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Introduction

These notes form a background material for a short course on group theory that was given
at 2014 PhD Summer School in Discrete Mathematics and SYGN, Rogla, Slovenia. Since
the summer school was aimed primarily at PhD students who are working in the latter
area and may not necessarily be experts in group theory, the notes give a fairly general
introduction to three main topics: Finite Simple Groups, Extension Theory of Groups,
and Nilpotent groups and Finite p-groups. The choice of the first two topics is clear
from the point of view of classifying all finite groups. It turns out that the knowledge
of all finite simple groups, together with knowing how to “glue” two groups together to
produce new ones, in principle provides a way of constructing all finite groups. The first
problem, classification of finite simple groups (CFSG), has been resolved satisfactory, and
one can operate with a full list of these groups. In these notes we will only touch this
vast area by showing simplicity of alternating groups and projective special linear groups.
We will sketch the classification, but ommit almost all further details. We will move on
to extension theory which tells us how to construct new groups from old. The extension
problem of classifying all possible extensions of one group by another appears to be hard
(impossible?) to solve in general. We will only study a very special case of it.

There are two main reasons why to deal with finite p-groups, i.e., groups whose orders
are powers of a prime p. The first is clear to an undergraduate student: finite p-groups
appear as Sylow p-subgroups of finite groups. The second is more delicate and motivated
by a vague statement “Almost all finite groups are p-groups.” We will not make any
attempt of making this statement more precise, but rather develop some basic theory of
these groups and indicate their complexity within the universe of all finite groups.

In addition to the above, we include preliminaries that will be needed in subsequent
chapters. We collect some basic properties of groups with focus on finite groups. We also
exhibit as many examples as possible in order to illustrate and motivate the theory. A
general experience is that most of the students only know some standard types of groups,
such as abelian groups, dihedral groups, symmetric and alternating groups,... Other
groups which do not have clean descriptions are usually put aside. In order to avoid this,
I use GAP (Groups, Algorithms, and Programming), a computational system designed
for constructing and manipulating with groups. GAP is applied in exploring properties
of groups, and even providing proofs of statements. Examples with full GAP code are be
given, but I have decided to leave out all explanations of the syntax and programming
rules. There are two reasons for this. One is that the reader will mostly find it easy
to figure out what a given line of GAP code does, since the syntax is very much self-
explanatory. The second one is that there is an extensive manual of GAP, together with
tons of tutorials and self-study material available at GAP’s web page [5]. We encourage
the reader to download GAP (it’s open source) and try out all of the examples in these
notes.

I have closely followed Robinson’s book A course in the theory of groups [8] and
Cameron’s lecture notes on finite groups [4], thus I claim very little originality as far as
for the exposition goes.
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Chapter 1

Basic notions and examples

In this chapter we collect some basic properties of groups and important examples the
reader should be familiar with in order to read these notes. Most of the proofs in this
chapter will be omitted. We will also show how to use GAP in performing explicit
calculations with groups. Concrete examples of computations will be presented.

A convention about the notations. All (or most) of the functions we consider will be
acting from the right. This means that if f : X → Y is a function and x ∈ X, then the
image of x under f will (usually) be denoted by xf or xf .

The main sources of the material covered here are [6] and [8].

1.1 Groups
A non-empty set G equipped with a binary operation ◦ is a group if the following hold:

• Associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G;

• Identity element: there exists e ∈ G such that e ◦ a = a ◦ e = a for all a ∈ G;

• Inverse: For every a ∈ G there exists a′ ∈ G such that a ◦ a′ = a′ ◦ a = e.

It is easy to show that the identity element e is uniquely determined, and that every
a ∈ G has a unique inverse, denoted by a−1. For most of the time we write · instead of ◦;
in this case, when there is no confusion, we write 1 instead of e (multiplicative notation).
If g, h ∈ G, we will often use the notation gh = h−1gh for conjugation of g by h. If the
set G is finite, then we say that G is a finite group, and |G| is called the order of G.

A group G is abelian if a ◦ b = b ◦ a for all a, b ∈ G. In this case we often write +
instead of ◦, and the identity element is denoted by 0 (additive notation).

A subset H of G is called a subgroup of G if it is a group under the same operation. We
write H ≤ G. One can verify directly that H is a subgroup of G if and only if ab−1 ∈ H
for all a, b ∈ H.

If H is a subgroup of G and a ∈ G, then we define left (right) cosets of H by

aH = {ah | h ∈ H},
Ha = {ha | h ∈ H}.

The set of all left cosets of H in G is denoted by G/H, and the set of all right cosets
by H\G. Different left (right) cosets form a partition of G. The number of left (= the
number of right) cosets of H in G is the index of H in G and is denoted by |G : H|. If G
is a finite group then Lagrange’s theorem says that |G| = |H| · |G : H|. In particular, if
H ≤ G, then |H| divides the order of G.

4
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The intersection of a family of subgroups of a given group G is again a subgroup of
G. Thus, if X is a non-empty subset of G, then there exists the smallest subgroup of
G containing X. It is denoted by 〈X〉 and called the subgroup generated by X. We say
that a group G is finitely generated if there exists a finite set X of its elements such that
G = 〈X〉.

Let G1 and G2 be groups. A map φ : G1 → G2 is said to be a homomorphism of
groups if it preserves group operation, that is,

(ab)φ = aφbφ for all a, b ∈ G1,

where the products are calculated in the corresponding groups. The set

kerφ = {x ∈ G1 | xφ = 1}

is said to be the kernel of φ and is a subgroup of G1. The set

imφ = {xφ | x ∈ G1}

is a subgroup of G2 and is called the image of φ. A group homomorphism φ : G1 → G2 is
said to be an epimorphism if imφ = G2; monomorphism if kerφ = {1}; isomorphism if it
is epimorhism and monomorphism; endomorphism if G1 = G2. A bijective endomorphism
is also called an automorphism.

A subgroup H of G is said to be a normal subgroup of G if xH = Hx for every
x ∈ G. Equivalently, x−1Hx ⊆ H for all x ∈ G, i.e., H is closed under conjugation by the
elements of G. If H is a normal subgroup of G then the sets of left and right cosets of H
in G coincide, and we use the commonly accepted notation G/H for these. The operation
on G/H given by Ha · Hb = H(ab) is well defined and turns G/H into a group called
the factor group of G over H. The map ρ : G → G/H given by gρ = Hg is a surjective
homomorphism of groups with ker ρ = H.

The intersection of a family of normal subgroups of G is again a normal subgroup of
G. Thus, given a set X ⊆ G, there exists the smallest normal subgroup of G containing
X. It is denoted by 〈〈X〉〉 and called the normal closure of X in G.

Theorem 1.1.0.1 (First Isomorphism Theorem). Let φ : G1 → G2 be a homomorphism
of groups. Then G1/ kerφ ∼= imφ.

Theorem 1.1.0.2 (Second Isomorphism Theorem). Let H be a subgroup and N a normal
subgroup of G. Then H ∩N /H, and HN/N ∼= H/(H ∩N).

Theorem 1.1.0.3 (Third Isomorphism Theorem). Let M and N be normal subgroups of
G and let N ≤M . Then M/N / G/N and (G/N)/(M/N) ∼= G/M .

One can generalize the notion of normal subgroups as follows. A subgroup H of G is
said to be subnormal in G if there exists a finite series H = H0 / H1 / H2 / · · · / Hd = G.
The shortest length of such a series is called the defect of H in G. Subnormal subgroups
of defect one are precisely normal subgroups.

Two other notions related to normal subgroups are the following. A subgroup H of
G is said to be fully invariant if Hα ≤ H for every endomorphism α of G. Similarly,
H is characteristic in G if Hα ≤ H for every automorphism α of G. The following is
straightforward:

Lemma 1.1.0.1. The properties of being a ‘characteristic subgroup’ and ‘fully invariant
subgroup’ are transitive relations. If H is characteristic in K and K normal in G then
H / G.

Let G be a group and x, y ∈ G. The commutator of x and y is defined by [x, y] =
x−1y−1xy = x−1xy. The subgroup G′ generated by all the commutators [x, y], where
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x, y ∈ G, is called the derived subgroup or the commutator subgroup of G. Since [x, y]α =
[xα, yα] for all endomorphisms α of G, it follows that G′ is a fully invariant subgroup of
G. It is easy to verify that G/G′ is abelian. Furthermore, if N is normal subgroup of G
with G/N abelian, then G′ ≤ N . Thus G/G′ can be seen as the largest abelian quotient
of G. It is called the abelianization of G. If G = G′, then G is said to be a perfect group.

For a group G we define its center to be Z(G) = {g ∈ G | [g, x] = 1 for all x ∈ G}. It
is easy to verify that Z(G) is a characteristic subgroup of G.

Let G1 and G2 be groups. The direct product G1 × G2 is the group whose elements
are all pairs (g1, g2) ∈ G1 ×G2, and the operation is given by

(a1, a2)(b1, b2) = (a1b1, a2b2).

Proposition 1.1.0.1. Let G, G1 and G2 be groups. Then G ∼= G1 × G2 if and only if
there exist normal subgroups H1 and H2 of G such that Hi

∼= Gi for i = 1, 2, H1∩H2 = 1
and H1H2 = G.

More generally, G ∼= G1 × G2 × · · · × Gn if and only if there exist normal subgroups
H1, . . . ,Hn of G such that Hi

∼= Gi, G = H1H2 · · ·Hn, and

Hi ∩H1 · · ·Hi−1Hi+1 · · ·Hn = {1}

for all i. This follows from Proposition 1.1.0.1 by induction.
Let X be a non-empty set, F a group, and ι : X → F a function. Then F , together

with ι, is said to be a free group on X if for each function α from X to a group G there
exists a homomorphism β : F → G such that α = ιβ. It is easy to show that ι has to be
injective. Up to isomorphism, there is precisely one free group on a given set X. It can be
constructed as a group whose elements are reduced words in X ∪X−1, and the operation
is concatenation, followed by reduction of terms of the form x±1x∓1 if necessary. For
further details we refer to [8].

Let X be a set and let F be a free group on X. Choose a subset Y of F , and let
R = 〈〈Y 〉〉 be its normal closure in F . Then we say that the group G = F/R is given by
generators X and relations Y . We write G = 〈X | Y 〉.

The following result is simple but useful in recognizing groups from their presentations:
Lemma 1.1.0.2 (von Dyck’s Lemma). Let G be a group generated by x1, . . . , xm satis-
fying relators r1 = 1, . . . , rn = 1. Let H be a group generated by y1, . . . , ym, and suppose
that ri(y1, . . . , ym) = 1 for all i = 1, . . . , n. Then there exists a uniquely determined
epimorphism φ : G→ H with xφj = yj for all j = 1, . . . ,m.

A sample application von Dyck’s lemma will be given in the next section.

1.2 Examples of groups and GAP

In this section we present some important examples of groups. Along the way we show
how to use GAP to construct groups and study their properties. More information on
how to obtain GAP and apply its commands can be found at [5].

1.2.1 Cyclic groups
A group generated by one element is called a cyclic group. If G is a cyclic group, two
possibilites can occur. Either G is infinite, in which case it is isomorphic to (Z,+), or it
is finite of order n, in which case it is isomorphic to (Zn,+). In multiplicative notation,
cyclic groups will be denoted by C∞ and Cn, respectively.

In general, if G is an arbitrary group and g ∈ G, then the order of the cyclic subgroup
〈g〉 of G is called the order of g, and denoted by |g|.

In GAP, one can construct cyclic groups in several different ways. The standard one
is as follows:
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gap> G := CyclicGroup( 6 );
<pc group of size 6 with 2 generators>
gap> Elements( G );
[ <identity> of ..., f1, f2, f1*f2, f2^2, f1*f2^2 ]

The list of the elements above may be a bit unexpected, as it does not indicate that the
group in question is cyclic. Rather, it reflects the fact that C6 is isomorphic to C2 × C3,
and f1 and f2 are the corresponding generators of these factors.

It is possible to examine basic properties of the group we constructed above:
gap> Order( G );
6
gap> IsCyclic( G );
true
gap> IsAbelian( G );
true

Another way is to represent a cyclic group of order n with a generator x and relation
xn = 1. We first construct a free group on {x} and then factor out the relation xn = 1.
For n = 6, this goes as follows:
gap> F := FreeGroup( "x" );
<free group on the generators [ x ]>
gap> AssignGeneratorVariables( F );
#I Assigned the global variables [ x ]
gap> G := F / [ x^6 ];
<fp group on the generators [ x ]>
gap> Order( G );
6
gap> StructureDescription( G );
"C6"
gap> Elements( G );
[ <identity ...>, x^3, x^2, x^-1, x^-2, x ]

Note that the groups in the first and second example both represent C6, yet, in GAP’s
eyes they are not identical objects, because GAP represents them in different ways. The
first example represents C6 as a pc group, and the second one as an fp group.

1.2.2 Abelian groups
Finitely generated abelian groups are classified by the following result:

Theorem 1.2.2.1 (Fundamental Theorem of Abelian Groups). Every finitely generated
abelian group is a direct product of cyclic groups

Cm1 × Cm2 × · · · × Cmr × Ck∞,

where mi|mi+1 for all i = 1, . . . , r − 1. Two groups of this form are isomorphic if and
only if the numbers m1, . . . ,mr and k are the same for the two groups.

Alternatively, all finite abelian groups are direct products of cyclic groups of prime
power order. This follows from the fact that ifm and n are relatively prime then Cm×Cn ∼=
Cmn. A group that is isomorphic to the direct product of a number of copies of Cp is called
an elementary abelian p-group. Every elementary abelian p-group (written additively) is
also a vector space over GF(p). The scalar multiplication is given by

λx = x+ · · ·+ x︸ ︷︷ ︸
λ times

.

For example, one can construct C2 × C4 × C12 in GAP as follows:
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gap> G := AbelianGroup( [2, 4, 12 ] );
<pc group of size 96 with 3 generators>
gap> AbelianInvariants( G );
[ 2, 3, 4, 4 ]

The last command tells us that our group is isomorphic to C2 × C3 × C4 × C4. In
general, AbelianInvariants( G ); returns a cyclic decomposition of Gab.

