
POWER CENTRALIZED SEMIGROUPS

PRIMOŽ MORAVEC

Abstract. A semigroup is said to be power centralized if for every pair of
elements x and y there exists a power of x commuting with y. The structure

of power centralized groups and semigroups is investigated. In particular, we
characterize 0-simple power centralized semigroups and describe subdirectly

irreducible power centralized semigroups. Connections between periodic semi-

groups with central idempotents and periodic power commutative semigroups
are discussed.

1. Introduction

A semigroup S is said to be power commutative when for any x, y ∈ S there
exists a positive integer n = n(x, y) such that (xy)n = (yx)n. The study of power
commutative semigroups was initiated by Davenport [4]. It was shown there that
these semigroups are precisely semilattices of unipotent semigroups (i.e., semigroups
each having exactly one idempotent). Periodic power commutative semigroups were
characterized in a similar way by Galbiati in [5]. When n can be chosen indepen-
dently of x and y, the semigroup is said to be a PCn-semigroup. Another class of
semigroups which is closely related to PCn-semigroups are the so-called n-central
semigroups. A semigroup S is said to be n-central [10] when xny = yxn for all
x, y ∈ S. In the group-theoretical setting, a group is n-central if and only it is a
PCn-group. n-central groups have been studied by many authors, see the papers
of Adjan [2], Gupta and Rhemtulla [7], Morse and Kappe [9] and the author [11].

Close connection between n-central semigroups and PCn-semigroups leads to
the following generalization of n-centrality. A semigroup S is said to be power
centralized if for any x, y ∈ S there exists a positive integer n = n(x, y) such that
xn commutes with y. This class of semigroups is the main object of investigation in
this paper. Our interest in these semigroups has its origins in certain problems on
center-by-periodic groups; see [11]. Note however that the class of power centralized
groups is much richer, since it contains examples of nonabelian torsion-free simple
groups (Example 2.1). It is easy to see that a group is power centralized precisely
when it is power commutative. We generalize results of [7] and [10] by proving
that a finitely generated soluble-by-finite group with uniformly power centralized
normal closures is embeddable into the direct product of a finite m-central group
and a free abelian group of finite rank. Moreover, every such group G is nearly
exponential, i.e., for any x, y ∈ G there exists a positive integer n = n(x, y) > 1
such that (xy)n = xnyn. As a consequence we prove that every torsion-free locally
soluble-by-finite group with uniformly power centralized normal closures is abelian.
Note that this is not true in general since there exist nonabelian torsion-free center-
by-periodic groups [2].

The rest of the paper is devoted to power centralized semigroups. Note that this
class of semigroups includes for instance periodic semigroups with central idempo-
tents and power joined semigroups (a semigroup S is said to be power joined if
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for every x, y ∈ S there exist positive integers m and n such that xm = yn). It
is proved that every power centralized semigroup is a semilattice of archimedean
power centralized semigroups. This result enables characterizations of 0-simple
power centralized semigroups and power centralized semigroups that are nil exten-
sions of regular semigroups. We also describe the structure of archimedean power
centralized semigroups. In all these cases power centralized semigroups are closely
related to power centralized groups.

In Section 4 we deal with subdirectly irreducible power centralized semigroups.
In particular, we describe subdirectly irreducible power centralized semigroups with
the globally idempotent core and obtain structural information about certain sub-
directly irreducible power centralized semigroups with trivial annihilator.

The last section of this paper deals with periodic power centralized semigroups.
A periodic semigroup is power centralized if and only if its idempotents are central.
We prove that every periodic power centralized semigroup is power commutative
and nearly exponential. The converse does not hold true in general. Thus we derive
some sufficient conditions for a periodic power commutative semigroup to be power
centralized.

The reader is referred to Petrich [13] for results and definitions not mentioned
here. For group-theoretic results and notations we mainly refer to Robinson [15].

2. Power centralized groups

Since every center-by-periodic group is power centralized, one can expect that
there is not much to be said about the structure of power centralized groups in gen-
eral. To demonstrate this further, we show that there exists a nonabelian torsion-
free simple group which is power centralized, and all whose proper noncyclic sub-
groups are center-by-periodic.

