1

1 = x9
5. (21)

One can easily check that all the relations in Proposition 3.3 remain the
same after the change of x1, x2 and x4 and the same is true for the power
relations. As the relations in Proposition 3.3 are consequences of (C) they
remain the same and the same is true for the power relations (13) and (15).
We have thus arrived at a two parameter family of candidates for minimal
examples of type I generated by 5 elements. These are the groups A(i, m)
where A(i, m) = 〈x1, x2, x3, x4, x5〉 is the largest nilpotent group of class at
most 3 satisfying the extra relations

[x2, x1] = x−3
4 x3i+1

5

[x3, x1] = x−3m

1 x3
5

[x3, x2] = x−3m

2
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[x4, x1] = 1

[x4, x2] = 1

[x4, x3] = x3m+i

5

A(i, m) [x5, xj] = 1, 1 ≤ j ≤ 4

x3m+1

1 = x9
5

x3m+1

2 = 1

x9
3 = 1

x9
4 = 1

x3m+i+2

5 = 1.

Theorem 3.4 The minimal examples of type I that are of rank 5 consist of

the two parameter family A(i, m), i ≥ 0, m ≥ 2. The group A(i, m) has

class 3, exponent 32m+i+1 and order 33m+i+8. Furthermore the members of

the family are pairwise non-isomorphic.

Proof. Let F (i, m) be the largest group satisfying all the relations defining
A(i, m) except the relation x3m+1

1 = x9
5. It is easy to see that it follows from

the relations that every element in F (i, m) can be written of the form

xn1

1 xn2

2 xn3

3 xn4

4 xn5

5

with 0 ≤ n1 < 32m+i+1, 0 ≤ n2 < 3m+1, 0 ≤ n3, n4 < 9, 0 ≤ n5 < 3m+i+2.
It follows that F (i, m) has order at most 34m+2i+8. We first show that this
is the exact order of F (i, m). In order to show this we consider the set of all
formal expressions

an1

1 an2

2 an3

3 an4

4 an5

5

where 0 < n1 < 32m+i+1, 0 ≤ n2 < 3m+1, 0 ≤ n3, n4 < 9, 0 ≤ n5 < 3m+i+2.
We define a product on these formal expressions (a formula derived from the
relations of F (i, m)) by setting

an1

1 an2

2 an3

3 an4

4 an5

5 ∗ am1

1 am2

2 am3

3 am4

4 am5

5 = an1+m1−3mn3m1

1 an2+m2−3mn3m2

2

an3+m3

3 an4+m4−3n2m1

4

an5+m5+3n3m1+3i+1n2m1+3m+in4m3

5

a
3m+i+1(n3n2m1−m3m1n2)
5
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and where the exponents of a1, a2, a3, a4, a5 are calculated modulo 32m+i+1, 3m+1,
9, 9, 3m+i+2. Straightforward calculations show that we get a group which
satisfies all the relations of F (i, m). Now let N = 〈x3m+1

1 x−9
5 〉. One checks

easily that N is a normal subgroup. Now G = A(i, m) = F (i, m)/N and
has exactly n(G) = 34m+2i+8/3m+i = 33m+i+8 elements. In particular x5 has
order 3m+i+2. As G32m+i

= 〈x3m+i+1

5 〉 and [a1, a2, a3] = x3m+i+1

5 , it follows that
the class is 3 and the exponent is e(G) = 32m+i+1. As 3m+7 = n(G)/e(G),
we have that m and i are determined by the exponent and the order of G.
Hence the map (i, m) 7→ (n(G), m(G)) is injective and the groups in the list
are thus pairwise non-isomorphic.

It remains to establish the minimality of A(i, m). Let H/K be a section
of G = A(i, m) that is powerful and of class 3. As γ3(H) 6= {1} and G is
powerful, we must have elements g1, g2, g3 ∈ H of the following form

g1 = x1x
r1

4 xs1

5

g2 = x2x
r2

4 xs2

5

g3 = x3x
r3

4 xs3

5 .