1.2.3 Symmetric groups
If X is a non-empty set, then the set of all bijections X → X becomes a group under
the operation of composition. It is denoted by SymX. If X is a finite set, then we can
write X = {1, 2, . . . , n}, and we use the abbreviation Sn for SymX in this case. The
group Sn is called the symmetric group on n letters. Its elements are permutations that
can be written as products of cycles of the form (x1 x2 . . . xk) that represents the map
x1 7→ x2 7→ · · · 7→ xk 7→ x1, and all other elements are fixed. The order of Sn is n!. If
n > 2, then Sn is clearly a non-abelian group.

Let us use GAP to play around with S4 and its elements:

gap> S4 := SymmetricGroup( 4 );
Sym( [ 1 .. 4 ] )
gap> Order( S4 );
24
gap> el := Elements( S4 );
[ (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3),

(1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), (1,3,4,2), (1,3), (1,3,4),
(1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), (1,4), (1,4,2,3),
(1,4)(2,3) ]

gap> a := el[ 4 ];
(2,3,4)
gap> b := el[ 7 ];
(1,2)
gap> a * b;
(1,2,3,4)
gap> a^(-1);
(2,4,3)
gap> a^b;
(1,3,4)
gap> Order( a );
3

We can also present symmetric groups in terms of generators and relations. Here is
an example:
Example 1.2.3.1. Let G = 〈x, y | x2 = y3 = (xy)2 = 1〉. We claim that G ∼= S3. Denote
a = (1 2) and b = (1 2 3). Then a2 = b3 = (ab)2 = 1. By von Dyck’s Lemma, there exists a
surjective homomorphism φ : G→ 〈a, b〉 = S3. Now consider G. We have that yx = xy2,
hence every element of G can be written as xmyn, where 0 ≤ m ≤ 1, 0 ≤ n ≤ 2. It
follows that |G| ≤ 6. Comparing the orders, we conclude that φ must be an isomorphism
between G and S3. Another proof can be done with GAP:

gap> F := FreeGroup("x", "y");;
gap> AssignGeneratorVariables(F);;
#I Assigned the global variables [ x, y ]
gap> G := F / [x^2, y^3, (x*y)^2];;
gap> StructureDescription(G);
"S3"
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In general, the group Sn has a following presentation:

〈x1, . . . , xn−1 | x2
i = 1, [xi, xj ] = 1, xixi+1xi = xi+1xixi+1 for all i and j 6= i± 1〉.

Here xi corresponds to the transposition (i i+ 1). This is left as an exercise.
Using GAP, one can also construct subgroups generated by certain sets of elements,

and normal closures of subgroups. It is also possible to test memberships to subgroups.

gap> G := SymmetricGroup( 5 );
Sym( [ 1 .. 5 ] )
gap> H := Subgroup( G, [(1, 2), (1, 3)]);
Group([ (1,2), (1,3) ])
gap> Order( H );
6
gap> (1,2,3,4) in H;
false
gap> N := NormalClosure(G, H);
Group([ (2,3), (1,3,2), (2,4), (3,5) ])
gap> Order( N );
120
gap> StructureDescription( H );
"S3"
gap> StructureDescription( N );
"S5"

The parity of a permutation g ∈ Sn is defined to be the parity of the number n− c(g),
where c(g) is the number of cycles of g (including the cycles of length 1). We regard the
parity as an element of Z2. One can show that the parity is a homomorphism from Sn
onto the group Z2. Its kernel consists of all permutations of even parity. It is denoted by
An and called the alternating group on n letters.

Alternating groups can be constructed with GAP:

gap> G := AlternatingGroup( 4 );
Alt( [ 1 .. 4 ] )
gap> Order( G );
12

One can also locate A4 within the list of all normal subgroups of S4:

gap> G := SymmetricGroup( 4 );
Sym( [ 1 .. 4 ] )
gap> norm := NormalSubgroups( G );
[ Sym( [ 1 .. 4 ] ), Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]), Group([ (1,4)

(2,3), (1,3)(2,4) ]), Group(()) ]
gap> List( norm, StructureDescription );
[ "S4", "A4", "C2 x C2", "1" ]
gap> Q := G / norm[ 2 ];
Group([ f1 ])
gap> StructureDescription( Q );
"C2"

We can also construct the natural homomorphism S4 → S4/A4 as follows:

gap> G := SymmetricGroup( 4 );;
gap> norm:= NormalSubgroups( G );;
gap> N:=norm[ 2 ];
Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ])
gap> hom := NaturalHomomorphismByNormalSubgroup( G, N );
[ (1,2,3,4), (1,2) ] -> [ f1, f1 ]
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gap> Kernel( hom ) = N;
true
gap> StructureDescription( Image( hom ) );
"C2"

1.2.4 Linear groups
Let F be a field. The set of all invertible n × n matrices over F is a group under
multiplication. It is called the general linear group of dimension n over F , and denoted
by GL(n, F ). By Galois’ theorem, the order of a finite field is alwasy a prime power, and
if q is a prime power, then there is, up to isomorphism, a unique field of order q. It is
denoted by GF(q). The group GL(n,GF(q)) is also denoted as GL(n, q).

The determinant map det : GL(n, F ) → F× is clearly a surjective homomorphism of
groups. Its kernel is denoted by SL(n, F ) and called the special linear group of dimension
n over F . Its elements are precisely all the matrices A ∈ GL(n, F ) with detA = 1.

Let us consider some examples using GAP:

gap> G := GL( 2, 4);
GL(2,4)
gap> Order( G );
180
gap> el := Elements( G );;
gap> a := el[ 5 ];
[ [ 0*Z(2), Z(2)^0 ], [ Z(2^2), 0*Z(2) ] ]
gap> b := el[ 7 ];
[ [ 0*Z(2), Z(2)^0 ], [ Z(2^2), Z(2^2) ] ]
gap> Determinant( a );
Z(2^2)
gap> a * b^2;
[ [ Z(2^2)^2, Z(2)^0 ], [ Z(2^2)^2, Z(2^2)^2 ] ]
gap> H := SL( 2, 4 );
SL(2,4)
gap> Order( H );
60
gap> StructureDescription( H );
"A5"

Proposition 1.2.4.1. |GL(n, q)| = (qn − 1)(qn − q) · · · (qn − qn−1).

Proof. A matrix is invertible if and only if its rows are linearly independent. This holds
if and only if the first row is non-zero and, for k = 2, . . . , n, the k-th row is not in the
subspace spanned by the first k − 1 rows. The number of possible rows is qn, and the
number lying in any k-dimensional subspace is qk. So the number of choices for the first
row is qn − 1, and for k = 2, . . . , n, the number of choices for the k-th row is qn − qk−1.
Multiplying these, we get the formula.

Corollary 1.2.4.1. |SL(n, q)| = |GL(n, q)|/(q − 1).

Proof. Let F = GF(q). We already saw above that GL(n, q)/ SL(n, q) ∼= F×, and this
gives the result.

1.2.5 Dihedral groups
A symmetry of a figure in Euclidian space is a rigid motion (or a combination of a rigid
motion with reflection) of the space that carries the figure to itself. If we think of a rigid
motion as a linear map of the real vector space, then it can be represented by a matrix.
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Alternatively, if we label the vertices of the figure, then a symmetry can be represented
as a permutation of these labels.

The group of symmetries of a regular n-gon is called a dihedral group D2n. If a
denotes the rotation around the center by the angle 2π/n, and b the reflection over a
chosen diagonal, then the elements of D2n can be written uniquely in the form akb` where
0 ≤ k < n and ` ∈ {0, 1}. Thus |D2n| = 2n. The group D2n has a presentation

D2n = 〈a, b | an = 1, b2 = 1, ab = a−1〉.

In GAP, one can construct dihedral groups directly by

gap> G := DihedralGroup( 6 );
<pc group of size 6 with 2 generators>
gap> Order( G );
6

Another way is to present it by generators and relations. This is done by first con-
structing a free group on two generators and then factor out the relations.

gap> F := FreeGroup( "a", "b" );
<free group on the generators [ a, b ]>
gap> AssignGeneratorVariables(F);
#I Assigned the global variables [ a, b ]
gap> H := F / [ a^3, b^2, a^b / a^(-1) ];
<fp group on the generators [ a, b ]>
gap> StructureDescription( H );
"S3"

The last command tells us that D6 ∼= S3. We can compare both constructions of D6
above and see that they are not identical objects in GAP, yet they are isomorphic:

gap> H = G;
false
gap> IsomorphismGroups(G, H);
[ f1, f2 ] -> [ b, a ]

The reason is that GAP represents D6 in two different ways, first as a pc group and
then as an fp group. The reader should consult GAP’s manual for further details.

1.3 Automorphisms
An automorphism of a group G is an isomorphism G to itself. There are special types of
automorphisms called conjugations or inner automorphisms; they are of the form cg : x 7→
g−1xg.

Proposition 1.3.0.1. Let G be a group.

(a) The set Aut(G) of all automorphisms of G is a group under composition (from the
right). This is the automorphism group of G.

(b) The set Inn(G) of all inner automorphisms of G is a normal subgroup of AutG.
This is called the inner automorphism group of G.

(c) Inn(G) ∼= G/Z(G).

The proof is straightforward and we leave it as an exercise. The group Out(G) =
Aut(G)/ Inn(G) is the outer automorphism group of G. Note that its elements are not
automorphisms, but rather right cosets Inn(G)α, where α ∈ Aut(G).

GAP can deal with automorphisms very naturally:
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gap> G := DihedralGroup( 12 );
<pc group of size 12 with 3 generators>
gap> A := AutomorphismGroup( G );
<group of size 12 with 3 generators>
gap> Elements( A );
[ [ f1*f3, f1*f2*f3^2, f1*f2*f3 ] -> [ f1*f2, f1*f3^2, f1 ],

[ f1*f3, f1*f2*f3^2, f1*f2*f3 ] -> [ f1*f2*f3^2, f1*f3, f1 ],
[ f1*f3, f1*f2*f3^2, f1*f2*f3 ] -> [ f1, f1*f2*f3, f1*f2 ],
[ f1*f3, f1*f2*f3^2, f1*f2*f3 ] -> [ f1*f3, f1*f2*f3^2, f1*f2 ],
[ f1*f3, f1*f2*f3^2, f1*f2*f3 ] -> [ f1*f2, f1*f3^2, f1*f3 ],
[ f1*f3, f1*f2*f3^2, f1*f2*f3 ] -> [ f1*f2*f3, f1, f1*f3 ],
[ f1*f3, f1*f2*f3^2, f1*f2*f3 ] -> [ f1*f3, f1*f2*f3^2, f1*f2*f3 ],
[ f1*f3, f1*f2*f3^2, f1*f2*f3 ] -> [ f1*f3^2, f1*f2, f1*f2*f3 ],
[ f1*f3, f1*f2*f3^2, f1*f2*f3 ] -> [ f1*f2*f3, f1, f1*f3^2 ],
[ f1*f3, f1*f2*f3^2, f1*f2*f3 ] -> [ f1*f2*f3^2, f1*f3, f1*f3^2 ],
[ f1*f3, f1*f2*f3^2, f1*f2*f3 ] -> [ f1, f1*f2*f3, f1*f2*f3^2 ],
[ f1*f3, f1*f2*f3^2, f1*f2*f3 ] -> [ f1*f3^2, f1*f2, f1*f2*f3^2 ] ]

gap> StructureDescription( A );
"D12"
gap> inn := InnerAutomorphismsAutomorphismGroup( A );
<group with 3 generators>
gap> Order( inn );
6
gap> IsomorphismGroups( inn, G / Center( G ) );
CompositionMapping( [ (2,6)(3,5), (1,3,5)(2,4,6), (1,5,3)(2,6,4) ] ->
[ f1, f2^2, f2 ], <action isomorphism> )

Next we compute some automorphism groups:

Proposition 1.3.0.2. AutCn ∼= Cφ(n), where φ is Euler’s totient function.

Proof. Let Cn = 〈g〉 and take α ∈ AutG. Then gα = gi for some 0 ≤ i ≤ n − 1, and
since 〈gi〉 = Cn, this can only happen if gcd(i, n) = 1. Conversely take an endomorphism
α of Cn with gα = gi, where gcd(i, n) = 1. Then it is elementary to see that α is an
automorphism. Thus the map AutCn → Z×n given by α 7→ i is an isomorphism of groups.
This proves the result.

Proposition 1.3.0.3. Aut(Cnp ) ∼= GL(n, p).

Proof. This follows from the fact that Cnp is an n-dimensional vector space over GF(p).

1.4 Group actions and Sylow’s theorems
Sylow theorems are central in the theory of finite groups, as they describe the structure of
such groups in terms of their subgroups of prime power order. These theorems are closely
related to another fundamental notion of group theory, actions.

1.4.1 Actions
An action of a group G on a non-empty set X is a map µ : X × G → X satisfying the
following rules:

µ(µ(x, g), h) = µ(x, gh),
µ(x, 1) = x
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for all x ∈ X and g, h ∈ G. We usually suppres µ and write µ(x, g) as xg. It is clear
that the above definition is equivalent to the fact that the map G → SymX given by
g 7→ (x 7→ xg) is a homomorphism of groups. An action µ is faithful if the condition that
µ(x, g) = µ(x, h) for all x ∈ X implies g = h.

Let G act on X. The relation ≡ defined on X by x ≡ y ⇐⇒ ∃g ∈ G : xg = y is an
equivalence relation on X. The equivalence class of x ∈ X is called the orbit of x, and is
denoted by orbG(x). The set of orbits of G on X will be denoted by X/G. The action is
said to be transitive if it has only one orbit, i.e., |X/G| = 1. For x ∈ X, the stabilizer of
x is

stabG(x) = {g ∈ G | xg = x}.