Example 2.1. According to Traustason [17], a group G is said to be a group with
the congruence intersection property (or CIP group) if HG ∩ KG = (H ∩ K)G for
every H,K ≤ G. It is easy to see that every CIP group is power centralized.
To show this, let x, y ∈ G. If x and y commute, then we are done. Otherwise
1 6= [x, y] ∈ 〈x〉G ∩ 〈y〉G = (〈x〉 ∩ 〈y〉)G, hence 〈x〉 ∩ 〈y〉 6= 1. Thus there exists an
integer n such that xn ∈ 〈y〉, whence xn commutes with y. Traustason showed that
every CIP group is either a Dedekind group (i.e., every subgroup is normal) or G has
a simple factor which is an NSIP group; here a group is said to be an NSIP group if
it is torsion-free and the intersection of any of its nontrivial subgroups is nontrivial.
Obraztsov [12] showed, using geometric methods, that simple NSIP groups actually
exist. More precisely, there exists a simple NSIP group G = 〈a1, a2, . . .〉 such that
every noncyclic subgroup of G is a conjugate in G of some Gk = 〈a1, a2, . . . , ak〉,
k ≥ 2. Furthermore, if p is a sufficiently large prime, then G may be chosen to be
such that every Gk is pk−1-central. Note that G is power centralized.

The above example shows that we need to restrict ourselves to some special
classes of power centralized groups in order to get some structural results. At first
we mention an elementary lemma.

Lemma 2.2. A group G is power centralized if and only if it is power commutative.

Proof. Let G be a group and let x, y ∈ G. Suppose first that G is power centralized.
Then there exists a positive integer n such that (xy)ny = y(xy)n, hence (xy)n =
(yx)n. Conversely, suppose G is power commutative. Then there exists a positive
integer n such that xn = (xy ·y−1)n = (y−1xy)n = y−1xny, thus xn commutes with
y. This concludes the proof. �

At this point we recall [10] that if n is a positive integer, then there exists a
positive integer m = f(n) > 1 such that every locally (soluble-by-finite) n-central
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group is m-abelian; here a group G is said to be m-abelian when (xy)m = xmym

for every x, y ∈ G. The proof of this fact relies on the solution of the Restricted
Burnside Problem [18]. When we want to extend this result to power centralized
groups, the main difficulty arising here is the fact that the smallest positive integer
n for which xn commutes with y depends on x and y and may be unbounded when
x and y run over the group. This leads to the following definition.

Definition 2.3. Let S be a semigroup and X a nonempty subset of S. We say that
X is uniformly power centralized in S when for every s ∈ S there exist a positive
integer n = n(s) such that sn commutes with every x ∈ X.

For instance, every finite nonempty subset of a power centralized semigroup S is
uniformly power centralized in S. Moreover, every finitely generated subsemigroup
of a power centralized semigroup S is uniformly power centralized in S.

For a semigroup S we say that it is nearly exponential when for every x, y ∈ S
there exists a positive integer n = n(x, y) > 1 such that (xy)n = xnyn. The
following result is now an analogue of the above mentioned group-theoretical result.

Theorem 2.4. Let G be a finitely generated soluble-by-finite group. The following
assertions are equivalent.

(i) For every x ∈ G the normal closure 〈x〉G of x in G is uniformly power
centralized in G.

(ii) There exists a positive integer m such that G is isomorphic to a subgroup
of the direct product of a finite m-central group and a free abelian group of
finite rank.

Furthermore, if G is a locally soluble-by-finite group satisfying the property (i), then
G is nearly exponential.

Proof. Let G be a finitely generated soluble-by-finite group satisfying (i). Let x be
an arbitrary element of G. Since 〈x〉G is uniformly power centralized, G/CG(〈x〉G)
is a finitely generated torsion group. Since this group is also soluble-by-finite, it
follows that G/CG(〈x〉G) is a finite group for every x ∈ G. Let {t1, . . . , tr} be a
transversal to CG(〈x〉G) in G and put K = ∩r

i=1CG(〈ti〉G). Then |G : K| < ∞,
hence there exists a positive integer k such that xk ∈ K. Since xk centralizes
{t1, . . . , tr} and CG(x), we obtain xk ∈ Z(G), hence G/Z(G) is a torsion group;
since it is finitely generated and soluble-by-finite, we conclude that G is center-by-
finite. It follows from Schur’s theorem [15, Theorem 4.12] that G′ is finite. Let T
be the set consisting of all elements of finite order in G. Since G′ is finite, we have
G′ ⊆ T , hence T is a characteristic subgroup of G. The factor group G/T is finitely
generated, torsion-free and abelian. Since G/Z(G) is finite, there exists a maximal
torsion-free abelian subgroup A of Z(G), such that G/A is a torsion group. The
group G/A is finitely generated, hence it is finite. Therefore there exists a positive
integer m such that G/A is m-central. Beside that we observe that T ∩A = 1, so G
naturally embeds into (G/A)× (G/T ). This proves (i) ⇒ (ii), whereas the converse
implication is trivial.