Now for H/K to remain of class 3, we can’t have x3m+1+i

5 ∈ K. Let us see
what restrictions this makes on K. Suppose

g = xn1

1 xn2

2 xn3

3 xn4

4 xn5

5

is in K. Firstly as [g, g1, g2] = x3m+1+in3

5 is in K, we must have 3|n3. We use
in the following the fact that [xi, x1]

3 = [xi, x2]
3 = 1 for i = 3, 4, 5 and that

[x4, x3]
9 = 1. As [g, g1]

3, [g, g2]
3 ∈ K, we get that [x2, x1]

3n1 = x3i+2n1

5 and

[x2, x1]
3n2 = x3i+2n2

5 are in K which implies that 3m divides n1 and n2. Next

as [g, g3] = [x4, x3]
n4 = x3m+in4

5 ∈ K, we have that 9|n4. So g is of the form

g = x3mr1

1 x3mr2

2 x3r3

3 xr5

5 .

Notice that there is no occurrence of x4 in g. We next calculate modulo K
and use the fact that H/K is powerful. As [ḡ1, ḡ2] = x̄4

−3x̄5
3i+1

is not in
〈ḡ1

3, ḡ2
3, ḡ3

3, x̄5
3〉, we must have that H contains an element g4 of the form

g4 = x4x
s5

5 .
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Replacing gi by a suitable gig
ti
4 , i = 1, 2, 3, we can now assume that

g1 = x1x
s1

5

g2 = x2x
s2

5

g3 = x3x
s3

5

g4 = x4x
s4

5 .

Now consider [g, g1], [g, g2] ∈ K. We conclude that x3m+i+1r1

5 , x3m+i+1r2

5 ∈ K
and hence both r1, r2 are divisible by 3 and it follows that g is of the form

g = x3r3

3 xr5

5 .

Now [g, g4] ∈ K gives us that x3m+i+1r3

5 ∈ K which forces r3 to be divisible
by 3. Hence g must be a power of x5. But as K cannot contain x3m+1+i

5 , it
follows that g must then be trivial. Hence K = {1}. Now as H must be
powerful and [g3, g1] = x−3m

1 x3
5 ∈ H is not in 〈g3

1, g
3
2, g

3
3, g

3
4〉, we must have

that H contains x5. It is now clear that H = G. This finishes the proof. 2

3.3 The 4-generator groups

As for the 5-generator groups the following group is going to help in clarifying
the structure of the minimal examples.

R = {x ∈ G : [x, g]3 ∈ γ3(G) ∀g ∈ G}.

Then it follows from Proposition 3.3 that

R = 〈x3m−1

1 , x3m−1

2 , x3, x4〉

and
R ∩ Z2(G) = 〈x3m−1

1 , x3m−1

2 , x3
3, x4〉,

where Z2(G) is the second center of G. From Proposition 3.3 we know that
x3m

1 , x3m

2 , x3
3, x

3
4 6∈ Z(G) but x3m+1

1 , x3m+1

2 , x9
3,

x9
4 are all elements in the center. Without loss of generality we can assume

that o(x2)|o(x1). Suppose that x3m+1

2 = x3m+1e
1 . Then replacing x2 by x2x

−e
1

we can assume that
o(x2) = 3m+1, 3m+1|o(x1). (22)



19

Without loss of generality (replacing x1 by x1x
α
3 xβ

4 ) we can assume that o(x1)
is not less than the order of x3 or x4. By replacing then x4 by suitable x4x

3mf
1

we can assume that o(x4) ≥ o(x3m

1 ). By replacing x3 by some x3x
e
4 we can

assume that o(x3) ≥ o(x4). Then by replacing x4 by some suitable x4x
3f
3 we

can assume further that

o(x3) ≥ o(x4) ≥ o(x3
3). (23)

Note that these changes have no effect on relations given by Proposition 3.3.

