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Abstract. In this note we prove that if G is PF-group of finite exponent, then

the exponent of the second homology group H2(G, M) divides the exponent of

G for every profinite trivial [[ẐG]]-module M . We introduce the notion of the

exponential rank of a pro-p group, and find a bound for the exponential rank

of a PF-group.

1. Introduction

In 1987, Lubotzky and Mann [10, 11] introduced the notion of powerful p-groups
and powerful pro-p groups. These groups had been implicitly studied before by
Lazard [8] and Arganbright [2]. Powerful groups have a particularly nice power-
commutator structure, and have had an important role in the theory of finite p-
groups and pro-p groups. In their paper [10], Lubotzky and Mann obtained some
properties of the Schur multiplier H2(G,Z) of a powerful p-group G. In particular,
they showed that if G is a powerful p-group, then the exponent of H2(G,Z) divides
the exponent of G. The question whether expH2(G,Z) divides expG for every
finite group seems to have been a longstanding open problem, probably going all
the way back to Schur. It is now known that the answer is negative in general, see,
for example, [13]. On the other hand, the counterexamples seem to be quite rare.
It is still not known whether or not there exists a finite group G of odd order such
that expH2(G,Z) does not divide expG.

Recently, Fernández-Alcober, González-Sanchez, and Jaikin-Zapirain [4] defined
a new family of pro-p groups, the so called PF-groups. These groups generalize the
concepts of powerful pro-p groups and potent pro-p groups [6]. They have been
used successfully in studying the power structure of pro-p groups [4]. Furthermore,
González-Sanchez [5] proved that a torsion-free pro-p group is a PF-group if and
only if it is p-saturable (in the sense of Lazard). The purpose of this paper is to
study the power structure of central extensions of PF-groups. As a consequence we
generalize the above mentioned result of Lubotzky and Mann by proving that if G is
a PF-group of finite exponent, then expH2(G,M) divides expG for every profinite
trivial [[ẐG]]-module M . This also generalizes a result of Ellis [3]. In the second
part of the paper we follow the approach from [13] and define the exponential rank
exprank(G) of a center-by-finite-exponent pro-p group G. We first examine the
relationship between the exponential rank of a pro-p group and exponential rank of
its finite quotients. Then we prove that if G is a PF-group, then exprank(G) ≤ 1.
We show by an example that this estimate is best possible. When G is potent, then
this result can be further refined. We namely show that potent pro-p groups have
zero exponential rank if p is odd. When p = 2, the exponential rank is precisely 1
unless the group in question is abelian.
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A word about the notations. If G is a pro-p group, then all the subgroups will
be considered in a topological sense, i.e., as topological closures of corresponding
abstract subgroups. For other unexplained notations we refer to the book of Ribes
and Zaleskii [14], and [4].

2. Central extensions of PF-groups and homology

Let G be a pro-p group. Following [4], we say that a descending chain (Ni)i∈N of
closed subgroups of G is a potent filtration of G if its intersection ∩i∈NNi is trivial,
and [Ni, G] ≤ Ni+1 and [Ni, p−1G] ≤ Np

i+1 for all i ∈ N. A subgroup N of G is said
to be PF-embedded in G if there is a potent filtration of G starting at N . We also
say that G is a PF-group if it is PF-embedded in itself. The notion of PF-groups is
a generalization of that of potent pro-p groups [6], and powerful pro-p groups [10].

The main result of this section is the following.

Theorem 2.1. Let G be a PF pro-p group and let H be a pro-p group with Z ≤
Z(H) such that H/Z ∼= G. Then [Hpi

, H] = [H,H]p
i

for all nonnegative integers
i.

Before proving this theorem, we mention the following two auxiliary results
proved in [4].

Lemma 2.2 ([4]). Let G be a pro-p group and let M and N be closed normal
subgroups of G. Then

[Npk

,M ] ≡ [N,M ]p
k

mod
k∏
i=1

[M, piN ]p
k−i

for all nonnegative integers k.