Now let G be a locally soluble-by-finite group such that the normal closure of
every element of G is uniformly power centralized in G. Let a, b ∈ G and put
H = 〈a, b〉. Then H is a finitely generated soluble-by-finite group, hence the above
argument implies that H ′ is a finite subgroup of H. Let e = e(a, b) be the exponent
of H ′ and let n = n(a, b) > 1 be a positive integer such that an and bn centralize all
elements of H ′. Note that such n exists since H is power centralized and |H ′| < ∞.
We have (ab)n = anbnc for some c ∈ H ′, hence (ab)ne = anebnece = anebne. This
concludes the proof that G is nearly exponential. �

It is proved in [7] that every torsion-free locally soluble n-central group is abelian.
Note that the proof of Theorem 2.4 implies a generalization of this result.



4 PRIMOŽ MORAVEC

Corollary 2.5. Let G be a torsion-free locally soluble-by-finite group with uniformly
power centralized normal closures. Then G is abelian.

3. Semilattice decomposition of power centralized semigroups

Recall that a semigroup S is said to be archimedean if for every a, b ∈ S there
are positive integers m and n such that am ∈ S1bS1 and bn ∈ S1aS1. The following
lemma is a starting point of investigation of power centralized semigroups.

Lemma 3.1. Every power centralized semigroup is a semilattice of archimedean
power centralized semigroups.

Proof. Let S be a power centralized semigroup, let x, y ∈ S and suppose that
x ∈ S1yS1. Then x = ayb for some a, b ∈ S1. Since S is power centralized,
there exists a positive integer n such that (yba)n commutes with y. This implies
xn+1 = (ayb)n+1 = a(yba)nyb = ay(yba)nb ∈ S1y2S1. By a result of Putcha [14], S
is a semilattice of archimedean semigroups which are clearly power centralized. �

This gives a characterization of 0-simple power centralized semigroups.

Theorem 3.2. A semigroup is 0-simple and power centralized if and only if it is a
power centralized group with a zero adjoined.

Proof. Let S be a 0-simple power centralized semigroup. By Lemma 3.1, S is a
semilattice of archimedean power centralized semigroups. Since S1aS1 = S for
every a ∈ S\{0}, the nonzero elements of S are in the same semilattice component
C of S. If 0 ∈ C, then S is a nil semigroup which contradicts the fact that S is
0-simple. Thus we have S = C0, where C is a simple semigroup. Since C is a
subsemigroup of S, we also conclude that C is power centralized.

Suppose now that C is not completely simple. By a result of Jones [8], there
exists a subsemigroup of C such that the bicyclic semigroup C(p, q) = 〈p, q | pq = 1〉
is its homomorphic image. This implies that there exists a positive integer n such
that p commutes with qn. On the other hand, we observe that qnp = pqn = qn−1

which is clearly impossible. Thus C is completely simple. By a theorem of Rees
and Šuškevič [13], C is isomorphic to a Rees matrix semigroup M[G; I, J ;P ] over a
group G with the J × I sandwich matrix P . Additionally, we may assume that the
matrix P is normalized, i.e., pj,i0 = pj0,i = e for some i0 ∈ I, j0 ∈ J and all i ∈ I,
j ∈ J ; here e denotes the identity of G. Let g and h be any elements of G and
put x = (i0, g, j0) and y = (i, h, j). Since there exists a positive integer n such that
xn commutes with y, we obtain, after a short calculation, (i0, gnh, j) = (i, hgn, j0).
This implies |I| = |J | = 1, therefore C is a group which is also power centralized.

The converse statement is obvious. �

Since every power centralized semigroup is a semilattice of archimedean power
centralized semigroups, we would like to have an insight into the structure of these
semilattice components. First we describe those which contain idempotents.