It is easy to see that stabG(x) is a subgroup of G.
Example 1.4.1.1. A group G acts on itself by right multiplication, i.e., we have an action
G×G→ G given by (g, h) 7→ g ·h = gh. It is not hard to see that this action is transitive
and faithful.

gap> G := Group((1,2,3),(2,3,4));;
gap> el := Elements( G);;
gap> OnRight(el[2], el[3]) = el[2] * el[3];
true
gap> orbit := Orbit(G, el[7], OnRight);
[ (1,3,2), (), (1,4,2), (1,2,3), (2,3,4), (1,4,3), (1,2)(3,4), (1,3)(2,4),

(2,4,3), (1,4)(2,3), (1,3,4), (1,2,4) ]
gap> Size( orbit ) = Order( G );
true

Example 1.4.1.2. A group G acts on itself by conjugation, i.e., (g, h) 7→ gh. The orbits of
this actions are called the conjugacy classes of G. The stabilizer of g ∈ G is denoted by
CG(g) and called the centralizer of g in G.

gap> G := DihedralGroup( 8 );;
gap> ConjugacyClasses( G );
[ <identity> of ...^G, f1^G, f2^G, f3^G, f1*f2^G ]
gap> el := Elements( G );;
gap> Centralizer( G, Subgroup( G, [ el[ 5 ] ] ) );
Group([ f1*f2, f3 ])

More generally, any subgroup H ≤ G acts on G by conjugation. At the other end of
the scale, if N is a normal subgroup of G, then G, by definition, acts on N by conjugation.
Example 1.4.1.3. A subgroup H of a group G acts on the set of all subgroups of G by
conjugation; (K,h) 7→ Kh. If K ≤ G, then the stabilizer of K is under this action is the
normalizer of K:

NH(K) = {h ∈ H | Kh = K}.
Example 1.4.1.4. Let H be a subgroup of G and H\G the set of all right cosets of H in
G. Then G acts on H\G by right multiplication: (Hx) · g = Hxg.

gap> G := Group((1, 2, 3, 4, 5), (1, 2) );;
gap> H := Subgroup( G, [ (1, 2) ] );;
gap> Index( G, H );
60
gap> act := FactorCosetAction( G, H );
<action epimorphism>
gap> Range( act );
<permutation group of size 120 with 2 generators>
gap> Kernel( act );
Group(())
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Example 1.4.1.5. Let X be a non-empty set and G ≤ SymX. Then G acts on points of
X by the rule (x, g) 7→ xg.

gap> G := Group( (1, 2, 3), (2, 3, 4) );;
gap> Orbit(G, 1, OnPoints);
[ 1, 2, 3, 4 ]

Let G be a finite group acting on a set X. One can observe that there is a 1-1
correspondence between the elements of orbG(x) and the right cosets of stabG(x) in G.
This implies the following fundamental result:

Theorem 1.4.1.1 (Orbit-stabilizer theorem). Let G be a finite group acting on a set X.
Choose x ∈ X. Then | orbG(x)| · | stabG(x)| = |G|.

In the special case when G acts on itself by conjugation, we obtain:

Corollary 1.4.1.1 (Class equation). Let G be a finite group and let x1, . . . , xr be the
representatives of conjugacy classes of non-central elements of G. Then

|G| = |Z(G)|+
r∑
i=1
|G : CG(xi)|.

For g ∈ G denote by fix(g) the number of fixed points of g (considered as an element
of SymX). We have:

Theorem 1.4.1.2 (Orbit-counting Lemma). Let a finite group G act on a set X. Then

|X/G| = 1
|G|

∑
g∈G

fix(g).

Proof. We will count the pairs (x, g) ∈ X ×G with the property that xg = x; let us call
these pairs good pairs. On one hand, a given g ∈ G is a member of fix(g) good pairs, hence
the total number of good pairs is

∑
g∈G fix(g). On the other hand, x ∈ X is a member

of | stabG(x)| good pairs. The orbit of x thus produces | orbG(x)| · | stabG(x)| = |G| good
pairs, hence there are |X/G| · |G| good pairs in total. We get the result.

1.4.2 Sylow theorems
Since the action of G on itself by right multiplication is faithful, we have that the corre-
sponding homomorphism G→ SymG is injective. In particular, we have:

Theorem 1.4.2.1 (Cayley’s theorem). Every finite group is isomorphic to a subgroup of
Sn for some positive integer n.

Another classical result that can be proved using actions is Cauchy’s theorem which
provides a basis for Sylow theorems. It goes as follows:

Theorem 1.4.2.2 (Cauchy’s theorem). Let G be a finite group. If a prime p divides |G|,
then G contains an element of order p.

Theorem 1.4.2.3 (Sylow’s theorem). Let G be a group of order pa ·m, where m is not
divisible by the prime p. Then the following holds:

1. G contains at least one subgroup of order pa. Any two subgroups of this order are
conjugate in G. They are called the Sylow p-subgroups of G.

2. For each n ≤ a, G contains at least one subgroup of order pn. Every such subgroup
is contained in a Sylow p-subgroup.
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3. Let sp be the number of Sylow p-subgroups of G. Then sp ≡ 1 mod p and sp divides
m.

This result has numerous consequences for the structure of finite groups, see the prob-
lems at the end of this chapter. We mention here that GAP can compute a Sylow
p-subgroup of a given group as follows:
gap> G := SymmetricGroup( 4 );;
gap> P := SylowSubgroup( G, 2 );
Group([ (1,2), (3,4), (1,3)(2,4) ])

How many Sylow 2-subgroups of S4 are there? A consequence of Sylow’s theorem is
also that if P is a Sylow p-subgroup of G, then sp = |G : NG(P )|. Thus:
gap> Index( G, Normalizer( G, P ) );
3

Thus there are three Sylow 2-subgroups of S4. All of them are conjugate to P :
gap> ConjugacyClassSubgroups( G, P );
Group( [ (1,2), (3,4), (1,3)(2,4) ] )^G
gap> Elements( last );
[ Group([ (1,2), (3,4), (1,3)(2,4) ]), Group([ (2,3), (1,4), (1,3)(2,4) ]),

Group([ (1,3), (2,4), (1,4)(2,3) ]) ]

A finite group is said to be a p-group if every element has order a power of p. Equiv-
alently, the order of the group is pn for some n (exercise).

Proposition 1.4.2.1. Let G be a p-group. Then Z(G) is non-trivial, and G contains a
normal subgroup of order p.

Proof. We may assume that G is non-abelian of order pn. Let x1, . . . , xr be the represen-
tatives of non-central conjugacy classes of G. By the Class Equation,

pn = |Z(G)|+
r∑
i=1
|G : CG(xi)|.

Since CG(xi) 6= G, the prime p divides |G : CG(xi)| for all i = 1, . . . , r. It follows that p
divides |Z(G)|. The rest is now straightforward.

Example 1.4.2.1. There is only one group of order p, namely Cp. Let us show that
all groups of order p2 are abelian (hence there are only two possibilities, Cp × Cp and
Cp2). Suppose there exists a non-abelian group G of order p2. Then Z(G) ∼= Cp and
G/Z(G) ∼= Cp. Let Z(G)x be a generator of G/Z(G). Then G = Z(G)〈x〉, but the latter
group is abelian, which is a contradiction.
Example 1.4.2.2. Let us classify all groups of order pq, where p and q are distinct primes
(for p = q see Example 1.4.2.1). Assume that p > q. Let P be a Sylow p-subgroup, and Q
a Sylow q-subgroup of G. Then Sylow’s theorem implies that sp = 1, i.e., P is a normal
subgroup of G. Similarly, sq ∈ {1, p}, and sp = 1 if and only if p ≡ 1 mod q. We separate
the two cases:

Suppose sq = 1. Denote P = 〈a〉 and Q = 〈b〉. Then ab = ak and ba = b` for some
integers k and `. Therefore ak−1 = [a, b] = b−`+1. Since the orders and b are coprime, it
follows that [a, b] = 1, hence G ∼= Cp × Cq ∼= Cpq.

Now let sq = p, that is, let q divide p − 1. We still have ab = ak. By induction,
ab
s = ak

s . Since |b| = q, we conclude that kq ≡ 1 mod p. There are exactly q solutions
to this equation; if k is one of them, the others are powers of k. By replacing b by a power
of itself we see that all these solutions give rise to the same group, namely, a group with
presentation

〈a, b | ap = bq = 1, ab = ak〉
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for some k satisfying kq ≡ 1 mod p, k 6≡ 1 mod p.
More on finite p-groups will be discussed later on. We conclude with two useful lemmas

which are of similar nature:

Lemma 1.4.2.1 (The Frattini argument). Let G be a group and H a finite normal
subgroup. If P is a Sylow p-subgroup of H, then G = NG(P )H.

Proof. For g ∈ G we have P g ≤ H and P g = Ph for some h ∈ H. Thus gh−1 ∈
NG(P ).

Lemma 1.4.2.2. If P is a Sylow p-subgroup of a finite group G and NG(P ) 6 H 6 G,
then H = NG(H).

Proof. Clearly P 6 H�NG(H). By Frattini’s argument we have thatNG(H) = NNG(H)(P )H.
But NNG(H)(P ) ≤ NG(P ) ≤ H, hence the result.

1.5 An estimate of the number of finite groups
In this short section we derive a rough bound for the number of of groups of order n.

Lemma 1.5.0.3. A group G of order n can be generated by a set of at most log2 n
elements.

Proof. Choose a non-trivial element g1 ∈ G, and let G1 = 〈g1〉. If G1 = G, then stop.
Otherwise choose g2 ∈ G−G1 and let G2 = 〈g1, g2〉. Repeat the procedure until we find
g1, . . . , gk ∈ G such that G = 〈g1, . . . , gk〉.

We prove that |Gi| ≥ 2i for all i = 1, . . . , k; this suffices to prove our lemma. The
proof is by induction on i, the case i = 1 being obvious, Suppose that |Gi| ≥ 2i. Since
|Gi| divides |Gi+1| and Gi 6= Gi+1, we have |Gi+1| ≥ 2|Gi| ≥ 2i+1, as required.

Proposition 1.5.0.2. The number of groups of order n is at most nn log2 n.

Proof. By Cayley’s theorem, every group of order n can be embedded as a subgroup of
Sn, and can be generated by k = blog2 nc elements. There are at most n! choices for each
gi, so the number of subgroups of Sn is at most

(n!)k ≤ (nn)log2 n = nn log2 n,

as required.

GAP offers a Small Groups library which gives access to all groups of certain “small”
orders. The groups are sorted by their orders and they are listed up to isomorphism;
that is, for each of the available orders a complete and irredundant list of isomorphism
type representatives of groups is given. The library also has an identification function: it
returns the library number of a given group. More on this can be found in GAP’s manual.
Here are some examples.

gap> AllSmallGroups( 16 );;
gap> NrSmallGroups( 512 );
10494213
gap> AllSmallGroups(Size, 16, IsAbelian, true);
[ <pc group of size 16 with 4 generators>,

<pc group of size 16 with 4 generators>,
<pc group of size 16 with 4 generators>,
<pc group of size 16 with 4 generators>,
<pc group of size 16 with 4 generators> ]

gap> List( last, StructureDescription );
[ "C16", "C4 x C4", "C8 x C2", "C4 x C2 x C2", "C2 x C2 x C2 x C2" ]
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gap> G := DihedralGroup( 64 );
<pc group of size 64 with 6 generators>
gap> IdGroup( G );
[ 64, 52 ]
gap> H := SmallGroup( 64, 52 );
<pc group of size 64 with 6 generators>
gap> G = H;
false
gap> StructureDescription( H );
"D64"

1.6 Jordan-Hölder theorem
A group G is simple if {1} and G are the only normal subgroups of G. The abelian simple
groups are precisely Cp where p is a prime (exercise). More examples of finite simple
groups will be exhibited in Chapter 2.

A composition series of a group G is a sequence of subgroups

{1} = G0 / G1 / G2 / · · · / Gr = G

such that all the factors Gi+1/Gi are simple groups. A related concept is that of chief
series, where Gi are all normal in G and each Gi+1/Gi is a minimal normal subgroup of
G/Gi.

The Correspondence Theorem says that if N is a normal subgroup of G then there is
a bijection between subgroups of G/N and subgroups of G containing N . The bijection
is canonical in the sense that all subgroups of G/N are of the form H/N , where H is
a subgroup of G containing N . This result enables construction of a composition series
of a finite group G as follows. Start with the series {1} / G. If G is simple, we are
done. Otherwise there is a proper non-trivial normal subgroup N of G. Now we repeat
the procedure with {1} / N and N / G. More precisely, if we have Gi / Gi+1 and the
corresponding quotient is not simple, then we choose (by the Correspondence Theorem)
N/Gi / Gi+1/Gi with N 6= Gi and N 6= Gi+1. In this way we refine the series, and since
the group is finite, the procedure eventually results in a composition series of G. Given a
composition series of G as above, we have r simple groups Gi+1/Gi.

Theorem 1.6.0.4 (Jordan-Hölder Theorem). Any two composition series of a finite group
G give rise, up to order and isomorphism type, to the same list of composition factors.

Proof. The proof is by induction on |G|. Let

G = G0 . G1 . G2 . · · · . Gr = {1}

and
G = H0 . H1 . G2 . · · · . Hs = {1}

be two composition series of G. If G1 = H1, then the parts of the series below this
term are two composition series of G1 and by induction they have the same length and
composition factors. So assume from here on that G1 6= H1. Let K2 = G1 ∩H1. Let

K2 . K3 . · · · . Kt = {1}

be a composition series of K2. The group G1H1 is a normal subgroup of G and G1 < G.
It follows that G = G1H1. Therefore G/G1 = G1H1/G1 ∼= H1/K2, and similarly also
G/H1 ∼= G1/K2. Thus

G1 . G2 . · · · . Gr = {1}
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and
G1 . K2 . K3 . · · · . Kt = {1}

are two composition series of G1 and hence they have the same length and same compo-
sition factors. A similar statement holds true for H1, so each of the given series for G
has the composition factors of K2 together with G/G1 and G/H1. Therefore the result
holds.