Lemma 2.3 ([4]). Let G be a pro-p group, and N a PF-embedded subgroup of G.
Then we have the following:

(a) N/K is PF-embedded in G/K for every closed normal subgroup K of G.
(b) Both Np and [N,G] are PF-embedded in G.
(c) [Npi

, Gp
j

] = [N,G]p
i+j

for all i, j ≥ 0.
(d) (Npi

)p
j

= Npi+j

for all i, j ≥ 0.

Proof of Theorem 2.1. Let G, H, and Z be as above. Let U be the collection of
all open normal subgroups of H. Let U ∈ U. Then ZU/U is a central subgroup
of H/U , and (H/U)/(ZU/U) ∼= H/ZU is a PF pro-p group. If we prove that the
conclusion of the theorem holds true for all H/U , where U ∈ U, then [Hpi

, H]U =
[H,H]p

i

U for all U ∈ U, and therefore [Hpi

, H] = [H,H]p
i

. Thus in order to prove
that [Hpi

, H] = [H,H]p
i

, it suffices to show this for every finite quotient of H,
therefore we may assume without loss of generality that H is a finite p-group. Let
G = N1 ≥ N2 ≥ · · · ≥ Nk = 1 be a potent filtration of G. Taking preimages in H,
we obtain a descending chain H = M1 ≥ M2 ≥ · · · ≥ Mk = Z of closed subgroups
of H such that [Mi, H] ≤Mi+1, and [Mi, p−1H] ≤Mp

i+1Z for all i = 1, . . . , k. The
last condition implies that

(2.3.1) [Mi, pH] ≤ [Mp
i+1, H]

for all i = 1, . . . , k. We claim that ([Mi, H])i∈N is a potent filtration for H. The only
nontrivial thing to be verified is that [Mi, pH] ≤ [Mi+1, H]p. Using Lemma 2.2,
we get [Mp

i+1, H] ≤ [Mi+1, H]p[Mi+1, pH] ≤ [Mi+1, H]p[Mp
i+2, H]. By induction,

[Mp
i+1, H] ≤ [Mi+1, H]p[Mp

i+j , H] for all j ≥ 1. As Mk = Z, we conclude that
[Mp

i+1, H] ≤ [Mi+1, H]p, hence also [Mi, pH] ≤ [Mi+1, H]p, as required.
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We now claim that [Mpj

i , H] = [Mi, H]p
j

for all positive integers i and j.
We prove this by induction on j. The above argument implies that [Mp

i , H] ≤
[Mi, H]p. On the other hand, Lemma 2.2 gives [Mi, H]p ≤ [Mp

i , H][Mi, pH] ≤
[Mp

i , H][Mp
i+1, H] = [Mp

i , H], therefore [Mp
i , H] = [Mi, H]p. Suppose now that

[Mpr

i , H] = [Mi, H]p
r

for all positive integers i and r < j, where j > 1. We have
that

[Mpj

i , H] ≡ [Mi, H]p
j

mod
j∏
`=1

[H, p`Mi]p
j−`

,

by Lemma 2.2. As [Mi, H] are PF-embedded in H, induction argument gives that
[Mi, t(p−1)+1H] ≤ [Mi, H]p

t

for all t ≥ 0. As p` ≥ `(p − 1) + 1 for all ` ≥ 1,
we therefore conclude that [H, p`Mi]p

j−` ≤ [Mi, p`H]p
j−` ≤ ([Mi, H]p

`

)p
j−`

=

[Mi, H]p
j

. This shows that [Mpj

i , H] ≤ [Mi, H]p
j

. To prove the reverse inclu-
sion, note first that p` ≥ `(p − 1) + 2 for all ` ≥ 2, therefore [H, p`Mi]p

j−` ≤
[Mi, p`H]p

j−` ≤ [[Mi, `(p−1)+1H], H]p
j−` ≤ [[Mi, H]p

`

, H]p
j−`

= [[Mi, H]p
j

, H] ≤
[Mpj

i , H] for all ` ≥ 2. It remains to consider [H, pMi]p
j−1

. We clearly have that
[H, pMi]p

j−1 ≤ [Mi, pH]p
j−1 ≤ [Mp

i+1, H]p
j−1 ≤ [Mp

i , H]p
j−1

by (2.3.1). Let us
prove that the equation (2.3.1) still holds when Mi are replaced by Mp

i throughout.
We prove this by reverse induction on i. Using Lemma 2.2 and induction as-
sumption, we get [Mp

i , pH] = [Mi, pH]p ≤ [Mp
i+1, H]p ≤ [(Mp

i+1)p, H][H, pM
p
i+1] ≤

[(Mp
i+1)p, H][Mp

i+1, pH] ≤ [(Mp
i+1)p, H][(Mp

i+2)p, H] = [(Mp
i+1)p, H], as required.