Proposition 3.3. S is an archimedean power centralized semigroup containing an
idempotent if and only if S is an ideal extension of a power centralized group by a
nil semigroup.

Proof. Suppose first that S is an archimedean power centralized semigroup contain-
ing an idempotent. By a result of Chrislock [3], S is an ideal extension of a simple
semigroup C by a nil semigroup. Since S is power centralized, the same is true for C.
Beside that, C is a group by Theorem 3.2. Conversely, let S be an ideal extension of
a power centralized group G by a nil semigroup N . Using [3] once again, we conclude
that S is archimedean and contains an idempotent. To see that S power centralized,
observe first that the above mentioned extension is a retract extension. Namely, the
map ρ : S → G defined by sρ = se, where e is the identity element of G, is clearly a
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retraction homomorphism. Pick x, y ∈ S and n ∈ N. Since G is power centralized,
there exists an integer k ≥ n such that (xρ)k commutes with yρ. In case when
x ∈ G or y ∈ G we obtain xky = (xky)ρ = (xρ)k(yρ) = (yρ)(xρ)k = (yxk)ρ = yxk.
Therefore we may assume that x, y ∈ N\{0}. Let I = {i ∈ N : xiy = yxi in N}.
This is clearly a nonempty set. If xiy 6= 0 in N for some i ∈ I, i ≥ n, then xiy = yxi

in S. So assume that xiy = 0 in N for all i ∈ I. There exists a positive integer l
such that l ∈ I, l ≥ k ≥ n and (xρ)l commutes with yρ. Since xly = yxl = 0 in
N , we obtain xly = (xly)ρ = (xρ)l(yρ) = (yρ)(xρ)l = (yxl)ρ = yxl in S, hence S is
power centralized. �

Proposition 3.4. A semigroup is regular and power centralized if and only if it is
a semilattice of power centralized groups.

Proof. This is clear since the idempotents of a power centralized semigroup are
central. �

Theorem 3.5. Let S be an ideal extension of a regular semigroup K by a nil
semigroup. Then S is power centralized if and only if K is a power centralized
Clifford semigroup.

Proof. Let S be an ideal extension of a regular semigroup K by a nil semigroup N .
If S is power centralized, then so is K. By Proposition 3.4, K is a power centralized
Clifford semigroup which proves the ‘if’ part of the theorem. Conversely, assume S
is an ideal extension of a power centralized Clifford semigroup K by a nil semigroup
N . Let K be a semilattice of groups {Gα : α ∈ Ω}. Let a ∈ S and let k be the
least positive integer such that ak ∈ Gα. Let eα be the identity element of Gα.
Since (aeα)k belongs to Gα, we obtain aeα ∈ Gα, hence al ∈ Gα for l ≥ k. Define
the map ρ : S → K by the rule aρ = aeα. Clearly ρ leaves the elements of K
fixed. Let x, y ∈ S and suppose that xi ∈ Gα, yj ∈ Gβ (xy)k ∈ Gγ for some
i, j, k ∈ N, k ≥ i, k ≥ j. As (xy)k = eγ(xy)k and eγxkyk belong to Gαβγ , we
get αβγ = γ, hence eαeβeγ = eγ . Similarly we obtain αβγ = αβ, since eαeβ(xy)k

and (eαx)k(eβy)k belong to the same semilattice component of K. This implies
eαeβ = eγ , hence (xy)ρ = xyeγ = xyeαeβ = x(yeβ)eα = (xeα)(yeβ) = (aρ)(bρ).
Thus ρ is a retract homomorphism. The rest of the proof now follows the lines of
the proof of Proposition 3.3. �

Proposition 3.3 describes archimedean power centralized semigroups containing
idempotents. When there are no idempotents present, we obtain the following
result.

Theorem 3.6. Let S be a semigroup and suppose I is an ideal in S which is uni-
formly power centralized in S. Suppose that I is archimedean without idempotents.
Then I has a nontrivial group homomorphic image.