Let us calculate a composition series of D32:

gap> G := DihedralGroup( 32 );
<pc group of size 32 with 5 generators>
gap> cs := CompositionSeries( G );
[ Group([ f1, f2, f3, f4, f5 ]), Group([ f2, f3, f4, f5 ]),

Group([ f3, f4, f5 ]), Group([ f4, f5 ]), Group([ f5 ]), Group([ ]) ]
gap> List( [1..5], i -> StructureDescription( cs[ i ] / cs[ i + 1 ] ) );
[ "C2", "C2", "C2", "C2", "C2" ]

The result is not surprising as D32 is a 2-group.

1.6.1 Solvable groups
A finite group is said to be solvable if all of its composition factors are cyclic of prime
order. One can prove the following:

Theorem 1.6.1.1. A finite group G is solvable if it has a series

G = G0 . G1 . G2 . · · · . Gr = {1}

with all Gi/Gi+1 abelian.

The statement of Theorem 1.6.1.1 is usually taken as the definition of solvable groups
in the infinite case. Every abelian group is solvable. The smallest non-abelian solvable
group is 1 � A3 � S3. The smallest non-solvable group is A5. The derived length of
a solvable group G is the length of the shortest abelian series of G. A group is called
metabelian if its derived length is no more than two.

Lemma 1.6.1.1. The following hold:

1. A subgroup of a solvable group is solvable.

2. A homomorphic image of a solvable group is solvable.

3. If a normal subgroup and its factor are solvable, then the group is solvable.

Lemma 1.6.1.2. A product of two normal solvable subgroups of a group is again solvable.

Proof. Let H � G and K � G be solvable. Then (KH)/K ' H/(H ∩K) is solvable by
(2) above and consequently KH is solvable by (3).

The following shows that A5 is the only non-solvable group of order 60:

gap> l60 := AllSmallGroups( 60 );;
gap> List( l60, IsSolvable );
[ true, true, true, true, false, true, true, true, true, true, true, true,

true ]
gap> notsolv := Filtered( l60, G -> not IsSolvable( G ) );
[ Group([ (1,2,3,4,5), (1,2,3) ]) ]
gap> StructureDescription( notsolv[ 1 ] );
"A5"
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Examples of solvable groups include the following:

Theorem 1.6.1.2. Let p, q, r be primes. Then all groups of orders pmqn or pqr are
solvable.

We skip the proof. Solvability of groups of order pmqn is also refered to as the Burn-
side’s pmqn-theorem. It is proved using character theory.

A celebrated theorem by Feit and Thompson says that every group of odd order is
solvable. The proof is very long (about 255 pages) and represents a milestone in the
classification of finite simple groups as it was a first significant indication that such a
classification might be possible. We mention here that the Feit-Thompson theorem was
recently reproved using interactive theorem prover Coq.

1.7 How to draw a group?
In this section we assume the reader is familiar with basic terminology of graph theory.
Let G be a group generated by a set S. The Cayley graph Γ = Cay(G,S) is a colored
directed graph given as follows: the vertex set of Γ is identified with G. To each s ∈ S
we assign a color cs. The vertices g and sg are joined by a directed edge of color cs for
all g ∈ G and s ∈ S. The set S is usually assumed to be finite, symmetric (i.e., S = S−1)
and not containing the identity element of the group. In this case, the uncolored Cayley
graph is an ordinary graph: its edges are not oriented and it does not contain loops
(single-element cycles).

One can modify the above definiton to the case when S is a set of elements of G
that does not generate G. We still get a graph, but it may not be connected. From the
definition of Cayley graphs it also follows that the Cayley graph of a given group clearly
depends on the choice of a generating set S. Here are some examples that illustrate this.
Example 1.7.0.1. If we take the cyclic group Cn = 〈x〉 of order n and S = {x, x−1}, then
Cay(Cn, S) is an undirected cycle Cn of length n. If we take S = {x}, then, unless n = 2,
the corresponding Cayley graph is a directed cycle of length n. In the case n = 5 the
diagram is as follows:

1

x

x2x3

x4

Every red directed edge between xk and xk+1 resembles the fact that xk+1 = x · xk. If
we take S = {x, x2}, the corresponding graph is a directed circulant graph with jumps 1
and 2. Here is the diagram for n = 5:
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1

x

x2x3

x4

If we take S = {x±1, x±2} then we get an undirected circulant graph with jumps 1 and 2.
It turns out that undirected circulant graphs are precisely Cayley graphs of cyclic groups
with respect to symmetric generating sets.
Example 1.7.0.2. The dihedral group of order 8 has a presentation D8 = 〈x, y | x4 = y2 =
1, xy = x−1〉. The Cayley graph Cay(D8, {x, y}) looks as follows:

1

x x2

x3

y

yx yx2

yx3

The red arrows represent multiplication by x from the left, and the blue edges represent
multiplication by y; since y = y−1, the blue edges are undirected. The dihedral group of
order 8 can be also given by the following presentation: D8 = 〈a, b | a2 = b2 = 1, (ab)2 =
(ba)2〉. In this case, Cay(D8, {a, b}) is as follows:

1 a

ba

aba

bababab

ab

b

Cayley graphs can be constructed within GAP using a package called GRAPE. This
package has to be loaded into GAP using LoadPackage. After that all the commands of
the package are available. One can then construct Cayley graphs Cay(G,S); the result
is a record that contains several attributes of the graph; we refer to GAP’s manual for
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further details on records, and GRAPE’s manual for further commands. Here we show
how to construct a Cayley Graph of A4 with respect to the generating set {(1 2 3), (1 2 4)},
and compute its adjacency matrix.

gap> LoadPackage("grape");;
-----------------------------------------------------------------------------
Loading GRAPE 4.6.1 (GRaph Algorithms using PErmutation groups)
by Leonard H. Soicher (http://www.maths.qmul.ac.uk/~leonard/).
Homepage: http://www.maths.qmul.ac.uk/~leonard/grape/
------------------------------------------------------------------------------
gap> cay := CayleyGraph(AlternatingGroup(4), [(1,2,3),(1,2,4)]);
rec( adjacencies := [ [ 5, 6, 7, 10 ] ], group := Group([ (1,5,7)(2,4,8)

(3,6,9)(10,11,12), (1,2,3)(4,7,10)(5,9,11)(6,8,12) ]), isGraph := true,
isSimple := true,
names := [ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2),

(1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ], order := 12,
representatives := [ 1 ],
schreierVector := [ -1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1 ] )

gap> CollapsedAdjacencyMat(cay);
[ [ 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0 ],

[ 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0 ],
[ 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1 ],
[ 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0 ],
[ 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0 ],
[ 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1 ],
[ 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1 ],
[ 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 ],
[ 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0 ],
[ 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0 ] ]

Problems
1. Supply the missing proofs in this chapter.

2. Let H be a subgroup of a group G with |G : H| = 2. Prove that H is a normal
subgroup of G.

3. Is it always true that if H is a subgroup of G with prime index, then H / G?

4. Let p be the smallest prime that divides the order of a finite group G. If H is a
subgroup of G of index p, then H is normal in G.

5. Find a group G and subgroups H and K with the property that H /K /G, but H
is not normal in G.

6. Let H and K be subgroups of finite index in G. Prove that |G : H ∩ K| ≤ |G :
H| · |G : K|, with equality if and only if G = HK.

7. If H is a subgroup of G of finite index, then H contains a subgroup of finite index
which is normal in G.

8. A group in which every non-trivial element has order 2 is abelian.

9. Let a and b be elements of order 2 of a finite group G. Prove that 〈a, b〉 is a dihedral
group.
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10. Find all subgroups of D12. Which of these are normal subgroups?

11. Show that GL(2, 2) ∼= S3.

12. What is the largest order of an element of S12?

13. Give an example of two non-isomorphic groups whose automorphism groups are
isomorphic.

14. If G is a non-cyclic abelian group, then AutG is non-abelian.

15. Let G act transitively on a set X, let H be a subgroup of G, and choose x ∈ X.
Prove that the following are equivalent:

(a) G = H stabG(x),
(b) G = stabG(x)H,
(c) H acts transitively on X.

Use this to find an alternative proof of Frattini’s argument.

16. Let H be a subgroup of G. Show that NG(H)/CG(H) is isomorphic to a subgroup
of AutH.

17. Find the center and all conjugacy classes of D2n.

18. Let P be a Sylow p-subgroup of a finite group G. Prove that if N is a normal
subgroup of G, then P ∩ N is a Sylow p-subgroup of N , and PN/N is a Sylow
p-subgroup of G/N .

19. Let P be a Sylow p-subgroup of a finite group G and H ≤ G. Is it true that P ∩H
is always a Sylow p-subgroup of H?

20. Show that a group of order 40 cannot be simple. Do the same for groups of order
84.

21. Prove that Sn is given by a presentation listed in Example 1.2.3.1.

22. Show that A4 has a presentation 〈x, y | x2 = y3 = (xy)3 = 1〉.

23. Identify the group 〈x, y, z | zy = z2, xz = x2, yx = y2〉.

24. Find all the composition series of S4.



Chapter 2

Finite simple groups

Quote from Wikipedia:

In mathematics, the classification of finite simple groups states that every fi-
nite simple group is cyclic, or alternating, or in one of 16 families of groups
of Lie type, or one of 26 sporadic groups... These groups can be seen as the
basic building blocks of all finite groups, in a way reminiscent of the way the
prime numbers are the basic building blocks of the natural numbers. The
Jordan–Hölder theorem is a more precise way of stating this fact about finite
groups. However, a significant difference with respect to the case of inte-
ger factorization is that such “building blocks” do not necessarily determine
uniquely a group, since there might be many non-isomorphic groups with the
same composition series or, put in another way, the extension problem does
not have a unique solution.
The proof of the theorem consists of tens of thousands of pages in several
hundred journal articles written by about 100 authors, published mostly be-
tween 1955 and 2004. Gorenstein (d.1992), Lyons, and Solomon are gradually
publishing a simplified and revised version of the proof.

2.1 Faithful primitive actions and Iwasawa’s Lemma
In this section we prove Iwasawa’s Lemma which provides a useful criterion for simplicity
of a given finite group.

2.1.1 Transitive actions
Let H be a subgroup of G. Denote by H\G the set of right cosets of H in G (note that,
unless H is a normal subgroup, H\G is only a set, not a group in general). The group G
acts on H\G by right multiplication. This action is obviously transitive. Our first result
shows that this example is, in a sense, generic. Before stating this in a precise form, we
need a definition. Let G act on sets X1 and X2. An equivalence between these two actions
is a bijection f : X1 → X2 such that (xg)f = (xf )g for all x ∈ X1 and g ∈ G.

Proposition 2.1.1.1. Any transitive action of a group G on a set X is equivalent to the
action of G on H\G, where H = stabG(x) for some x ∈ X. Furthermore, the actions of
G on H\G and K\G are equivalent if and only if H and K are conjugate.

Proof. Fix x ∈ X and denote H = stabG(x). Since the action is transitive, is straightfor-
ward to show there is an obvious bijection between X and the set of subsets O(x, y) =
{g ∈ G | xg = y} of G. Note that O(x, y) = Hg for any g ∈ O(x, y). It is now easy that
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the map y 7→ O(x, y) is an equivalence between the action of G on X, and the action of
G on H\G. The second part is left as an exercise.

Suppose G acts transitively on a set X with |X| > 1. A G-congruence on X is an
equivalence relation ≡ on X that is compatible with the action, i.e., if x ≡ y, then xg ≡ yg
for all g ∈ G. An equivalence class of a G-congruence is called a block. There are two
trivial G-congruences on X, namely, the equality x ≡ y ⇐⇒ x = y, and the universal
relation x ≡ y for all x, y ∈ X. The action is called imprimitive if there is a non-trivial
G-congruence on X, and primitive otherwise.

Examples of primitive actions can be obtained as follows. We say that an action of
G on X is doubly transitive if for any two ordered pairs (x1, x2) and (y1, y2) of distinct
elements of X there exists g ∈ G such that x1g = y1 and x2g = y2.

Proposition 2.1.1.2. A doubly transitive action is primitive.

We leave the proof as an exercise. The following result provides a useful characteriza-
tion of blocks:

Proposition 2.1.1.3. Let G act transitively on X and let B be a non-empty subset of
X. Then B is a block if and only if, for all g ∈ G, either Bg = B or Bg ∩B = ∅.

Proof. If B is a block then Bg is also a block and the claim follows by the fact that
different equivalence classes are disjoint.

Conversely, let B be a non-empty subset of X such that, for all g ∈ G, either Bg = B
or Bg∩B = ∅. Since the action is transitive, all different Bg form a partition of X, which
is the set of equivalence classes of a congruence.

Proposition 2.1.1.4. Let H be a proper subgroup of G. Then the action of G on H\G
is primitive if and only if H is a maximal subgroup of G.

Proof. Suppose that G acts primitively on H\G and assume that H < K < G. Let B be
the set of all cosets of H which are contained in K. By Proposition 2.1.1.3, B is a block
which neither a singleton nor the whole H\G, a contradiction.

Conversely, suppose that G acts imprimitively on H\G. Let B be a block containing
the coset H, and denote K = {g ∈ G | Bg = B}. Then H < K < G.

Proposition 2.1.1.5. Let G act primitively on X, and let N be a normal subgroup of G.
Then either N acts trivially on X, or N acts transitively on X.

Proof. For x, y ∈ X put x ≡ y iff xh = y for some h ∈ N . For any g ∈ G we have
(xg)(g−1hg) = yg. By normality, g−1hg ∈ N . Therefore xg ≡ yg, so ≡ is a G-congruence.
By primitivity, either all orbits have size 1 (i.e., N is in the kernel of the action), or there
is a single orbit (i.e., N acts transitively on X).

2.1.2 Minimal and maximal subgroups
The above discussion on actions provides some useful descriptions of minimal and maximal
subgroups of finite groups.

Lemma 2.1.2.1. A minimal normal subgroup of a finite group is isomorphic to the direct
product of a number of copies of a simple group.