Lemma 3.5 o(x4) ≥ o(x3m−1

1 ).

Proof Otherwise o(x4) ≤ o(x3m

1 ) and as o(x3) ≥ o(x4) ≥ o(x3
3) we have that

o(x3) ≤ o(x3m−1

1 ). It follows that

x9
3 = x3m+1α

1

x9
4 = x3m+2β

1

for some integers α, β. By replacing x3 by x3x
−3m−1α
1 and x4 by x4x

−3mβ
1 , we

can assume that
x9

3 = x9
4 = 1.

Notice that we may loose the property that [x3, x2]
3 = 1 but we still have

[x3, x2]
3 is in Z(G) of order at most 3. Now as G is powerful we get an

equation of the following form

[x3, x1] = x3α1

1 x3α2

2 x3α3

3 x3α4

4 .

Since [x3, x1] commutes with x3
1, x

3
2 we must have that α1, α2 are both divisible

by 3. Moreover by Proposition 3.3, [x3, x1] commutes with x4, x3, x1, and thus
we must have that 3|α3, 3|α4 and 3m|α2. As furthermore [x3, x1, x2] = z3m−1

it follows that

[x3, x1] = x3mα
1 , α is not divisible by 3

and as [x3, x1]
3 = 1 it follows that

o(x1) = 3m+1.

Then consider
[x2, x1] = x3β1

1 x3β2

2 x3β3

3 x3β4

4 .
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As this element commutes with x4, x2 and x1 we see that

[x2, x1] = x3β4

4

and [x2, x1]
3 = 1 which contradicts Proposition 3.3. 2

If H is any subgroup of G, we will use the notation e(H) for the exponent of
H. It follows from the last lemma that

e(R) = o(x3)

e(R ∩ Z2(G)) = o(x4).

Notice however that this is just the case for the time being and this will not
remain so. We will deal with two cases, each of which will lead to a family
of minimal examples.

3.3.1 Case 1. e(R) = e(R ∩ Z2(G))

Here o(x3) = o(x4) and it follows that x9
3 = x9α

4 for some integer α. Replacing
x3 by x3x

−α
4 we can assume that

x9
3 = 1. (24)

We claim that in this case we must have o(x4) > o(x3m−1

1 ). Otherwise o(x4) ≤

o(x3m−1

1 ) and x9
4 = x3m+1α

1 for some integer α. By replacing x4 by x4x
−3m−1α
1 ,

we can assume that
x9

4 = 1.

Now similar argument as in Lemma 3.6 gives us a contradiction.

We next deduce what the order of x4 is. As G is powerful and as [x2, x1]
commutes with x1, x2 and x4, we have that

[x2, x1] = x3α
4 x3m+1β

1

for some integers α and β. And as [x2, x1] does not commute with x3, α is
not divisible by 3. As we have seen previously o(x4) > o(x3m−1

1 ) and it follows
that o(x3

4) = o([x2, x1]) = 3m+1 and therefore

o(x4) = 3m+2. (25)
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Also, as o(x4) > o(x3m−1

1 ),

x3m+1

1 = x32+iτ
4 , 1 ≤ i ≤ m − 1 (26)

where τ is not divisible by 3. (Notice that o(x1) ≥ o(x4) implies that 2+ i ≤
m + 1). It follows in particular that o(x1) = 32m+1−i. We need now to sort
out the commutator relations. Now [x4, x1], [x4, x2] are elements in the center
of order dividing 3. Replacing x4 by some x4x

3me
1 x3mf

2 we can assume that

[x4, x1] = 1

[x4, x2] = 1 (27)