Proof. Let a be any element of I. Define

ρa = {(x, y) ∈ I × I : xai = yaj for some positive integers i, j}.
Clearly ρa is an equivalence relation on I. Let (x, y) ∈ ρa and z ∈ I. Then there
exist i, j ∈ N such that xai = yaj . We may assume without loss of generality that
ai and aj commute with z. Then zxai = zyaj and xzai = xaiz = yajz = yzj , hence
ρa is a congruence relation on I. Consider the semigroup I/ρa. Since (xa, x) ∈ ρa

for every x ∈ I, we have that the ρa-class containing a is a right identity of I/ρa.
Let x ∈ I be arbitrary. As I is uniformly power centralized in S, there exists
n ∈ N such that xn commutes with every element of I. Since I is archimedean,
there exist u, v ∈ I and m ∈ N such that am = uxnv = x(xn−1uv). It follows
that (x(xn−1uv), a) ∈ ρa, whence I/ρa is right simple. This shows that I/ρa is a
group. Note that since I does not contain idempotents, (a, a2) /∈ ρa2 , hence I/ρa2

is a nontrivial group. �
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Corollary 3.7. Let S be an n-central archimedean semigroup without idempotents.
Then S has a nontrivial group homomorphic image.

4. Subdirectly irreducible power centralized semigroups

A semigroup S is said to be subdirectly irreducible if whenever S is a subdirect
product of a family of semigroups (Sλ)λ∈Λ, then there exists λ0 ∈ Λ such that the
projection homomorphism πλ0 :

∏
λ∈Λ Sλ → Sλ0 maps S isomorphically onto Sλ0 .

Subdirectly irreducible semigroups are building blocks of semigroups, since every
semigroup is a subdirect product of subdirectly irreducible semigroups by Birkhoff’s
theorem.

General theory of subdirectly irreducible semigroups was developed by Schein
in [16]. We briefly mention some of the results which will be needed later. For
instance, it is known that S is subdirectly irreducible if and only if S0 is subdirectly
irreducible. Every subdirectly irreducible semigroup contains the core, the least
nontrivial ideal of S. If K is the core of S, then we have either K2 = K or
K2 = {0}. In the first case we say that K is globally idempotent, and in the second
case K is called nilpotent.

A semigroup is said to be a homogroup if it contains the least nonempty ideal
(the kernel) which is a group. Subdirectly irreducible homogroups without zero
have a nice structure.

Lemma 4.1 ([16]). Every subdirectly irreducible homogroup without zero is a group.

We are now in a position to present a characterization of subdirectly irreducible
power centralized semigroups with the globally idempotent core.

Theorem 4.2. S is a subdirectly irreducible power centralized semigroup with the
globally idempotent core if and only if it is isomorphic either to G or G0, where G
is a subdirectly irreducible power centralized group.

Proof. Let K be the globally nilpotent core of S. If 0 6∈ S, then K is a simple power
centralized semigroup. By Theorem 3.2, K is a power centralized group. Therefore
S is a homogroup, implying that S is a power centralized group by Lemma 4.1.
Hence we may assume that S contains a zero element. Let S∗ be the set of all
nonzero elements of S. We will prove that S∗ is a subsemigroup of S. Suppose that
there exist a, b ∈ S, a, b 6= 0 such that ab = 0. By Lemma 3.1, S is a semilattice of
archimedean power centralized semigroups. Let S0 be the semilattice component
containing zero of S. This is clearly an ideal of S. By Theorem 3.2, K is a group
with zero adjoined, hence 0 is the only element of S contained in S0. This implies
that I = {x ∈ S : ax = 0} is an ideal of S. As I is nontrivial, we have K ⊆ I,
hence aK = {0}. This implies that J = {y ∈ S : yK = {0}} is a nontrivial ideal
of S, hence K ⊆ J and therefore K2 = {0}. But this is a contradiction since K is
globally idempotent, hence S∗ is a subsemigroup of S.

Now, if |S∗| = 1, then S is a two-element semilattice. If |S∗| > 1, then S∗ contains
no zero element. As S∗ is subdirectly irreducible power centralized semigroup with
the globally idempotent core, it is isomorphic to a subdirectly irreducible power
centralized group G, hence S ∼= G0.

