ON PRO-p GROUPS WITH POTENT FILTRATIONS

PRIMOZ MORAVEC

ABSTRACT. In this note we prove that if G is PF-group of finite exponent, then
the exponent of the second homology group H2(G, M) divides the exponent of
G for every profinite trivial [ZG]-module M. We introduce the notion of the
exponential rank of a pro-p group, and find a bound for the exponential rank
of a PF-group.

1. INTRODUCTION

In 1987, Lubotzky and Mann [10, 11] introduced the notion of powerful p-groups
and powerful pro-p groups. These groups had been implicitly studied before by
Lazard [8] and Arganbright [2]. Powerful groups have a particularly nice power-
commutator structure, and have had an important role in the theory of finite p-
groups and pro-p groups. In their paper [10], Lubotzky and Mann obtained some
properties of the Schur multiplier Ho(G,Z) of a powerful p-group G. In particular,
they showed that if G is a powerful p-group, then the exponent of Ho(G,Z) divides
the exponent of G. The question whether exp Ho(G,Z) divides exp G for every
finite group seems to have been a longstanding open problem, probably going all
the way back to Schur. It is now known that the answer is negative in general, see,
for example, [13]. On the other hand, the counterexamples seem to be quite rare.
It is still not known whether or not there exists a finite group G of odd order such
that exp Ha(G,Z) does not divide exp G.

Recently, Ferndndez-Alcober, Gonzélez-Sanchez, and Jaikin-Zapirain [4] defined
a new family of pro-p groups, the so called PF-groups. These groups generalize the
concepts of powerful pro-p groups and potent pro-p groups [6]. They have been
used successfully in studying the power structure of pro-p groups [4]. Furthermore,
Gonzélez-Sanchez [5] proved that a torsion-free pro-p group is a PF-group if and
only if it is p-saturable (in the sense of Lazard). The purpose of this paper is to
study the power structure of central extensions of PF-groups. As a consequence we
generalize the above mentioned result of Lubotzky and Mann by proving that if G is
a PF-group of finite exponent, then exp Ho(G, M) divides exp G for every profinite
trivial [ZG]-module M. This also generalizes a result of Ellis [3]. In the second
part of the paper we follow the approach from [13] and define the exponential rank
exprank(G) of a center-by-finite-exponent pro-p group G. We first examine the
relationship between the exponential rank of a pro-p group and exponential rank of
its finite quotients. Then we prove that if G is a PF-group, then exprank(G) < 1.
We show by an example that this estimate is best possible. When G is potent, then
this result can be further refined. We namely show that potent pro-p groups have
zero exponential rank if p is odd. When p = 2, the exponential rank is precisely 1
unless the group in question is abelian.
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A word about the notations. If G is a pro-p group, then all the subgroups will
be considered in a topological sense, i.e., as topological closures of corresponding
abstract subgroups. For other unexplained notations we refer to the book of Ribes
and Zaleskii [14], and [4].

2. CENTRAL EXTENSIONS OF PF-GROUPS AND HOMOLOGY

Let G be a pro-p group. Following [4], we say that a descending chain (N;);en of

closed subgroups of G is a potent filtration of G if its intersection N;enIV; is trivial,

and [N;, G] < Nij1 and [Ny, ,—1G] < N}, for all i € N. A subgroup N of G is said

to be PF-embedded in G if there is a potent filtration of G starting at N. We also

say that G is a PF-group if it is PF-embedded in itself. The notion of PF-groups is

a generalization of that of potent pro-p groups [6], and powerful pro-p groups [10].
The main result of this section is the following.

Theorem 2.1. Let G be a PF pro-p group and let H be a pro-p group with Z <
Z(H) such that H/Z = G. Then [HP',H] = [H, H?" for all nonnegative integers
i.

Before proving this theorem, we mention the following two auxiliary results
proved in [4].

Lemma 2.2 ([4]). Let G be a pro-p group and let M and N be closed normal
subgroups of G. Then

k
NP, M) = [N, M]"" mod []M,, NJ”""
=1

for all nonnegative integers k.

Lemma 2.3 ([4]). Let G be a pro-p group, and N a PF-embedded subgroup of G.
Then we have the following:
(a) N/K is PF-embedded in G/K for every closed normal subgroup K of G.
(b) Both N? and [N, G) are PF-embedded in G.
(c) [N?',GP'| = [N,GP"" for alli,j > 0.
(d) (NP = NP for alli,j > 0.