Proof. Let H be a minimal normal subgroup of G. By Lemma 1.1.0.1, H has no proper
non-tivial characteristic subgroups. Choose a minimal normal subgroupN ofH of smallest
possible order. Consider all subgroups of H of the form N1 × · · · × Nn, where Ni / H,
Ni ∼= N . Let M be such group of largest possible order. If we show that M = H, then
it follows from here that N is simple. For, if K is a normal subgroup of N , then it is a
normal subgroup of M = N1 × · · · ×Nn = G, and this contradicts the choice of N .
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Thus it suffices to show thatM is characteristic inH. Take φ ∈ AutH. ThenNφ
i
∼= N .

A straightforward argument shows that Nφ
i / H. If Nφ

i 6≤ M , then Nφ
i ∩M 6≤ Nφ

i and
|Nφ

i ∩ M | < |N |. But Nφ
i ∩ M / H, so the minimality of |N | shows Nφ

i ∩ M = {1}.
The subgroup 〈M,Nφ

i 〉 = M × Nφ
i is of the same type like M but of larger order, a

contradiction. Thus M is characteristic in H.

Corollary 2.1.2.1. Let G be a finite solvable group. Then any maximal subgroup of G
has prime power index.

Proof. Let H be a maximal subgroup of G and consider the action of G on H\G. By
Proposition 2.1.1.4, this action is primitive. The image of this action is a quotient of G,
hence it is a solvable group. Therefore we may assume wlog that the action is faithful.
Let N be a minimal normal subgroup of G. Then N is an elementary abelian p-group by
Lemma 2.1.2.1. Snce G acts primitively, N acts transitively by Proposition 2.1.1.5. Using
the Orbit-Stabilizer Theorem, |H\G| is a power of p.

2.1.3 Faithful actions and Iwasawa’s Lemma
From here on we consider only faithful actions. We say that such an action of G on X is
regular if it is transitive and the point stabilizer is trivial. From the above we see that a
regular action of G is isomorphic to the action of G on itself by right multiplication.

Let G act faithfully on X and let N be a normal subgroup of G whose action on X
is regular. Then we can identify X with N , so that N acts by right multiplication. To
be more precise, choose x ∈ X and observe there is a bijection between N and X under
which n ∈ N corresponds to xn ∈ X. Under the above bijection, the action of stabG(x)
on N by conjugation corresponds to the given action on X. To see this, take g ∈ stabG(x)
and suppose that yg = z. Let h, k ∈ N correspond to y, z ∈ X under the above bijection,
that is, xh = y, xk = z. Then x(g−1hg) = xhg = yg = z. Since the action is faithful, we
conclude that g−1hg = k, as required.

Theorem 2.1.3.1 (Iwasawa’s Lemma). Let G be a group with a faithful primitive action
on X. Suppose there exists an abelian normal subgroup A of stabG(x) with the property
that the conjugates of A generate G. Then any non-trivial normal subgroup of G contains
G′. In particular, if G is perfect, then it is simple.

Proof. Let N be a non-trivial normal subgroup of G. By Proposition 2.1.1.5, N acts
transitively on X, therefore N 6≤ stabG(x). By Proposition 2.1.1.4, stabG(x) is a maximal
subgroup of G. Hence N stabG(x) = G. Take g ∈ G and write it as g = nh, where
n ∈ N and h ∈ stabG(x). Then gAg−1 = nhAh−1n−1 = nAn−1. We conclude that
gAg−1 ≤ NA. By our assumption it follows that G = NA. Now, G/N ∼= A/(A ∩ N) is
abelian, hence G′ ≤ N .

2.2 Symmetric groups and alternating groups
Here we examine the normal subgroups of Sn and prove that if n ≥ 5, then the alternating
group An is simple.

Proposition 2.2.0.1. Two elements of Sn are conjugate if and only if they have the
same cycle structure.

Proof. If π ∈ Sn and γ = (a1 a2 . . . ak) is a cycle, then γπ = (aπ1 aπ2 . . . aπk ).

Proposition 2.2.0.2. The alternating group An is generated by the 3-cycles.
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Proof. Note that 3-cycles are even permutations. If π is any even permutation, then it
can be written as a product of an even number of transpositions. Thus we only need to
consider products of two transpositions. If a, b, c, d ∈ {1, 2, . . . , n} are pairwise different,
then the following clearly hold:

(a b)(a b) = 1,
(a b)(a c) = (a b c),
(a b)(c d) = (a b c)(a d c),

and we are done.

Proposition 2.2.0.3. The following are equivalent for π ∈ An:

1. The Sn conjugacy class of π splits into two An-conjugacy classes;

2. There is no odd permutation which commutes with π;

3. π has no cycles of even length, and all of its cycless have distinct lengths.

Proof. Let us proove that (1) is equivalent to (2). The group Sn acts transitively on An by
conjugation. We have that CAn(π) = CSn(π) ∩ An. If (2) holds, then CAn(π) = CSn(π),
therefore π has |An : CAn(π)| = |Sn : CSn |/2 conjugates in An. Thus (1) follows. If
(2) does not hold then |CAn(π)| = |CSn(π)|/2, and π has |An : CAn(π)| = |Sn : CSn |
conjugates in An. Therefore (1) does not hold.

Now we prove that (2) and (3) are equivalent. If π has a cycle of even length, then
this cycle is an odd permutation commuting with π. If π has only cycles of odd length,
and two cycles of the same length `, then a permutation interchanging them is a product
of ` transpositions commuting with π. This proves that (2) implies (3). Assume now that
(3) holds. Then any permutation commuting with π fixes each of its cycles and acts on
it as a power of the corresponding cycle of π, hence it is an even permutation.

Proposition 2.2.0.4. The group A5 is simple.

Proof. A lazy proof is

gap> IsSimple( AlternatingGroup( 5 ) );
true

A formal proof goes as follows. The conjugacy classes of A5 can be determined using
Proposition 2.2.0.3:

• Representative (∗)(∗)(∗)(∗)(∗): this class has size 1 and does not split into two
conjugacy classes of A5;

• Representative (∗)(∗ ∗)(∗ ∗): this class has size 15 and does not split into two con-
jugacy classes of A5;

• Representative (∗)(∗)(∗ ∗ ∗): this class has size 20 and does not split into two
conjugacy classes of A5;

• Representative (∗ ∗ ∗ ∗ ∗): this class has size 24 and splits into two conjugacy classes
of A5, each of size 12.

A normal subgroup N of A5 would have to be a union of conjugacy classes and contain
the identity, plus its order would have to divide 60. Checking all the possibilities, we see
that either N is trivial or N = A5.

It turns out that A5 is the only simple group of order 60. A formal proof can be found
in [4]. Here is a proof using GAP:
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gap> Filtered(AllSmallGroups(60), IsSimple);
[ Alt( [ 1 .. 5 ] ) ]

Theorem 2.2.0.2. If n ≥ 5, then An is simple.

Proof. The proof goes by induction on n. The case n = 5 is covered by Proposition
2.2.0.4. Suppose N is a non-trivial normal subgroup of An. Since An clearly acts doubly
transitively on X = {1, 2, . . . , n}, this action is primitive by 2.1.1.2. Therefore N acts
transitively on X by 2.1.1.5. It follows by Frattini’s argument that NAn−1 = An. The
intersection N ∩An−1 is a normal subgroup of An−1. By assumption, either N ∩An−1 =
{1} or An−1 ≤ N . In the latter case, An/N = NAn−1/N ∼= An−1/(An−1 ∩ N) = {1},
hence N = An. So assume that N ∩ An−1 = {1}. In this case N acts regularly and
so |N | = n by a discussion above. By Lemma 1.5.0.3, N can be generated by at most
blog2 nc elements. An automorphism of N is determined by the images of generators,
hence |Aut(N)| ≤ nlog2 n. On the other hand, An−1 acts faithfully on N by conjugation,
so (n− 1)! ≤ nlog2 n which is impossible for n ≥ 6.

Corollary 2.2.0.1. Let n ≥ 5. Then the only normal subgroups of Sn are {1}, An and
Sn.

Proof. Let N be a normal subgroup of Sn. Then N ∩ An is a normal subgroup of An,
hence either An ∩ N = {1} or An ≤ N . Suppose the first possibility holds. Then
N = N/(N ∩ An) ∼= NAn/An. If N is non-trivial then NAn = Sn and hence N ∼= C2.
This is impossible as there would have to be a non-identity element of An in a conjugacy
class of size 1. The remaining possibility is An ≤ N , but in this case we either have
N = An or N = Sn, as An is a maximal subgroup of Sn.

The remaining cases of Sn and An for 1 ≤ n ≤ 4 are somewhat exceptional, but easy
to deal with. We show here how to use GAP to examine these groups:

gap> for n in [ 1..4 ] do
> sn := SymmetricGroup( n );
> an := AlternatingGroup( n );
> Print("n = ", n, "\n");
> Print("A_n: ", StructureDescription( an ), " ", IsSimple( an ), "\n" );
> Print("S_n: ", StructureDescription( sn ), " ", NormalSubgroups( sn ), "\n" );
> od;
n = 1
A_n: 1 false
S_n: 1 [ Group( () ) ]
n = 2
A_n: 1 false
S_n: C2 [ SymmetricGroup( [ 1 .. 2 ] ), Group( () ) ]
n = 3
A_n: C3 true
S_n: S3 [ SymmetricGroup( [ 1 .. 3 ] ), Group( [ (1,2,3) ] ), Group( () ) ]
n = 4
A_n: A4 false
S_n: S4 [ SymmetricGroup( [ 1 .. 4 ] ),

Group( [ (2,4,3), (1,4)(2,3), (1,3)(2,4) ] ),
Group( [ (1,4)(2,3), (1,3)(2,4) ] ), Group( () ) ]
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2.3 Simplicity of projective special linear groups
Unless stated otherwise, F will denote the Galois field GF(q), where q is a prime power.
The projective space Pn−1(F ) is the set of all one-dimensional subspaces of Fn. There are
qn−1 non-zero vectors in Fn, each of which spans a one-dimensional subspace. Each such
space is spanned by any of its q− 1 non-zero vectors, hence |Pn−1(F )| = (qn− 1)/(q− 1).
The group GL(n, F ) acts on Pn−1(F ) from the left as follows: (A, span(v)) 7→ span(Av).

Proposition 2.3.0.5. The following conditions for A ∈ GL(n, F ) are equivalent:

1. A ∈ Z(GL(n, F ));

2. A is in the kernel of the action of GL(n, F ) on Pn−1(F );

3. A is a scalar matrix, i.e., A = λI for some λ ∈ F×.

Proof. Clearly (3) implies (1). To see that the converse holds, take A ∈ Z(GLn(F )).
Then, in particular, A has to commute with all matrices with 1 on the diagonal and the
position (i, j), i 6= j, and zero elsewhere. Easy calculation then shows that A is a scalar
matrix.

Let us prove that (2) and (3) are equivalent. Clearly every scalar matrix fixes all 1-
dimensional subspaces of Fn. Conversely suppose that A fixes all 1-dimensional subspaces.
Let e1, . . . , en be a standard basis of Fn. Then Aei = λiei for some non-zero λi ∈ F . Fix
different i and j. There also exists λ ∈ F× such that A(ei + ej) = λ(ei + ej), and this
implies λ = λj = λi. Consequently, A is a scalar matrix.

We define the projective general and projective special linear groups by

PGL(n, F ) = GL(n, F )/Z(GL(n, F ))

and
PSL(n, F ) = SL(n, F )Z(GL(n, F ))/Z(GL(n, F )).

Therefore the projective groups are the images of ther linear group counterparts in the
action on the projective space, so we can think of them as subgroups of SymPn−1(F ).
We see that |PGL(n, q)| = |GL(n, q)|/(q − 1) = |SL(n, q)|.

Proposition 2.3.0.6. |PSL(n, q)| = |SL(n, q)|/ gcd(n, q − 1).

Proof. The kernel of the action of SL(n, q) on the corresponding projective space consists
of scalar matrices with determinant one, i.e., matrices of the form λI with λn = 1. The
multiplicative group of GF(q) is cyclic of order q− 1, so the number of solution of λn = 1
is gcd(n, q − 1).

If we restrict to the case n = 2, we see that P1(F ) has q + 1 points, so PGL(2, q) and
PSL(2, q) are subgroups of Sq+1. Let us consider some small cases:

q = 2: PSL(2, 2) = PGL(2, 2) is a subgroup of S3 of order 6, hence PSL(2, 2) ∼= S3.

q = 3: PGL(2, 3) is a subgroup of S4 of order 24, hence PGL(2, 3) = S4. The group
PSL(2, 3) is a subgroup of index 2 in PGL(2, 3), hence PSL(2, 3) ∼= A4.

q = 4: PGL(2, 4) = PSL(2, 4) is a subgroup of S5 of order 60, so it is isomorphic to A5;
one can double-check this with GAP:

gap> StructureDescription(PSL(2,4));
"A5"

q = 5: PSL(2, 5) ∼= A5:
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gap> StructureDescription(PSL(2,5));
"A5"

We also remark here that there is another way of interpreting the actions of PGL(2, F ) and
PSL(2, F ) on the projective line. The one-dimensional subspaces of F 2 can be spanned
by either a unique vector of the form (1, x), where x ∈ F , or the vector (0, 1). We identify
points of the first type with F , and the point of the second type with ∞. Then the
elements of PGL(2, F ) can be identified with linear fractional maps

z 7→ az + b

cz + d
,

where a, b, c, d ∈ F , ad − bc 6= 0. The group PSL(2, F ) then consists of those linear
fractional maps with ad− bc = 1.

We will prove the following result:

Theorem 2.3.0.3. For n ≥ 2 and any field F , the group PSL(n, F ) is simple, except in
the two cases, n = 2, F = GF(2) or n = 2, F = GF(3).

We will only prove this theorem for n = 2, the proof for n > 2 is similar, but somewhat
technical. Our proof will rely on Iwasawa’s lemma applied to the action of G = SL(2, F )
on P1(F ). We will show in a series of steps that all the conditions of the lemma are
satisfied.

Proposition 2.3.0.7. If n ≥ 2, then SL(2, F ) acts doubly transitively on P1(F ).

Proof. Let span(v1) and span(v2) be two distinct 1-dimensional subspaces of F 2. For any
other pair span(w1) and span(w2) there exists a linear map that maps vi 7→ wi, i = 1, 2.
One can modify this map to obtain one with determinant 1. We let the reader fill in the
details.