Since the converse is trivial, we have the result. �

If S is a semigroup with zero, let Ann(S) be the annihilator of S, that is,
Ann(S) = {a ∈ S : as = sa = 0 for every s ∈ S}. This is an ideal of S. More
generally, for a nonempty subset X of S we define Ann(l)

S (X) = {a ∈ S : aX = {0}}
and Ann(r)

S (X) = {a ∈ S : Xa = {0}} to be the left (resp. right) annihilator of X

in S. It is obvious that Ann(l)
S (X) is a left ideal of S, Ann(r)

S (X) is a right ideal of
S. We also use the notation AnnS(X) = Ann(r)

S (X) ∩Ann(l)
S (X).
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According to [16] we say that s ∈ S is a disjunctive element of S if the congruence
C{s} = {(a, b) ∈ S×S : (∀x, y ∈ S1) xay = s ⇐⇒ xby = s} is the equality relation
on S. The next result is now a direct consequence of [16].

Proposition 4.3. A power centralized semigroup with zero element and with non-
trivial annihilator is subdirectly irreducible if and only if it has a non-zero disjunctive
element.

Further consideration also gives some information in the case when the annihi-
lator is trivial.

Theorem 4.4. Let S be a subdirectly irreducible power centralized semigroup with
zero and with a trivial annihilator. If S has the nilpotent core which is uniformly
power centralized in S, then S is a monoid.

Proof. Let K be the nilpotent core of S and assume that K is uniformly power
centralized in S. We shall prove that Ann(l)

S (K) = Ann(r)
S (K). Suppose that

there is x ∈ Ann(r)
S (K)\Ann(l)

S (K). Then xK is a nontrivial ideal of S, hence
K ⊆ xK which implies K = xK. Since S is power centralized and K is uniformly
power centralized in S, there exists a positive integer n such that xn commutes
with every element of K. This gives K = xnK = Kxn = {0}, which is clearly
a contradiction, hence Ann(r)

S (K) ⊆ Ann(l)
S (K). Similarly we prove Ann(l)

S (K) ⊆
Ann(r)

S (K), therefore Ann(r)
S (K) = Ann(l)

S (K) = AnnS(K). Since the annihilator
of S is trivial, the set N = S\AnnS(K) is not empty. We want to prove that N is
a subsemigroup of S. Suppose that there exist x, y ∈ N such that xy ∈ AnnS(K).
Then Ky ∪ yK = K and xK = xKy. If m is such that ym commutes with all
elements of K, then xK = xKyn = xynK = {0}, which is in contradiction with
x ∈ N . Therefore N is a subsemigroup of S.

Now pick k ∈ K\{0}. Since K is the core of S, we have K = Nk∪kN∪NkN∪{0}.
If k = ke1 for some e1 ∈ N , then k = ken

1 = en
1k. If k = e2ke3 for some e2, e3 ∈ N ,

then k = en
2ken

3 = en
2 en

3k. Therefore we may assume that k = ek for some e ∈ N .
Let I = {x ∈ S : emx = x for some positive integer m}. I is a nonempty set
since k ∈ I. Let x ∈ I and s ∈ S. Then there is a positive integer m such that
emx = x. Let n be an integer such that en commutes with s. Then xs = em(xs)
and sx = senmx = enm(sx), hence I is an ideal of S. Since K is the core of S, we
get K ⊆ I. Let

ρ = {(x, y) ∈ S × S : emx = eny for some positive integers m,n}.
From the proof of Theorem 3.6 it follows that ρ is a congruence relation on S. The
next step in the proof is to show that ρ is the equality relation on S. Since S is
subdirectly irreducible, it suffices to show that ρ is the equality relation on the core
K. Let (k1, k2) ∈ ρ for k1, k2 ∈ K. There exist positive integers m and n such
that emk1 = enk2. Since K ⊆ I, there exist positive integers m1 and m2 such that
em1k1 = k1 and em2k2 = k2. But then we have k1 = em1m2mk1 = em1m2nk2 = k2,
hence ρ is indeed the equality relation.

Now observe that sρse for any s ∈ S, hence e is a right identity of S. Let n be a
positive integer such that en commutes with s. Then we have s = se = sen = ens.
But (e, e2) ∈ ρ, thus e is an idempotent. This implies s = es, hence S is a monoid,
as required. �

5. Periodic semigroups with central idempotents

As every element of a periodic semigroup S has some power in E(S), we con-
clude that a periodic semigroup S is power centralized if and only if the set of
idempotents E(S) is in the center of S. Examples of these include periodic groups,
nil semigroups and nil extensions of periodic groups. In the finite case these are
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essentially all possibilities, since every finite semigroup with central idempotents
subdirectly embeds into the direct product N × M1 × · · · × Mn × G, where N is
a nil semigroup, M1, . . . ,Mn are monoids and nil extensions of groups, and G is a
group, see Almeida and Weil [1]. Note also that the proof of this result in [1] can
be amended to prove a similar result for periodic semigroups in which idempotents
are central and every strictly descending chain of idempotents is finite. On the
other hand, power centralized semigroups are closely related to power commutative
groups. In fact, we have the following.