Proof of Theorem 2.1. Let G, H, and Z be as above. Let U be the collection of
all open normal subgroups of H. Let U € U. Then ZU/U is a central subgroup
of H/U, and (H/U)/(ZU/U) =2 H/ZU is a PF pro-p group. If we prove that the
conclusion of the theorem holds true for all H/U, where U € U, then [Hpi, H|U =
[H, H|P'U for all U € U, and therefore [H?', H] = [H, H]pi. Thus in order to prove
that [H?', H] = [H,H]"", it suffices to show this for every finite quotient of H,
therefore we may assume without loss of generality that H is a finite p-group. Let
G=N; > Ny >---> N =1 be a potent filtration of G. Taking preimages in H,
we obtain a descending chain H = My > My > --- > My = Z of closed subgroups
of H such that [M;, H] < My, and [M;, ,_1H| < M} Z for alli=1,...,k. The
last condition implies that

(2.3.1) [M;, pH] < [M},,, H]

foralli =1,..., k. We claim that ([M;, H]);en is a potent filtration for H. The only
nontrivial thing to be verified is that [M;,,H]| < [M;41, H]?. Using Lemma 2.2,
we get [M? ., H| < [M;y1, HP[Miy1,pH]) < [Mip1, HP[M?,, H]. By induction,

(M}, H] < [Miqq, HP[M}, ;, H] for all j > 1. As My = Z, we conclude that
(MY |, H] < [Miy1, H]P, hence also [M;, ,H] < [M;11, H]P, as required.



w

We now claim that [Mipj,H] = [M;,H” for all positive integers i and j.
We prove this by induction on j. The above argument implies that [M?, H]
[M;, HP. On the other hand, Lemma 2.2 gives [M;, H|P < [M?, H|[M;,,H]
(M}, H|[M}, |, H] = [M}, H], therefore [M}, H] = [M;, H]?. Suppose now that
[MP", H] = [M;, H]?" for all positive integers i and r < j, where j > 1. We have
that

ININ

J
(MP H) = (M, HY  mod [[[H, M),

=1
by Lemma 2.2. As [M;, H] are PF-embedded in H, induction argument gives that
(M, 1(p—1)+1H] < [Mi,H]pt for all t > 0. As p* > 4(p—1) + 1 for all £ > 1,
we therefore conclude that [H, peMi]ije < [Mi,peH]pjfz < ([M;, HP Y™ =
[M;, H]”’. This shows that [Mipj,H] < [M;,H]?. To prove the reverse inclu-
sion, note first that p® > £(p — 1) + 2 for all £ > 2, therefore [H’peMi]pj*‘ <
My, e HP ™ < ([Miy oy H HP ™ < ([M, HPP HPP™ = [[M;, HJP H] <
[Mip] , H] for all £ > 2. It remains to consider [H,pMi]pj_l. We clearly have that
[H,,M;]”"" < [My, ,HP'" < [MP,HP™ < [MP,H]”"" by (2.3.1). Let us
prove that the equation (2.3.1) still holds when M; are replaced by M? throughout.
We prove this by reverse induction on 4. Using Lemma 2.2 and induction as-
sumption, we get [Mipva} = [MiapH]p < [Mf+1,H]p < [(Mipﬁ-l)p’H] [H, PMip—&-l] <
[(sz-&-l)p’HHMf-i-lva] < [(Mf+1)p7H][(Mf+2)p7H] = [(sz-f-l)vaL as required.
Thus can apply the induction assumption on j to conclude that [H ,pMi]pF1 <
[MP,HP™" = [(MP)”"", H]. By Lemma 2.3 we have that the equality (N?)?’ ' =
Nipj holds, hence (MP)?' ™" Z = Miij. Commuting with H, we get [(MP)?' ™" H] =
[MP g , H]. This concludes the proof. O

The above result has the following consequence for the homology of PF-groups.

Corollary 2.4. Let G be a PF pro-p group of finite exponent and let M be a
profinite trivial [ZG]-module. Then exp Ho(G, M) divides exp G.

Proof. First assume that G is finite. Applying Theorem 2.1 to a covering group of
G, we get that exp Ho(G,Z) divides expG. Let M be a trivial ZG-module. Then
the Universal Coefficient Theorem implies that Hy(G, M) = (H2(G,Z) @ M) @
Tor?(G*P, M), hence exp Ha(G, M) divides exp G. This proves the theorem in the
finite case. As for the pro-p case, let U be the collection of open normal subgroups
of G, and M a profinite trivial [[ZG]]—module. Then we have [14, Corollary 6.5.8]
that
Hy(G, M) = lim Hy(G/U, My),
Uelu
hence the result follows from the above conclusion. (|

Corollary 2.4 also holds for potent pro-p groups, i.e, pro-p groups satisfying
Yp—1(G) < GP if p is odd, or 72(G) < G* when p = 2 [6]. For, it is straightforward
to see that every potent pro-p group is a PF-group. Another related class of groups
was considered by Ellis [3]. He introduced the class €, consisting of finite p-groups
G satisfying [Gp%_l,G, G) < GP foralll <i< e, where exp G = p°. Ellis proved
that if G is a finite p-group belonging to Cp, then exp H2(G,Z) divides exp G.
Extending this notion, we define ép to be the class of all pro-p groups G satisfying
[sz*1 ,G,G] <GP for all i € N. It is now clear that if p > 3, then every ép—group
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is potent. Thus Corollary 2.4 also applies to pro-p groups belonging to ép, where
p> 3.