[x4, x3] = x3mδ
4

where δ is not divisible by 3. (Notice that x3m+1

2 = x9
3 = 1 and x3m+1

1 ∈ 〈x9
4〉

so Z(G) = 〈x9
4〉). These relations together with Proposition 3.3 also imply

that
[x2, x1] = x

−3(1+3α)
4 (28)

for some integer α. Next using the fact that [x3, x1] commutes with x1, x3, x4,
[x3, x1, x2] = z3m−1

and [x3, x1]
3 = 1, it follows from (26) that

[x3, x1] = x−3m

1 x
31+i(τ+3m−iβ)
4 (29)

for some integer β. Then using the fact that [x3, x2] is of order 3, commuting
with x2, x3, x4 and observing that [x3, x2, x1] = z−3m−1

, we see that

[x3, x2] = x−3m

2 x3m+1γ
4 (30)

for some integer γ. We make some small changes in order to reach a unique
presentation (in terms of m and i). First by replacing x2 by x2x

−3γ
4 we can

assume that γ in (30) is zero. Next we use the relations just obtained together
with Proposition 3.3, to observe that

x3m+1δ
4 = [x4, x3]

3 = [x2, x1]
3m

= x−3m+1

4

to deduce that we can assume the δ = 1 + 3ε for some integer ε. Now let
µ be the inverse of τ + 3m−iβ modulo 3m+1 and replace x1 by xµ

1 and x2 by

xτ+3m−iβ
2 . This results in the same relations as before except that in (29) we

have τ = 1 and β = 0. Finally let 1 + 3r be the inverse of 1 + 3α modulo
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3m and let 1 + 3s be the inverse of 1 + 3ε modulo 9. Replacing x2 and x3

by x1+3r
2 and x1+3s

3 we can furthermore assume that δ = 1 and α = 0 in (27)
and (28). We thus arrive at the following unique candidate:

[x2, x1] = x−3
4

[x3, x1] = x−3m

1 x31+i

4

[x3, x2] = x−3m

2

[x4, x1] = 1

[x4, x2] = 1

B(i, m) [x4, x3] = x3m

4

x3m+1

1 = x32+i

4

x3m+1

2 = 1

x9
3 = 1

x32+m

4 = 1.

Here m ≥ 2 and 1 ≤ i ≤ m − 1.

Theorem 3.6 The minimal examples of type I that are of rank 4 and have

the extra property that e(R) = e(R ∩ Z2(G)) consist of the two parameter

family B(i, m), 1 ≤ i ≤ m − 1, m ≥ 2. The group B(i, m) has class 3,
exponent 32m−i+1 and order 33m+6. Furthermore the members of the family

are pairwise non-isomorphic.

Proof We argue in a similar manner as in the proof of Theorem 3.4. Let
F (i, m) be the largest group satisfying all the relations defining A(i, m) ex-
cept the relation x3m+1

1 = x32+i

4 . As F (i, m) is powerful every element in
F (i, m) can be written of the form

xn1

1 xn2

2 xn3

3 xn4

4

with 0 ≤ n1 < 32m−i+1, 0 ≤ n2 < 3m+1, 0 ≤ n3 < 9, 0 ≤ n4 < 3m+2. It
follows that F (i, m) has at most 34m−i+6 elements. We first show that this
is the exact order of F (i, m). In order to show this we consider the set of all
formal expressions

an1

1 an2

2 an3

3 an4

4
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where 0 < n1 < 32m−i+1, 0 ≤ n2 < 3m+1, 0 ≤ n3 < 9, 0 ≤ n4 < 3m+2.
We define a product on these formal expressions (a formula derived from the
relations of F (i, m)) by setting

an1

1 an2

2 an3

3 an4

4 ∗ am1

1 am2

2 am3

3 am4

4 = an1+m1−3mn3m1

1 an2+m2−3mn3m2

2

an3+m3

3

an4+m4−3n2m1+3i+1n3m1−3mn4m3

4

a
3m+1(n2m1m2−n2n3m1)
4

and where the exponents of a1, a2, a3, a4 are calculated modulo 32m−i+1, 3m+1,
9, 3m+2. Straightforward calculations show that we get a group which sat-
isfies all the relations of F (i, m). Now let N = 〈x3m+1