Proposition 5.1. Every periodic power centralized semigroup is power commutative
and nearly exponential.

Proof. Let S be a periodic power centralized semigroup. Then every idempotent
of S belongs to the center of S. By Theorem 4.3 in [5], S is power commutative.
Now let x, y ∈ S. By [5, Theorem 4.3], S is a semilattice Ω of unipotent semigroups
Sα, α ∈ Ω. Suppose x ∈ Sα and y ∈ Sβ for some α, β ∈ Ω. Since S is periodic,
there exists a positive integer l = l(x, y) such that (xy)l, xl in yl are idempotents.
Without loss of generality we may assume l > 1. But (xy)l and xlyl are idempotents
belonging to the same semilattice component Sαβ , hence (xy)l = xlyl. �

This raises a question when the converse of Proposition 5.1 holds. First note that
there are finite power commutative semigroups which are not power centralized.
Consider for instance the semigroup S on three elements a, b and c, where a is a
zero element, b2 = cb = a, bc = b and c is an idempotent. It can be easily verified
that S is a power commutative semigroup, but cnb 6= bcn for any n ≥ 1. This leads
to the following definition, suggested by M. Petrich.

Definition 5.2. Let X be the class of all semigroups satisfying the following condi-
tion for all x ∈ S: If x commutes with an idempotent e ∈ S, then x also commutes
with every idempotent f of S with f ≥ e.

Before stating the main results of this section, recall that a semigroup S is quasi
regular if for every a ∈ S there exists a positive integer n such that an is regular.
A quasi regular semigroup S is quasi strongly regular if each regular element of S is
completely regular. In a quasi regular semigroup S define

aJ∗b ⇐⇒ S1amS1 = S1bnS1,

where m and n are the smallest positive integers such that am and bn are regular.
We have the following result.

Lemma 5.3 (Galbiati and Veronesi [6]). Let S be a quasi strongly regular semi-
group. Then the relation J∗ on S is a semilattice congruence and every J∗-class is
a completely archimedean semigroup.

Here a semigroup is said to be completely archimedean if it is archimedean and
contains a primitive idempotent.

In the rest of the paper power commutative periodic semigroups play a major
role. We first show that there are some nice characterizations of these groups within
the above defined class X.

Proposition 5.4. For a periodic semigroup S in X the following assertions are
equivalent.

(i) J∗ is an idempotent-separating congruence on S.
(ii) S is a semilattice of nil extensions of groups.
(iii) S is power commutative.

Proof. (i) ⇒ (ii). Let e ∈ E(S) and let J∗
e be the J∗-class containing the idempotent

e. Since the congruence J∗ is idempotent separating, J∗
e is a unipotent semigroup.
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Additionally, e commutes with every element of J∗
e . To show that the semigroup J∗

e

is archimedean, let Ge be the maximal subgroup of J∗
e . We claim that Ge = eJ∗

e .
Namely, it is easy to see that Ge = {a ∈ J∗

e : a ∈ eJ∗
e , e ∈ aJ∗

e ∩ J∗
e a}. This clearly

gives Ge ⊆ eJ∗
e . For the converse inclusion note that since J∗

e is periodic, for every
x ∈ J∗

e there exists a positive integer r such that xr = e. This implies e ∈ aJ∗
e ∩J∗

e a
for every a ∈ eJ∗

e , thus eJ∗
e ⊆ Ge, as required. It is now straightforward to show

that Ge is a minimal ideal in J∗
e , therefore J∗

e has the kernel K. Since J∗
e contains

exactly one idempotent, K is completely simple. It is clear that for every a ∈ J∗
e

there exists a positive integer m such that am ∈ K, hence J∗
e is a nil extension of a

completely simple semigroup, therefore it is archimedean. Since S is periodic, every
J∗-class contains at least one idempotent. It follows that S is a disjoint union of J∗