Let e1, e2 be a standard basis of F 2. Denote x = span(e1). The stabilizer of x is

stabG(x) = {A ∈ SL(2, F ) | span(e1) = span(Ae1)}

=
{(

a b
0 1/a

)
| a ∈ F×, b ∈ F

}
.

There is an abelian normal subgroup of stabG(x) given as follows:

U =
{(

1 b
0 1

)
| b ∈ F

}
.

Its elements are called transvections.

Proposition 2.3.0.8. The subgroup U and its conjugates generate SL2(F ).

Proof. First we note that(
0 1
−1 0

)−1
U

(
0 1
−1 0

)
=
{(

1 0
b 0

)
| b ∈ F

}
= U ′.

Now pick A =
(
a b
c d

)
∈ SL2(F ). Suppose first that b 6= 0. Then

A =
(

1 0
(d− 1)/b 1

)(
1 b
0 1

)(
1 0

(a− 1)/b 1

)
∈ 〈U,U ′〉.
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If c 6= 0, then

A =
(

1 (a− 1)/c
0 1

)(
1 0
c 1

)(
1 (d− 1)/c
0 1

)
∈ 〈U,U ′〉.

Finally assume that b = c = 0. Then

A =
(

1 0
(1− a)/a 1

)(
1 1
0 1

)(
1 0

(a− 1) 1

)(
1 −1/a
0 1

)
∈ 〈U,U ′〉.

This proves the result.

Proposition 2.3.0.9. If |F | > 3, then SL(2, F ) is a perfect group.

Proof. If |F | > 3 there exists a ∈ F such that a2 /∈ {0, 1}. Now we observe(
1 b(a2 − 1)
0 1

)
=
[(

1/a 0
0 a

)
,

(
1 0
−b 1

)]
.

Letting b run through F , we see that U ≤ SL2(F )′. By Proposition 2.3.0.8 we conclude
the result.

Proof of Theorem 2.3.0.3 for n = 2. This follows by previous propositions and Iwasawa’s
lemma.

2.4 On the classification of finite simple groups (CFSG)
One of the greatest achievements of mathematics is a full classificiation of finite simple
groups (CFSG) which was announced in the 1980’s. Roughly speaking, the result says
that all finite simple groups fall into one of the following four types:

1. Cyclic groups of prime order;

2. Alternating groups An for n ≥ 5;

3. Groups of Lie type; these groups arise as automorphism groups of simple Lie alge-
bras. An example is PSL(n, F ).

4. 26 sporadic groups; these do not fall into any infinite family of simple groups de-
scribed above. They are usually defined as symmetry groups of various algebraic or
combinatorial configurations. The largest of them has order

808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000

and is called the Monster Group.

Since a thorough account on these groups is beyond the purpose of these notes, we only
exhibit some of their properties and how to use GAP to study them. The following are
all non-abelian finite simple groups of order ≤ 1000000:

gap> AllSmallNonabelianSimpleGroups( [1..1000000] );
[ A5, PSL(2,7), A6, PSL(2,8), PSL(2,11), PSL(2,13), PSL(2,17), A7, PSL(2,19),

PSL(2,16), PSL(3,3), PSU(3,3), PSL(2,23), PSL(2,25), M11, PSL(2,27),
PSL(2,29), PSL(2,31), A8, PSL(3,4), PSL(2,37), PSp(4,3), Sz(8), PSL(2,32),
PSL(2,41), PSL(2,43), PSL(2,47), PSL(2,49), PSU(3,4), PSL(2,53), M12,
PSL(2,59), PSL(2,61), PSU(3,5), PSL(2,67), J_1, PSL(2,71), A9, PSL(2,73),
PSL(2,79), PSL(2,64), PSL(2,81), PSL(2,83), PSL(2,89), PSL(3,5), M22,
PSL(2,97), PSL(2,101), PSL(2,103), J_2, PSL(2,107), PSL(2,109), PSL(2,113),
PSL(2,121), PSL(2,125), PSp(4,4) ]



31

Here is a construction of Mathieu groups M11 and M12 which are sporadic groups:

gap> p1 := (4,5,6)*(7,8,9)*(10,11,12);;
gap> p2 := (4,7,10)*(5,8,11)*(6,9,12);;
gap> p3 := (5,7,6,10)*(8,9,12,11);;
gap> p4 := (5,8,6,12)*(7,11,10,9);;
gap> p5 := (1,4)*(7,8)*(9,11)*(10,12);;
gap> p6 := (1,2)*(7,10)*(8,11)*(9,12);;
gap> p7 := (2,3)*(7,12)*(8,10)*(9,11);;
gap> m11 := Group(p1, p2, p3, p4, p5, p6);;
gap> IsSimple(m11);
true
gap> StructureDescription(m11);
"M11"
gap> m12 := Group(p1, p2, p3, p4, p5, p6,p7);;
gap> IsSimple(m12);
true
gap> StructureDescription(m12);
"M12"

There is a vast amount of properties of finite simple groups that follow from CFSG,
too many to state here. Some of them are:

Theorem 2.4.0.4. Let S be a finite non-abelian simple group.

1. S can be generated by two elements.

2. Out(S) is a solvable group (used to be Schreier’s conjecture).

3. Every element of S is a commutator (used to be Ore’s conjecture).

CFSG also implies, that, given a positive integer n, there are at most two non-
isomorphic finite simple groups of order n. It may happen that there are two non-
isomorphic finite simple groups of the same order. For example, consider PSL(3, 4) and
PSL(4, 2); they are both of order 20160, and

gap> G:=PSL(4,2);;
gap> H:=PSL(3,4);;
gap> IsomorphismGroups(G,H);
fail

Apart from using GAP, several useful information on finite simple groups can be
obtained from Atlas of Finite Group Representations [1].

Problems
1. Complete the proof of Proposition 2.1.1.1.

2. Prove Proposition 2.1.1.2.

3. Let G act transitively on X. Suppose that the stabilizer of x ∈ X acts transitively
on X − {x}. Then G acts doubly transitively on X.

4. Let Ω be the set of 2-element subsets of {1, 2, . . . , n}. Then Sn acts on Ω by {i, j}g =
{ig, jg}.

(a) If n = 2, then the action is not faithful.
(b) If n = 3, then the action is doubly transitive.
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(c) If n = 4, then the action is imprimitive.
(d) If n ≥ 5, then the action is primitive, but not doubly transitive.

5. Let G be a group. The group AutG acts naturally on the set G.

(a) If G− {1} is an orbit, prove that G is an elementary abelian p-group.
(b) If AutG acts doubly transitively on G− {1}, show that either G is a 2-group

or |G| = 3.

6. Let G be a group of order 2m, where m is odd and m > 1. Prove that G is not
simple.

7. Let n ≥ 2. Show that the transpositions (1 2), (1 3), ..., (1n) generate Sn.

8. Let n ≥ 3. Show that the 3-cycles (1 2 3), (1 2 4), ..., (1 2n) generate An.

9. Prove that there are no simple groups of order 312, 616, or 1960.

10. Show that the only simple group of order 60 is A5.

11. Prove that PSL(4, 2) ∼= A8.

12. Prove by hand that PSL(3, 4) has no elements of order 15, so it is not isomorphic
to A8.

13. Show that transvections in SL(2, F ) need not be conjugate.



Chapter 3

Some extension theory

Let N be a normal subgroup of G. Then we say that G is an extension of N by G/N .
A precise definition of group extensions will be given in Section 3.1. The importance of
extension theory can be outlined as follows. Let G be a finite group and 1 = G0 / G1 /
G2 / · · · / Gr = G its composition series. By Jordan-Hölder theorem, the composition
factors Gi+1/Gi are in a sense uniquely determined by G. On the other hand, these are
simple groups, so they are known by CFSG. In order to build all finite groups with a given
sequennce of composition factors, one can proceed as follows. Suppose we already know
what Gi is, and we have a prescribed isomorphism type of the simple group Gi+1/Gi. If
we knew how to build all the extensions (up to certain equivalence) of a given group by
a (simple) group, then we would be able to construct all possible Gi+1. Proceeding this
way, we would eventually be able to construct all finite groups. The trouble is that the
problem of constructing all possible extensions is very difficult and still open.

We will briefly tackle the problem of classifying extensions of abelian groups. It will
be shown that these are, up to equivalence, in 1-1 correspondence with the elements of
a certain second cohomology group. Cohomological group theory is an area on its own,
and we will not go deeply into it. We refer to [3] and [8] for further details.

3.1 Basic notions
A group extension of a group N by a group G is a short exact sequence

1 //N
µ //E

ε //G //1 .

From the above it clearly follows that µ is injective, ε is surjective, M = imµ = ker ε is a
normal subgroup of E, M ∼= N , and E/M ∼= G.

Amorphism between extensions N // µ // E
ε // // G // 1 and N̄ // µ̄ // Ē

ε̄ // // Ḡ
is a triple of group homomorphisms (α, β, γ) such that the following diagram commutes:

N

α

��

// µ //E

β

��

ε // //G

γ

��
N̄ // µ̄ //Ē

ε̄ // //Ḡ

.

The collection of all group extensions and morphisms between them is a category. A

33
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morphism of the type
N

1

��

// µ //E

β

��

ε // //G

1

��
N // µ̄ //Ē

ε̄ // //G

is said to be an equivalence of extensions.

3.2 Semidirect products
Suppose that H and N are groups and that we have a homomorphism α : H → Aut(N).
The (external) semidirect product H nαN of N and H is the set of all pairs (h, n), where
h ∈ H, n ∈ N , with the operation

(h1, n1)(h2, n2) = (h1h2, n
hα2
1 n2).

This is a group with the identity element (1H , 1N ), and the inverse of (h, n) is (h−1, n−(hα)−1).
We have embeddings H → H nα N and N → H nα N given by h 7→ (h, 1N ) and

n 7→ (1H , n), respectively. If H∗ and N∗ are images of these maps, then N∗ / H nα N ,
H∗ ∩ N∗ = 1 and H∗N∗ = H nα N . We say that H nα N is the internal semidirect
product of N∗ and H∗. The group H∗ is said to be a complement of N∗ in G. The group
G is an extension of N∗ by H∗; we say that this extension is a split extension.

GAP offers two ways of constructing semidirect products. The first one is directly via
command SemidirectProduct(H, alpha, N). In the special case when N = GF(q)n, alpha
must be a homomorphism from H into a matrix group of n×n matrices over a subfield of
GF(q), or into a permutation group. The second option is to use SemidirectProduct(H,
N), where H ≤ Aut(N).

Let us build all possible semidirect products of C2 × C2 by C4:

gap> H := CyclicGroup(4);;
gap> N := AbelianGroup([2,2]);;
<pc group of size 4 with 2 generators>
gap> hom := AllHomomorphisms(H, AutomorphismGroup(N));;
gap> for map in hom do
> Print(IdGroup(SemidirectProduct(H, map, N)),"\n");
> od;
[ 16, 10 ]
[ 16, 3 ]
[ 16, 3 ]
[ 16, 3 ]
gap> StructureDescription(SmallGroup(16,10));
"C4 x C2 x C2"
gap> StructureDescription(SmallGroup(16,3));
"(C4 x C2) : C2"

Here are two more examples:

gap> SemidirectProduct(Group((1,2,3),(2,3,4)),GF(5)^4);
<matrix group of size 7500 with 3 generators>
gap> g:=Group((3,4,5),(1,2,3));;
gap> mats:=[[[Z(2^2),0*Z(2)],[0*Z(2),Z(2^2)^2]],
> [[Z(2)^0,Z(2)^0], [Z(2)^0,0*Z(2)]]];;
gap> hom:=GroupHomomorphismByImages(g,Group(mats),[g.1,g.2],mats);;
gap> SemidirectProduct(g,hom,GF(4)^2);
<matrix group of size 960 with 3 generators>
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An important example of a semidirect product is the following. Let N be any group
and H = Aut(N). Let α : H → Aut(N) be the identity mapping. Then the semidirect
product Aut(N) nα N is called the holomorph of N .
Example 3.2.0.1. Let N = Cnp be an elementary abelian p-group of order pn. Its automor-
phism group is GL(n, p). The holomorph AGL(n, p) = GL(n, p) n Cnp is called the affine
group of dimension n over Zp. Show that AGL(2, 2) ∼= S4. Here is a proof using GAP:

gap> G := AbelianGroup([2,2]);;
gap> agl := SemidirectProduct(AutomorphismGroup(G), G);;
gap> StructureDescription(agl);
"S4"

Another construction related to semidirect products is that of a wreath product. Let
G and H be groups and let H act on the set X = {x1, x2, . . . , xn}. We take

GX =
n∏
i=1

Gxi

to be the direct product of n copies of G indexed by the set X. Then H also acts on GX
by the rule

(gx1 , gx2 , . . . , gxn)h = (gx1h, gx2h, . . . , gxnh).
Therefore we have a homomorphism α : H → Aut(GX) and we can form the semidirect
product H nα GX which is denoted by G oX H and called the wreath product of G by H.

A special case is when X = H, and H acts on X by right multiplication. Then the
corresponding wreath product is denoted by GoH and called the regular (standard) wreath
product. Here is an example of how to build C2 o C4 with GAP:

gap> G := StandardWreathProduct(CyclicGroup(2), CyclicGroup(4));
<group of size 64 with 3 generators>
gap> IdGroup(G);
[ 64, 32 ]

Alternatively, we can build C2 o C4 as a semidirect product C4 n C4
2 , where we think

of C4 as the group 〈(1 2 3 4)〉 acting on C4
2 by permuting the indices:

gap> G := SemidirectProduct(Group((1,2,3,4)), GF(2)^4);
<matrix group of size 64 with 2 generators>
gap> IdGroup(G);
[ 64, 32 ]

Wreath products are important in the theory of extensions because of the following:

Theorem 3.2.0.5. Every extension of G by H is isomorphic to a subgroup of G oH.

We leave the proof as an exercise.