1 x−32+i

4 〉. One checks
easily that N is a normal subgroup. Now B(i, m) = F (i, m)/N and has
exactly n(G) = 34m−i+6/3m−i = 33m+6 elements. In particular x1 has order

32m−i+1. As G32m−i

= 〈x32m−i

1 , x32m−i

4 〉 = 〈x3m+1

4 〉 and [x1, x2, x3] = x−3m+1

4 ,
it follows that the class is 3 and the exponent is e(G) = 32m−i+1. Now m
and i are determined by the exponent and the order of G. Hence the map
(i, m) 7→ (n(G), m(G)) is injective and the groups in the list are thus pairwise
non-isomorphic.

It remains to establish the minimality of B(i, m). Let H/K be a section
of G = B(i, m) that is powerful and of class 3. As γ3(H) 6= {1} and G is
powerful, we must have elements g1, g2, g3 ∈ H of the following form

g1 = x1x
r1

4

g2 = x2x
r2

4

g3 = x3x
r3

4 .

Now for H/K to remain of class 3, we can’t have x3m+1

4 ∈ K. Let us see what
restrictions this makes on K. Suppose

g = xn1

1 xn2

2 xn3

3 xn4

4

is in K. Firstly as [g, g1, g2] = x3m+1n3

4 is in K, we must have 3|n3. We use
in the following the fact that [xi, x1]

3 = [xi, x2]
3 = 1 for i = 3, 4 and that

[x4, x3]
9 = 1. As [g, g1]

3, [g, g2]
3 ∈ K, we get that [x2, x1]

3n1 = x−32n1

4 and
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[x2, x1]
3n2 = x−32n2

4 are in K which implies that 3m divides n1 and n2. Next
as [g, g3] = [x4, x3]

n4 = x−3mn4

4 ∈ K, we have that 9|n4. So g is of the form

g = x3mr1

1 x3mr2

2 x3r3

3 x9r4

4 .

Using the fact that the commutators of g with g1, g2 are in K we see that
both r1 and r2 are divisible by 3 and it follows using the relations of G that
g can be written of the form g = x3α

3 x9β
4 . As g3 ∈ K we must have that β is

divisible by 3m−1. Hence g is of the form

g = x3α
3 x3m+1γ

4 .

If for all such g ∈ K, α is divisible by 3, then all g ∈ K must be trivial as
x3m+1

4 is not in K. Hence K = {1} and H is powerful. But [g1, g2] = x3
4 is not

in 〈g3
1, g

3
2, g

3
3, x

9
4〉 and H therefore has to contain x4 to be powerful. Hence

H = G and we are done. So we can assume that 3 does not divide α for some
g. In order to avoid K containing x3m+1

4 , K must then be cyclic generated

by some g = x3α
3 x3m+1γ

4 . Now K = 〈g〉 = 〈g3x
t
4〉 for some integer t. Using

the fact that [g3x
t
4, g3] ∈ K, we see that t must be divisible by 9. We want

to show that H must contain x4. If this was not the case then H would be
a subgroup of 〈g1, g2, g3, x

3
4〉 and thus modulo K = 〈g3x

t
4〉 we would have

[g1, g2] = x3
4

must be in 〈g3
1, g

3
2, g

3
3, x

9
4〉 and hence x3

4 would be in 〈g3
1, g

3
2, g

3
3, x

9
4〉. But this

is not the case. It follows that x4 ∈ H and G = H. In particular [g, x4] =
x3m+1α

4 ∈ K and hence 3 divides α contrary to our assumption. This finishes
the proof. 2

3.3.2 Case 2. e(R) > e(R ∩ Z2(G))

Here o(x3) > o(x4) and x9
4 = x27α

3 for some integer α. By replacing x4 by
x4x

−3α
3 we can assume that

x9
4 = 1. (31)

We now go on to clarify the structure further. Notice first that

x3m+1

1 = x32+iτ
3 , 3 6 |τ, 1 ≤ i ≤ m − 1. (32)
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This follows from the fact that o(x1) ≥ o(x3) > o(x1)
3m−1