Thus can apply the induction assumption on j to conclude that [H, pMi]p
j−1 ≤

[Mp
i , H]p

j−1
= [(Mp

i )p
j−1

, H]. By Lemma 2.3 we have that the equality (Np
i )p

j−1
=

Npj

i holds, hence (Mp
i )p

j−1
Z = Mpj

i Z. Commuting with H, we get [(Mp
i )p

j−1
, H] =

[Mpj

i , H]. This concludes the proof. �

The above result has the following consequence for the homology of PF-groups.

Corollary 2.4. Let G be a PF pro-p group of finite exponent and let M be a
profinite trivial [[ẐG]]-module. Then expH2(G,M) divides expG.

Proof. First assume that G is finite. Applying Theorem 2.1 to a covering group of
G, we get that expH2(G,Z) divides expG. Let M be a trivial ZG-module. Then
the Universal Coefficient Theorem implies that H2(G,M) ∼= (H2(G,Z) ⊗ M) ⊕
TorZ

1 (Gab,M), hence expH2(G,M) divides expG. This proves the theorem in the
finite case. As for the pro-p case, let U be the collection of open normal subgroups
of G, and M a profinite trivial [[ẐG]]-module. Then we have [14, Corollary 6.5.8]
that

H2(G,M) = lim←−
U∈U

H2(G/U,MU ),

hence the result follows from the above conclusion. �

Corollary 2.4 also holds for potent pro-p groups, i.e, pro-p groups satisfying
γp−1(G) ≤ Gp if p is odd, or γ2(G) ≤ G4 when p = 2 [6]. For, it is straightforward
to see that every potent pro-p group is a PF-group. Another related class of groups
was considered by Ellis [3]. He introduced the class Cp consisting of finite p-groups
G satisfying [Gp

i−1
, G,G] ≤ Gp

i

for all 1 ≤ i ≤ e, where expG = pe. Ellis proved
that if G is a finite p-group belonging to Cp, then expH2(G,Z) divides expG.
Extending this notion, we define Ĉp to be the class of all pro-p groups G satisfying
[Gp

i−1
, G,G] ≤ Gpi

for all i ∈ N. It is now clear that if p > 3, then every Ĉp-group
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is potent. Thus Corollary 2.4 also applies to pro-p groups belonging to Ĉp, where
p > 3.

3. Exponential rank

Let n be an integer. A group G is said to be n-abelian if it satisfies the law (xy)n =
xnyn. The study of n-abelian groups was initiated by Levi in [9]. Alperin [1] showed
that if G is n-abelian for some n 6= 0, 1, then both expG/Z(G) and exp γ2(G) divide
n(n−1). Kappe [7] considered the sets E(G) = {n ∈ Z | G is n-abelian}. She found
arithmetic characterizations of these sets. In the case of finite p-groups these were
further refined in [13].

Let G be a pro-p group and suppose that expG/Z(G) = pe. Then G/Z(G) is
locally finite by a result of Zelmanov [15]. Using a result of Mann [12], we conclude
that expG′ is (p, e)-bounded (Mann’s result holds true for abstract groups, but
can be extended to the topological setting, since taking powers is continuous). It
follows that there exists n = n(p, e) > 1 such that G is n-abelian. Adapting the
argument from [13], we have that there exists a nonnegative integer r such that
E(G) = pe+rZ ∪ (pe+rZ + 1). As in [13] we say that r is the exponential rank of G,
and we write r = exprank(G). Our first result shows that there is a relationship
between exprank(G) and the exponential rank of finite quotients of G.

Proposition 3.1. Let G be a pro-p group with expG/Z(G) = pe. Then

s = sup{exprank(G/U) | U an open normal subgroup of G}

is finite, and exprank(G) ≤ s.