3.3 Extensions with abelian kernels
Consider

A //
µ // E

ε // // G ,

where A is an abelian group (written additively). When choosing a transversal T to
M = imµ = ker ε in E, we get a function τ : G → E defined by gτ = x, where x ∈ T is
such that g = xε (note that this is well defined). The function τ is called a transversal
function. Note that τ is not necessarily a homomorphism. We also see that τε = 1G, and
that any function τ : G→ E with the property τε = 1G determines a transversal to M in
E, namely {gτ | g ∈ G}.
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Suppose that we have fixed τ . Then the elements {gτ : g ∈ G} act on M by conjuga-
tion. Since µ : A→M is an isomorphism, we can define gχ ∈ Aut(A) by the rule

(ag
χ

)µ = (gτ )−1aµ(gτ )

for a ∈ A and g ∈ G. We obtain a function χ : G → Aut(A). We prove that χ does not
depend on the choice of τ . Here we will use the fact that A is abelian. Suppose that τ ′
is another transversal function. Then (gτ (gτ ′)−1)ε = gτε(gτ ′ε)−1 = 1, hence gτ ′ = gτmg

for some mg ∈M . If τ ′ induces χ′ : G→ Aut(A) as above, then

(ag
χ′

)µ = (gτ
′
)−1aµ(gτ

′
) = m−1

g ((gτ )−1aµ(gτ ))mg,

hence gχ = gχ
′
. Thus χ is uniquely defined. We claim that χ is a homomorphism.

Let g1, g2 ∈ G. Then (g1g2)τ ≡ gτ1g
τ
2 mod M. Thus (g1g2)χ = gχ1 g

χ
2 , hence χ is a

homomorphism. We have proved:

Proposition 3.3.0.10. Each extension A //
µ // E

ε // // G , where A is abelian, deter-
mines a unique homomorphism χ : G → Aut(A) which arises by conjugation in imµ by
elements of E.

Let χ : G → Aut(A) be a homomorphism. Then χ induces a G-action A given by
a · g = ag

χ

. We say that A is a G-module. More precisely, let g ∈ G and x ∈ E such that
xε = g. Then

(ag)µ = x−1aµx

for a ∈ A (well defined, since A is abelian). Note that this action is trivial precisely when
imµ is central in E, i.e., when the corresponding extension is a central extension.

Theorem 3.3.0.6. Equivalent extensions of A by G, where A is abelian, induce the same
G-module structure on A.

Proof. Suppose we have equivalent extensions

A

1

��

// µ //E

β

��

ε // //G

1

��
A //

µ̄ //Ē
ε̄ // //G

Let χ and χ̄ be the respective homomorphisms G→ Aut(A). Choose a transversal func-
tion τ : G→ E. Let τ̄ = τβ. Then τ̄ ε̄ = τβε̄ = τε = 1G, hence τ̄ is a transversal function
for the second extension. Then (agχ)µ = (gτ )−1aµ(gτ ) and (agχ̄)µ̄ = (gτ̄ )−1aµ̄(gτ̄ ) for
a ∈ A and g ∈ G. Applying β to the first equation and using the fact that µβ = µ̄, we
get (agχ)µ̄ = (gτβ)−1aµβ(gτβ) = (agχ̄)µ̄ and thus gχ = gχ̄.

Choose a transversal function τ : G→ E, i.e., τε = 1G. Then the above action can be
rewritten as

(ag)µ = g−τaµgτ .

Let x, y ∈ G. As xτyτ and (xy)τ belong to the same coset of ker ε = imµ in E, we may
write

xτyτ = (xy)τ ((x, y)φ)µ

for some (x, y)φ ∈ A. Thus we get a function φ : G×G→ A defined by

((x, y)φ)µ = (xy)−τxτyτ .
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From the associative law xτ (yτzτ ) = (xτyτ )zτ we get that φ satisfies the identity

(x, yz)φ+ (y, z)φ = (xy, z)φ+ (x, y)φ · z.

A function φ : G × G → A satisfiying this functional equation is called a factor set (or
a 2-cocycle). Note that we can assume without loss of generality that 1τ = 1, therefore
we can always assume that (1, x)φ = (x, 1)φ = 0 for all x ∈ G. The set Z2(G,A) of all
2-cocycles in G with coefficients in the G-module A has the structure of an abelian group
with the operation

(x, y)(φ1 + φ2) = (x, y)φ1 + (x, y)φ2.

Example 3.3.0.2. In the situation above, what happens if (x, y)φ = 0 for all x, y ∈ G? In
this case, the transversal map τ : G → E is a homomorphism. It is easy to see that the
image of τ is then a complement of imµ ∼= A in E, therefore E ∼= Gnχ A.

How does the choice of τ affect φ? Let τ ′ be another transversal function for given
extension. Then we get another factor set φ′, i.e., xτ ′yτ ′ = (xy)τ ′((x, y)φ′)µ. As xτ and
xτ
′ belong to the same coset of ker ε = imµ, we can write

xτ
′

= xτ ((x)ψ)µ

for some (x)ψ ∈ A. We get

(x, y)φ = (x, y)φ′ + (xy)ψ − (x)ψ · y − (y)ψ.

Define ψ∗ : G×G→ A by

(x, y)ψ∗ = (y)ψ − (xy)ψ + (x)ψ · y,

so that φ′ = φ + ψ∗. It follows that ψ∗ ∈ Z2(G,A). The 2-cocycle ψ∗ is called a
2-coboundary. 2-coboundaries form a subgroup B2(G,A) of Z2(G,A). We have proved:

Proposition 3.3.0.11. The extension A //
µ // E

ε // // G , where A is abelian, deter-
mines a unique element φ+B2(G,A) of the group Z2(G,A)/B2(G,A).

Does every factor set induce an extension? Let A be a G-module and φ : G×G→ A
a factor set. Let E(φ) be (as a set) G×A, with the operation

(x, a)(y, b) = (xy, ay + b+ (x, y)φ).

E(φ) becomes a group with identity element (1,−(1, 1)φ) and inversion rule (x, a)−1 =
(x−1,−ax−1 − (1, 1)φ− (x, x−1)φ). Define µ : A→ E(φ) by the rule aµ = (1, a− (1, 1)φ),
and ε : E(φ)→ G by the rule (x, a)ε = x. Then we have

A //
µ // E(φ) ε // // G .

Proposition 3.3.0.12. Let A be a G-module and φ : G×G→ A a factor set. Then the
extension

A //
µ // E(φ) ε // // G

induces the given G-module structure. There exists a transversal τ : G→ E(φ) such that
φ is the factor set for this extension with respect to τ .

Proof. Let g ∈ G, a ∈ A. Note that (g, 0)ε = g. By definition, the G-module structure
induced by the extension is given by (a◦g)µ = (g, 0)−1aµ(g, 0) = (1, ag−(1, 1)φ) = (ag)µ,
which gives the first part. For the second part, define τ : G → E(φ) by gτ = (g, 0). This
is a transversal function and xτyτ = (xy)τ ((x, y)φ)µ.
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By looking at factor sets, how can we determine which extensions are equivalent? Let
A be a fixed G-module and let

A //
µi // Ei

εi // // G , i = 1, 2

be two extensions realizing this module structure. Choose transversal functions τi and let
φi be the resulting factor sets.

First suppose these extensions are equivalent:

A

1

��

// µ1 //E1

θ

��

ε1 // //G

1

��
A //

µ2 //E2
ε2 // //G

Then τ̄2 = τ1θ is a transversal for the second extension. Applying θ to xτ1yτ1 =
(xy)τ1((x, y)φ1)µ1 , we get xτ̄2yτ̄2 = (xy)τ̄2((x, y)φ1)µ2 , hence τ̄2 determines the factor
set φ1 for the second extension. As the factor sets of τ2 and τ̄2 belong to the same coset
of B2(G,A), we get

φ1 +B2(G,A) = φ2 +B2(G,A).

Conversely, assume that φ1 +B2(G,A) = φ2 +B2(G,A). Write φ1 = φ2 +ψ∗ for some
ψ : G → A as above. Define θ : E1 → E2 by the rule (xτ1aµ1)θ = xτ2(a + (x)ψ)µ2 for
x ∈ G and a ∈ A. θ is a well defined homomorphism, µ1θ = µ2 and ε1 = θε2. Hence we
have a commutative diagram

A

1

��

// µ1 //E1

θ

��

ε1 // //G

1

��
A //

µ2 //E2
ε2 // //G

and θ must be an isomorphism.

Theorem 3.3.0.7. Let G be a group and A a G-module. Then there is a bijection between
the set of equivalence classes of of extensions of A by G inducing the given module structure
and the group Z2(G,A)/B2(G,A). The split extension corresponds to B2(G,A).

Let A be a G-module. We define H2(G,A) = Z2(G,A)/B2(G,A) to be the second
cohomology group ofG with coefficients in A. The elements ofH2(G,A) thus correspond to
equivalence classes of extensions of A by G. Unfortunately, different elements of H2(G,A)
can still produce extensions of A by G that are isomorphic as groups.
Example 3.3.0.3. Consider Zp as a trivial Cp-module. From Example 1.4.2.1 it follows
that there are only two non-isomorphic extensions of A = Zp by G = Cp, namely Cp×Cp
and Cp2 . On the other hand, one can show that H2(Cp,Zp) ∼= Cp.

GAP can compute extensions of elementary abelian p-groups by solvable groups, which
have to be presented as pc groups. One has to define an elementary abelian group A
together with an action of G on A as a MeatAxe module for G over a finite field; we refer
to GAP’s manual for further information. The action of G on A can be represented by
matrices over GF(p). It is a requirement that the matrices that define the module must
correspond to the pcgs of the group G. In this case, Z2(G,A), B2(G,A) and H2(G,A)
are elementary abelian p-groups and can be considered as vector spaces over GF(p).
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As another example we build all the extensions of A = Z2 ⊕Z2 by G = D8, where we
consider Z2⊕Z2 as a trivial D8-module. Along the way we show commands for computing
2-cocycles, extensions corresponding to given 2-cocycles, and split extensions. The way
we build the action is as follows. To each element of Pcgs(G) we assign 2 × 2 identity
matrix over GF(2). Then we build the module using the command GModuleByMats.
The other commands we use are self-evident:
gap> G := DihedralGroup(8);;
gap> mats := List( Pcgs( G ), x -> IdentityMat( 2, GF(2) ) );;
gap> A := GModuleByMats( mats, GF(2) );;
gap> co := TwoCocycles( G, A );;
gap> Extension( G, A, co[2] );;
gap> StructureDescription(last);
"C2 x (C4 : C4)"
gap> SplitExtension( G, A );;
gap> StructureDescription(last);
"C2 x C2 x D8"
gap> ext := Extensions( G, A );;
gap> Length(ext);
64
gap> DuplicateFreeList(List(ext, IdGroup));
[ [ 32, 46 ], [ 32, 40 ], [ 32, 22 ], [ 32, 39 ], [ 32, 9 ], [ 32, 23 ],

[ 32, 13 ], [ 32, 41 ], [ 32, 10 ], [ 32, 2 ], [ 32, 14 ] ]

Here note that the notation C4 : C4 means that the group in question is a semidirect
product of C4 by C4. The command TwoCocycles(G, A) returns a list of vectors over
the field underlying A, and the additive group generated by these vectors is the Z2(G,A).
There is also a command TwoCohomology(G, A) that returns a record defining the
second cohomology group as factor space of the vector space of cocycles by the subspace
of coboundaries. We refer to GAP’s manual for further details.
gap> z2 := AdditiveGroupByGenerators(co);;
gap> Length(Elements(z2));
256
gap> h2 := TwoCohomology(G, A);;
gap> h2.cohom;
<linear mapping by matrix, <vector space of dimension
8 over GF(2)> -> ( GF(2)^6 )>
gap> dimensionZ2 := Dimension(Source(h2.cohom));
8
gap> dimensionB2 := Dimension(Kernel(h2.cohom));
2
gap> dimensionH2 := Dimension(Image(h2.cohom));
6

The last line tells us that H2(G,A) ∼= C6
2 .

3.4 The Schur-Zassenhaus theorem
Let A and G be groups. We say that an extension of A by G splits if it is a semidirect
product.

Theorem 3.4.0.8. Suppose that A and G are finite groups satisfying gcd(|A|, |G|) = 1.
Then every extension of A by G splits.

We will only prove this result in the case when A is abelian. In this form, the result
was originally due to Schur. Zassenhaus improved it by showing that it suffices to assume
that one of A or G is solvable. On the other hand, Feit-Thompson’s Odd Order Theorem
shows that this assumption is redundant.
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Proof of Theorem 3.4.0.8 when A is abelian. Letm = |A| and n = |G|. Let φ : G×G→ A
be a 2-cocycle representing an extension of A by G, and let χ : G → Aut(A) be the
homomorphism that induces the corresponding G-module structure on A. We claim that
nφ ∈ B2(G,A). Define a function d : G→ A by

(g)d =
∑
g1∈G

(g1, g)φ.

Consider the cocycle identity:

(g1, g2g3)φ+ (g2, g3)φ = (g1g2, g3)φ+ (g1, g2)φ · g3.

Sum this equation over g1 ∈ G:

(g2g3)d+ n(g2, g3)φ = (g2)d · g3 +
∑
g1∈G

(g1g2, g3)φ

= (g2)d · g3 +
∑

g1g2∈G
(g1g2, g3)φ

= (g2)d · g3 + (g3)d.

Therefore n(g2, g3)φ = (g2)d · g3 + (g3)d − (g2g3)d, which proves our claim. Now, there
exist integers a and b with am+bn = 1. Since |A| = m, it follows that mφ = 0. Therefore
φ = (am+ bn)φ = bnφ ∈ B2(G,A). Thus every extension of A by G splits.

Problems
1. Let G1, G2 and G3 be groups. Show that (G1 oG2) oG3 may not be isomorphic to
G1 o (G2 oG3).

2. Find a proof of Theorem 3.2.0.5.

3. Prove that a Sylow p-subgroup of Spn is isomorphic to W (p, n) = (· · · (Cp o Cp) o
· · · ) o Cp, the number of factors being n.