e

where e ∈ E(S). Next we want to show that E(S) is a semilattice. Let e, f ∈ E(S).
Let m and n be the smallest positive integers such that (ef)m and (fe)n are regular
elements of S. There exist idempotents g, h ∈ E(S) such that (ef)m ∈ Gg and
(fe)n ∈ Gh (here Gg denotes the maximal subgroup of S containing the idempotent
g). Using Munn’s lemma, we observe that (ef)m+k ∈ Gg and (fe)n+k ∈ Gh for
every k ≥ 0. Since S is periodic, we clearly have Gg ⊆ J∗

g and Gh ⊆ J∗
h , which

implies (ef)mJ∗(ef)m+k and (fe)nJ∗(fe)n+k for every k ≥ 0. Pick any l greater
than m and n. We have

S1(ef)mS1 = S1(ef)l+1S1 = S1e(fe)lfS1 ⊆ S1(fe)lS1 ⊆ S1(fe)nS1.

Similarly, S1(fe)nS1 ⊆ S1(ef)mS1, hence (ef, fe) ∈ J∗. It follows from here that
((ef)p, (fe)p) ∈ J∗ for every p ≥ 0. As S is periodic, there exists such p that
(ef)p, (fe)p are idempotents. But J∗ is idempotent-separating, thus (ef)p = (fe)p ∈
E(S). Then we have (ef)p+1 = e(fe)pf = e(ef)pf = (ef)p and similarly (fe)p+1 =
(fe)p, hence (ef)p+1 = (fe)p+1. This shows that e commutes with (fe)pf . But
((fe)pf)2 = (fe)pf(fe)pf = (fe)2pf = (fe)pf , hence (fe)pf is an idempotent.
Note that (fe)pf ≤ f . As S ∈ X, it follows in particular that e commutes with f ,
hence E(S) is a semilattice. Finally, let e, f ∈ E(S) and let x ∈ J∗

e , y ∈ J∗
f . Then

(xy, ef) ∈ J∗, hence J∗
e J∗

f ⊆ J∗
ef . This shows that S is a semilattice of unipotent

archimedean semigroups J∗
e , e ∈ E(S). By [3] and Proposition 3.3, every class J∗

e

is an ideal extension of a group by a nil semigroup.
(ii) ⇒ (iii). Assume now S is a periodic semigroup belonging to X, and that S is

a semilattice Ω of nil extensions Sα of groups Gα, where α ∈ Ω. Since S is periodic,
so are Gα’s. It follows that the semigroups Sα are power-joined and unipotent,
hence the conclusion follows from [5, Theorem 4.3].

(iii) ⇒ (i). Let L∗ and R∗ be equivalence relations on S defined by aL∗b ⇐⇒
S1am = S1bn and aR∗b ⇐⇒ amS1 = bnS1, where m and n are the smallest
positive integers such that am and bn are regular. Since S is periodic, we have that
J∗ = L∗ ∨ R∗ [5]. Thus it follows from [5, Theorem 4.3] that J∗ is an idempotent-
separating congruence on S. �

Clearly every periodic semigroup with central idempotents is in X. Our final
result shows that the converse also holds if we assume that the semigroup is power
commutative.

Theorem 5.5. A periodic semigroup S is power centralized if and only it is a power
commutative semigroup belonging to X.

Proof. Let S be a power commutative semigroup and let S ∈ X. By [5, Theorem
4.3], S is a semilattice of unipotent semigroups Sα, where α ∈ Ω. For e, f ∈
E(S) there exists a positive integer n such that (ef)n = (fe)n ∈ E(S). A similar
argument as in the proof of Proposition 5.4 shows that e commutes with f , hence
E(S) is a semilattice; moreover, it is straightforward to see that Ω ∼= E(S). Now let
e ∈ E(S) and let x be an arbitrary element of S. We want to show that x commutes
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with e. We have e ∈ Sα and x ∈ Sβ for some α, β ∈ Ω. In case when α = β we
obtain xn = e for some positive integer n, hence xe = ex. Therefore we may assume
that α 6= β. Let f be the idempotent contained in Sβ . Then x commutes with f .
We have xe, ex ∈ Sαβ , hence xef = xeef = efxe and efx = efex = exef . This
gives xef = exfe = efx. It follows from here that x commutes with ef . Since
ef ≤ e and S ∈ X, we obtain ex = xe. �
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