Proof. Let r = exprank(G) and let Q be any finite quotient ofG. Let expQ/Z(Q) =
pf and exprankQ = t. Then f ≤ e. As G is pe+r-abelian, so is Q. This implies
that t ≤ r + e − f , therefore s < ∞. To prove the second part, note that, by
definition, Q is pf+t-abelian, hence it is also pe+s-abelian. Since this is true for any
finite quotient of G, it follows that G is pe+s-abelian. From here we conclude that
r ≤ s, as required. �

The next lemma is an elementary consequence of Hall’s collection process.

Lemma 3.2. Let G be a group and let x, y ∈ G. Then

(xy)p
k

≡ xp
k

yp
k

mod γ2(〈x, y〉)p
k

k∏
i=1

γpi(〈x, y〉)p
k−i

for all nonnegative integers k.

Theorem 3.3. Let G be a center-by-finite-exponent PF pro-p group. Then its
exponential rank is at most 1.

Proof. By Proposition 3.1 we may assume that G is a finite PF p-group. Let
expG/Z(G) = pe. Lemma 2.3 implies that exp γ2(G) = pe. Let G = N1 ≥
· · · ≥ Nk = 1 be a potent filtration for G. By induction on i we can prove that
γi(p−1)+1(G) ≤ Npi

i+1 for all i ≥ 1. Now, Lemma 3.2 gives

(3.3.1) (xy)p
e+1
≡ xp

e+1
yp

e+1
mod γ2(〈x, y〉)p

e+1
e+1∏
i=1

γpi(〈x, y〉)p
e+1−i

for all x, y ∈ G. Clearly, γ2(〈x, y〉)pe+1
= 1. Furthermore, we have that pi >

(i − 1)(p − 1) + 1 for all i ≥ 1, hence γpi(G)p
e+1−i ≤ [γ(i−1)(p−1)+1(G)p

e+1−i

, G] ≤
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[(Npi−1

i )p
e+1−i

, G] = [Npe

i , G] = [Ni, G]p
e

= 1. Thus the equation (3.3.1) can be
rewritten as (xy)p

e+1
= xp

e+1
yp

e+1
, hence exprank(G) ≤ 1. �

The following example, taken from [4], shows that for each prime p there exists
a finite PF p-group G with exprank(G) = 1.

Example 3.4. Let p be a prime and n a positive integer. Let H = 〈x1〉× · · · × 〈xp〉,
where |x1| = · · · = |xp−1| = pn and |xp| = pn+1. Form G = H o 〈α〉, where α is an
automorphism of H of order pn acting on H in the following way: xαi = xixi+1 for
1 ≤ i ≤ p− 2, xαp−1 = xp−1x

p
p, and xαp = xp. Then it can be verified [4] that G is a

PF-group. As [xp
n

p , α] = 1, we conclude that expG/Z(G) = pn. Short calculation
shows that (αx1)p

n 6= 1, whereas αp
n

xp
n

1 = 1. Thus exprank(G) = 1.

Theorem 3.5. Let G be a center-by-finite-exponent potent pro-p group. If p is odd,
then exprank(G) = 0. If p = 2 and G is nonabelian, then exprank(G) = 1.

Proof. If p = 2, then G is powerful and the conclusion follows from [13]. Thus we
assume from here on that p is odd. Let expG/Z(G) = pe. Then exp γ2(G) = pe.
We have that

(xy)p
e

≡ xp
e

yp
e

mod γ2(〈x, y〉)p
e

e∏
i=1

γpi(〈x, y〉)p
e−i

.

We prove by induction on i that γpi(G)p
e−i

= 1 for all i ≥ 1. The case i = 1
follows from γp(G)p

e−1 ≤ [Gp, G]p
e−1

= γ2(G)p
e

= 1. For the induction step ob-
serve that γpi+1(G)p

e−i−1
= [γp−1(G), pi+1−p+1G]p

e−i−1 ≤ [Gp, pi+1−p+1G]p
e−i−1

=
γpi+1−p+2(G)p

e−i ≤ γpi(G)p
e−i

= 1. This shows that G is pe-abelian. �
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