. As [x3, x1] com-
mutes with x1, x3, x4, [x3, x1]

3 = 1 and [x3, x1, x2] = [x2, x1]
3m

, it follows from
the last equation that

[x3, x1] = x−3m

1 x
31+i(τ+3β)
3 (33)

for some integer β. Using these equations and the fact that [x2, x1] commutes
with x1, x2, x4 and [x2, x1, x3] = [x4, x3]

−3, we see that

[x2, x1] = x−3
4 x32+jγ

3 (34)

where j ≥ 0 and 3 6 |γ. As o([x2, x1]) = 3m+1 we get in particular

o(x3) = 33+j+m. (35)

Notice that it follows then from (32) that

o(x1) = 32m−i+j+2.

We next turn our attention to [x3, x2]. Using similar arguments as before we
see that

[x3, x2] = x−3m

2 x32+j+mε
3 (36)

and
[x4, x3] = x31+j+mδ

3 (37)

for some integers ε and δ where δ is not divisible by 3. With appropriate
replacements we can also assume that

[x4, x1] = 1 (38)

[x4, x2] = 1 (39)

We now make some fine replacements in order to reach a clean presentation.
First replacing x2 by x2x

−32+jε
3 we can assume that ε in (36) is zero. Now

x32+j+mδ
3 = [x4, x3]

3 = [x2, x1]
3m

= x32+j+mγ
3

which implies that γ = δ modulo 3. Replacing x1, x4 by xδ
1, x

δ
4 we can assume

that

γ = 1 + 3a (40)

δ = 1 + 3b. (41)
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Next replacing x1, x2 by xτ
1, x

τ
2 . These equations are not affected and we get

furthermore that τ + 3β = 1 + 3c. We have thus arrived at

[x2, x1] = x−3
4 x

32+j(1+3a)
3

[x3, x1] = x−3m

1 x
31+i(1+3c)
3

[x3, x2] = x−3m

2

[x4, x1] = 1 (D)
[x4, x2] = 1

[x4, x3] = x
31+j+m(1+3b)
3 .

Let 1 + 3e be the inverse of 1 + 3b modulo 9 and 1 + 3f be the inverse of
1 + 3c modulo 3m+1+j. Replacing x4, x1 by x1+3e

4 , x1+3f
1 and replacing x2

appropriately gives us the presentation

[x2, x1] = x−3
4 x32+j

3

[x3, x1] = x−3m

1 x31+i

3

[x3, x2] = x−3m

2

[x4, x1] = 1

[x4, x2] = 1

C(j, i, m) [x4, x3] = x31+j+m

3

x3m+1

1 = x32+i

3

x3m+1

2 = 1

x9
4 = 1

x33+j+m

3 = 1.

Here m ≥ 2,j ≥ 0 and 1 ≤ i ≤ m − 1.

Theorem 3.7 The minimal examples of type I that are of rank 4 and have

the extra property that e(R) > e(R ∩ Z2(G)) consist of the three parameter

family C(j, i, m), 1 ≤ i ≤ m − 1, m ≥ 2, j ≥ 0. The group C(j, i, m) has

class 3, exponent 32m+2+j−i and order 33m+j+7. Furthermore the members of

the family are pairwise non-isomorphic.

Proof We argue in a similar manner as in the proof of Theorem 3.4. First
let

(y1, y2, y3, y4) = (x1, x2, x3x
−3m−i−1

1 , x4).
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The defining relations for these new generators are

[y1, y2] = y3
4y

−3m+j−i+1

1 y−32+j

3

[y3, y1] = y31+i

3

[y3, y2] = y−3m

2 y−3m−i

4 y32m+j−2i+33m+j−2i

1 y3m+j−i+1

3

[y1, y4] = 1

[y4, y2] = 1

[y3, y4] = y−32m+j−i

1

y32m+j−i+2

1 = 1

y3m+1

2 = 1

y32+i

3 = 1

y9
4 = 1.