3. EXPONENTIAL RANK

Let n be an integer. A group G is said to be n-abelian if it satisfies the law (zy)" =
a™y™. The study of n-abelian groups was initiated by Levi in [9]. Alperin [1] showed
that if G is n-abelian for some n # 0, 1, then both exp G/Z(G) and exp v2(G) divide
n(n—1). Kappe [7] considered the sets E(G) = {n € Z | G is n-abelian}. She found
arithmetic characterizations of these sets. In the case of finite p-groups these were
further refined in [13].

Let G be a pro-p group and suppose that exp G/Z(G) = p¢. Then G/Z(G) is
locally finite by a result of Zelmanov [15]. Using a result of Mann [12], we conclude
that exp G’ is (p,e)-bounded (Mann’s result holds true for abstract groups, but
can be extended to the topological setting, since taking powers is continuous). It
follows that there exists n = n(p,e) > 1 such that G is n-abelian. Adapting the
argument from [13], we have that there exists a nonnegative integer r such that
E(G) =p*t"Z U (p°T"Z +1). As in [13] we say that r is the ezponential rank of G,
and we write r = exprank(G). Our first result shows that there is a relationship
between exprank(G) and the exponential rank of finite quotients of G.

Proposition 3.1. Let G be a pro-p group with exp G/Z(G) = p¢. Then

s = sup{exprank(G/U) | U an open normal subgroup of G}
is finite, and exprank(G) < s.
Proof. Let r = exprank(G) and let @ be any finite quotient of G. Let exp Q/Z(Q) =
p/ and exprank@ = t. Then f < e. As G is p®*"-abelian, so is Q. This implies
that ¢t < r + e — f, therefore s < co. To prove the second part, note that, by
definition, Q is p/**-abelian, hence it is also p°**-abelian. Since this is true for any

finite quotient of G, it follows that G is p®**-abelian. From here we conclude that
r < s, as required. O

The next lemma is an elementary consequence of Hall’s collection process.
Lemma 3.2. Let G be a group and let x,y € G. Then

i

k
(ey)” =2y mod ya((z,y))"" 7w ({90
=1

for all nonnegative integers k.

Theorem 3.3. Let G be a center-by-finite-exponent PF pro-p group. Then its
exponential rank is at most 1.

Proof. By Proposition 3.1 we may assume that G is a finite PF p-group. Let
expG/Z(G) = p°. Lemma 2.3 implies that expy2(G) = p¢. Let G = Ny >
-+ > N = 1 be a potent filtration for G. By induction on ¢ we can prove that
Yip—1)+1(G) < N-p_:_l for all i > 1. Now, Lemma 3.2 gives

(2

e+1
et1 e+l et1 et+1 et1—i
(3.3.1) (@) =2 " mod (@, )P ] e (G m))P
i=1
for all x,y € G. Clearly, '72((gc,y))pe+l = 1. Furthermore, we have that p* >

(i—1)(p—1) + 1 for all i > 1, hence v,:(G)*" " < [yu_1)p_1)r1(G)P ,G] <
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[(Nipiil)peﬂfi,G] = [Nfe,G] = [N;,G]*" = 1. Thus the equation (3.3.1) can be
rewritten as (my)pe+1 = 27"y hence exprank(G) < 1. O

The following example, taken from [4], shows that for each prime p there exists
a finite PF p-group G with exprank(G) = 1.

Ezample 3.4. Let p be a prime and n a positive integer. Let H = (z1) X - -+ X (z),
where |z1| = -+ = |zp—1| = p™ and |x,| = p"T!. Form G = H x (a), where « is an
automorphism of H of order p™ acting on H in the following way: = = z;x;4; for
1<i<p—2,z5 1 =xp 105, and x5 = x;,. Then it can be verified [4] that G is a
PF-group. As [xgn,a] = 1, we conclude that exp G/Z(G) = p™. Short calculation
shows that (ax;)P" # 1, whereas apn:rlfn = 1. Thus exprank(G) = 1.

Theorem 3.5. Let G be a center-by-finite-exponent potent pro-p group. If p is odd,
then exprank(G) = 0. If p = 2 and G is nonabelian, then exprank(G) = 1.

Proof. If p = 2, then G is powerful and the conclusion follows from [13]. Thus we
assume from here on that p is odd. Let exp G/Z(G) = p°. Then exp~:(G) = p°.
We have that

e k3

(zy)”" =2""y"" mod ya((z,y)" H%i((ﬂf,y))p% :

We prove by induction on i that 7, (G)P"" = 1forall i > 1. The case i = 1
follows from 7,(G)?" < [GP,G]P""" = 45(G)?" = 1. For the induction step ob-

serve that v,i+1 (G)pc_i_l = [")/pfl(G),p7‘,+1,p+1G]pE_i_l < [Gp,pi+1,p+1G]pe_i_l =

e—1

Vit _pi2(G)PT <74, (G)P" " = 1. This shows that G is p®-abelian. O
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