As G = C(j, i, m) is powerful every element can be written of the form

yn2

2 yn4

4 yn1

1 yn3

3

with 0 ≤ n1 < 32m+j−i+2, 0 ≤ n2 < 3m+1, 0 ≤ n3 < 32+i, 0 ≤ n4 < 32. It
follows that C(j, i, m) has at most 33m+j+7 elements. We first show that this
is the exact order of C(j, i, m). In order to show this we realize the group
concretely as the set of all formal expressions

an2

2 an4

4 an1

1 an3

3

where 0 < n1 < 32m+j−i+2, 0 ≤ n2 < 3m+1, 0 ≤ n3 < 32+i, 0 ≤ n4 < 32.
We define a product on these formal expressions (a formula derived from the
relations of C(j, i, m)) by setting

an2

2 an4

4 an1

1 an3

3 ∗ am2

2 am4

4 am1

1 am3

3 = au2

2 au4

4 au1

1 uu3

3

where

u2 = n2 + m2 − 3mn3m2

u4 = n4 + m4 − 3m−in3m2 + 3n1m2

u1 = n1 + m1 − 3m+j−i+1n1m2 + 32m+j−2in3m2 − 32m+j−in3m4

+32m+j−i+1n1n3m2 + 33m+j−2in3m2

u3 = n3 + m3 + 3m+j−in3m2 + 3i+1n3m1 − 3j+2n1m2
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and where the exponents of a1, a2, a3, a4 are calculated modulo 32m+j−i+2,
32+i, 32. Tedious but straightforward calculations show that we get a group
which satisfies all the relations of C(j, i, m). So C(j, i, m) has exactly n(G) =
33m+j+7 elements and also x1 has order 32m+j−i+2. As G32m+j−i+1

= 〈x32m+j−i+1

1 〉
and [x1, x2, x3] = [x3

4, x3] = x32m+j−i+1

1 , it follows that the class is 3 and the
exponent is e(G) = 32m+j−i+2. Also the exponent of G/Z(G) is a(G) =
3m+1. Since m, j and i are determined by a(G), n(G) and e(G), the map
(j, i, m) 7→ (e(G), n(G), a(G)) is injective and the groups in the list are thus
pairwise non-isomorphic.

It remains to establish the minimality of C(j, i, m). Let H/K be a sec-
tion of G = C(j, i, m) that is powerful and of class 3. As γ3(H) 6= {1} and
G is powerful, we must have elements g1, g2, g3 ∈ H of the following form

g1 = x1x
r1

4

g2 = x2x
r2

4

g3 = x3x
r3

4 .

Now for H/K to remain of class 3, we can’t have x32m+j−i+1

1 ∈ K. Let us see
what restrictions this makes on K. Suppose

g = xn1

1 xn2

2 xn3

3 xn4

4

is in K. Firstly as [g, g1, g2] = x−32m+j−i+1n3

1 is in K, we must have 3|n3. As
[g, g1]

3, [g, g2]
3 ∈ K, we get that [x2, x1]

3n1 , [x2, x1]
3n2 ∈ K. It follows that

3m divides n1, n2. Then considering [g, g3] ∈ K we see that 9 divides n4 and
g is of the form

g = x3mm1

1 x3mm2

2 x3m3

3 .

Raising g to the power 3m+j+1 we see that x32m+j−i+1m3

1 ∈ K and 3 must
divide m3. Next considering [g, g1], [g, g2] ∈ K, we see that 3 divides m1, m2

and so g must be a power of x3. This means that if g is non-trivial we
must have x32m+j−i+1

1 in K. We have thus shown that K = {1}. Now as

[g1, g2] = x3
4x

−32+j

3 6∈ 〈g3
1, g

3
2, g

3
3, x

9
4〉 and as H is powerful we must have that

x4 ∈ H. It follows that H = G. This finishes the proof. 2
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