4. Prove that every group of order pn is isomorphic to a subgroup of W (p, n).

5. Let 1 //A
µ //E

ε //G //1 be a group extension, where A is abelian and G =
〈g〉 cyclic of order n. Choose x ∈ E with xε = q, and let a = xn. Define a transversal
function τ : G→ E by (gi)τ = xi for 0 ≤ i < n. Prove that the corresponding factor
set φ : G×G→ A is given by

(gi, gj)φ =
{

0 : i+ j < n
a : i+ j ≥ n .

6. Find all equivalence classes of extensions of C4 by C2 by hand. Which groups arise
this way?

7. Find all equivalence classes of extensions of D8 by C2 by hand. Which groups arise
this way?

8. Fill in the details in Example 3.3.0.3.

9. Let N be a normal subgroup of a finite group G, and assume that |N | = n and
|G : N | = m are relatively prime. Let m1 be a divisor of m. Then a subgroup of G
of order m1 is contained in a subgroup of order m.



Chapter 4

Nilpotent groups and p-groups

Nilpotent groups are groups which can be constructed from abelian groups by repeatedly
forming central extensions. We exhibit some of the classical theory of these groups, and
show that they are closely related to finite p-groups. These form a very rich class of groups.
We prove that there are lots of finite p-groups, hence there is little hope to classify them
up to isomorphism.

4.1 Nilpotent groups
4.1.1 Definition and basic properties
We call 1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G a normal series of G if each of its members is a
normal subgroup of G. A group G is nilpotent if it has a central series, i.e. a normal series
1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G in which each factor Gi+1/Gi is contained in the center of
G/Gi. The length of the shortest central series of G is called the nilpotency class of G.

All nilpotent groups are solvable. Nilpotent groups of class no more than 1 are abelian.
The smallest solvable non-nilpotent group is S3.

Here is an example of how to manipulate nilpotent groups in GAP:

gap> l := AllSmallGroups(Size, 54, IsNilpotent, true);
[ <pc group of size 54 with 4 generators>,

<pc group of size 54 with 4 generators>,
<pc group of size 54 with 4 generators>,
<pc group of size 54 with 4 generators>,
<pc group of size 54 with 4 generators> ]

gap> NilpotencyClassOfGroup(l[2]);
1
gap> NilpotencyClassOfGroup(l[3]);
2
gap> ForAll(AllSmallGroups(54), IsNilpotent);
false
gap> G:= First(AllSmallGroups(54), x->not IsNilpotent(x));;
gap> StructureDescription(G);
"D54"
gap> List(l, StructureDescription);
[ "C54", "C18 x C3", "C2 x ((C3 x C3) : C3)", "C2 x (C9 : C3)",

"C6 x C3 x C3" ]

From the above example we observe that all nilpotent groups of order 54 can be written
as direct products of their Sylow p-subgroups. We will show later on that this property
characterizes finite nilpotent groups. We now exhibit a large class of nilpotent groups:
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Lemma 4.1.1.1. All finite p-groups are nilpotent.

Proof. We know that Z(G) is nontrivial by Proposition 1.4.2.1. Now use induction on
the order of G to show that G/Z(G) is nilpotent. From here it easily follows that G is
nilpotent as well.

The following is straightforward to prove:

Lemma 4.1.1.2. Subgroups, homomorphic images and finite direct products of nilpotent
groups are nilpotent.

We note that nilpotency is not closed under extensions, since S3 is an extension of C3
by C2.

4.1.2 Commutators
The theory of nilpotent groups relies significantly on commutator calculus that we briefly
develop here. A simple commutator of length n of elements x1, . . . , xn ∈G is defined
inductively by [x1] = x1 and

[x1, x2, . . . , xn] = [[x1, . . . , xn−1], xn].

Lemma 4.1.2.1. Let x, y, z be elements of a group. Then

1. [x, y] = [y, x]−1;

2. [xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z;

3. [x, y−1] = ([x, y]y−1)−1 and [x−1, y] = ([x, y]x−1)−1;

4. (the Hall-Witt identity) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1.

Proof. Let us only sketch the proof of the Hall-Witt identity. Observe that

[x, y−1, z]y = x−1y−1xz−1x−1yxy−1zy = u−1v,

where u = zx
−1
yx and we obtain v by cyclically permuting x, y, z in the definition of u.

The rest is now immediate.

These identities could also be proved using GAP. For example, in order to prove the
identity [xy, z] = [x, z]y[y, z], it suffices that this holds in the free group generated by
x, y, z:

gap> F:=FreeGroup( "x", "y", "z" );;
gap> AssignGeneratorVariables( F );;
gap> Comm( x * y, z ) = Comm( x, z )^y * Comm( y, z );
true

Let X,Y ⊂ G be non-empty sets. Define the commutator subgroup of X and Y by
[X,Y ] = 〈[x, y] | x ∈ X, y ∈ Y 〉 and note that [X,Y ] = [Y,X]. For any n > 2 nonempty
subsets X1, X2, . . . , Xn of G denote

[X1, X2, . . . , Xn] = [[X1, . . . , Xn−1], Xn].

Note that [G,G] = G′ is just the derived subgroup of G. Define also XY = 〈xy | x ∈
X, y ∈ Y 〉. If X is a subset and H 6 G, then X ⊂ XH � 〈X,H〉. Thus, XH = X〈X,H〉 is
the normal closure of X in 〈X,H〉.

Here is an example:
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gap> G := SmallGroup( 64, 52);;
gap> gen := GeneratorsOfGroup(G);;
gap> H := Subgroup(G, [gen[1]]);;
gap> K := Subgroup(G, [gen[2], gen[3]]);;
gap> C := CommutatorSubgroup(H,K);;
gap> Order(H);
2
gap> Order(K);
32
gap> Order(C);
16

Lemma 4.1.2.2. Let X ⊂ G and H 6 G. Then

1. XK = 〈X, [X,K]〉;

2. [X,K]K = [X,K];

3. if K = 〈Y 〉, then [X,K] = [X,Y ]K .

Proof. (1) Follows from xk = x[x, k].
(2) For k, h ∈ K and x ∈ X we have [x, hk] = [x, k][x, h]k, so that [x, h]k ∈ [X,K].
(3) It suffices to show that [x, k] ∈ [X,Y ]K what we prove for k = y±1

1 y±1
2 . . . y±1

r by
induction on r. For r = 1 we get [x, y−1

1 ] = ([x, y1]y−1
1 )−1 ∈ [X,Y ]K . For the inductive

step we write k = k′y±1
r . Then [x, k] = [x, k′y±1

r ] = [x, y±1
r ][x, k′]y±1

r ∈ [X,Y ]K by
induction.

Corollary 4.1.2.1. If H = 〈X〉 and K = 〈Y 〉, then [H,K] = [X,Y ]HK .

Proof. This follows from Lemma 4.1.2.2, (3).

4.1.3 Derived series, upper and lower central series
Define G′ = [G,G] and inductively G(0) = G and G(n+1) = (G(n))′. The derived series of
G is the series

G(0) > G(1) > G(2) > · · ·

of fully invariant (and therefore normal) subgroups of G. The derived series of a group is
in close connection with its solvability:

Proposition 4.1.3.1. If 1 = G0 � G1 � · · · � Gn = G is an abelian series of a solvable
group G, then G(i) 6 Gn−i and, in particular, G(n) = 1. The derived length of G is equal
to the length of the derived series.

Proof. We prove this by induction, the case i = 0 being trivial. If the assertion is true for
i, then G(i+1) = (G(i))′ 6 (Gn−i)′ 6 Gn−i−1, as required.

GAP can compute the derived series as follows:

gap> G := OneSmallGroup(Size, 120, IsAbelian, false, IsSolvable, true);;
gap> StructureDescription(G);
"C5 x (C3 : C8)"
gap> DerivedSeries(G);
[ C5 x (C3 : C8), Group([ f5 ]), Group([ ]) ]
gap> DerivedLength(G);
2
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There are two canonical central series of a given group. Define γ1(G) = G and induc-
tively γn+1(G) = [γn(G), G]. The result is the lower central series

G = γ1(G) > γ2(G) > · · ·

of fully invariant (and therefore normal) subgroups. The factor group γn(G)/γn+1(G) lies
in the center of G/γn+1(G).

Define Z0(G) = 1 and inductively Zn+1(G)/Zn(G) = Z(G/Zn(G)). We obtain the
upper central series

1 = Z0(G) 6 Z1(G) 6 Z2(G) 6 · · ·

of characteristic (and therefore normal) subgroups of G. If G is finite, it terminates in a
subgroup called the hypercenter of G.

Proposition 4.1.3.2. If 1 = G0 6 G1 6 · · · 6 Gn = G is a central series of a nilpotent
group G, then

1. γi(G) 6 Gn−i+1, so that γn+1(G) = 1;

2. Gi 6 Zi(G)so that Zn(G) = G;

3. the nilpotency class of G equals the length of the upper central series which also
equals the length of the lower central series.

Proof. (1). This is true for i = 1. SinceGn−i+1/Gn−i ⊂ Z(G/Gn−i), we have [Gn−i+1, G] ⊂
Gn−i. By induction,γi+1(G) = [γi(G), G] 6 [Gn−i+1, G] 6 Gn−i. The item (2) is another
easy induction and (3) follows.

Lemma 4.1.3.1 (The three subgroup lemma). Let H,K,L 6 G. If two of the commu-
tator subgroups [H,K,L], [K,L,H], [L,H,K] are contained in a normal subgroup of G,
then so is the third one.

Proof. By Corollary 4.1.2.1, [H,K,L] is generated by conjugates of commutators of the
form [h, k−1, l]. Apply the Hall-Witt identity.

Proposition 4.1.3.3. Let G be a group and i, j ∈ N:

1. [γi(G), γj(G)] 6 γi+j(G).

2. γi(γj(G)) 6 γij(G).

3. [γi(G), Zj(G)] 6 Zj−i(G) if j > i.

4. Zi(G/Zj(G)) = Zi+j(G)/Zj(G)

Proof. (1) Both [γi(G), γj(G), G] and [G, γi(G), γj(G)] are inductively (on j) contained
in γi+j+1(G). By the three subgroup lemma the same holds true for [γj(G), G, γi(G)] =
[γi(G), γj+1(G)].

(2) This goes by induction on i: γi+1(γjG) = [γi(γj(G)), γj(G)] 6 [γij(G), γj(G)] 6
γ(i+1)j(G).

(3) [γi+1(G), Zj(G)] = [γi(G), G, Zj(G)] 6 [G,Zj(G), γi(G)][Zj(G), γi(G), G] 6 Zj−i−1(G)
by induction on i.

(4) Induction on i.

Corollary 4.1.3.1. For any group G we have that G(i) 6 γ2i(G). If G is nilpotent of
class c, then its derived length is at most blog2 cc+ 1.
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Proof. Apply part (2) of the above proposition to

G(i) = γ2(· · · (γ2(G)) · · · )︸ ︷︷ ︸
i times

Now, let G be nilpotent of class c, let d be the derived length and let 2i > c + 1. Then,
G(i) 6 γ2i(G) 6 γc+1(G) = 1. Since the smallest such i is blog2 cc + 1, it follows that
d 6 blog2 cc+ 1.

Here is a sample computation of lower and upper central series of a group:

gap> G := SmallGroup(128, 50);;
gap> NilpotencyClassOfGroup(G);
4
gap> DerivedLength(G);
2
gap> LowerCentralSeriesOfGroup(G);
[ <pc group of size 128 with 7 generators>, Group([ f3, f5, f7 ]),

Group([ f5, f7 ]), Group([ f7 ]), Group([ <identity> of ... ]) ]
gap> UpperCentralSeriesOfGroup(G);
[ Group([ f6, f7, f5, f3, f4, f1, f2 ]), Group([ f6, f7, f5, f3, f4 ]),

Group([ f6, f7, f5 ]), Group([ f6, f7 ]), Group([ ]) ]

4.1.4 Unitriangular groups
Here is a ring-theoretic source of examples of nilpotent groups. Let S be a ring with
identity and N a subring. Write N (i) for the set of all sums of products of i elements of
N for i > 0, which is necessarily a subring. If N (i) = 0 for some i > 0, then N is called
nilpotent. Assume N (n) = 0 and let U be the set of all elements of the form 1 + x for
x ∈ N . Then U is a group with respect to the ring multiplication, i.e.

(1 + x)(1 + y) = 1 + (x+ y + xy)

and
(1 + x)−1 = 1 + (−x+ x2 − · · ·+ (−x)n−1).

Define Ui = {1 + x |x ∈ N (i)} and observe that Ui is an increasing series of subgroups.
We want to show that this is actually a central series of U . Let x ∈ N (r) and y ∈ N (s),
then

[1 + x, 1 + y] = (1 + x+ y + yx)−1(1 + x+ y + xy).
We let u = x+ y + xy and v = x+ y + yx:

[1 + x, 1 + y] = (1− v + v2 − · · ·+ (−v)n−1)(1 + u) =

1 + (1− v + v2 − · · ·+ (−v)n−2)(u− v) + (−v)n−1u.

Now, u− v = xy − yx ∈ N (r+s) and (−v)n−1u = 0. We have thus shown that [Ur, Us] 6
Ur+s implying that U is nilpotent of class no more than n− 1.

For an even more concrete example, let us take S to be the ring of all n× n matrices
over a commutative ring with identity R. Further, let N be the subring of all strictly
upper triangular matrices. It is not hard to see that the class of U in this case is exactly
n− 1 showing that there are nilpotent groups of arbitrary class. We note here that in the
case n = 3 we call the group U a Heisenberg group over R.

Observe that Ui consists of all upper unitriangular matrices whose first i − 1 super
diagonals are zero. It easily follows that

Ui/Ui+1'R⊕R⊕ · · · ⊕R︸ ︷︷ ︸
n−i times

.
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In the case that R = GF(p) we find U to be a finite p-group of order pn(n−1)/2. On the
other hand, if R = Z, then U is a finitely generated torsion-free nilpotent group.

Now, let T denote the group of all upper triangular invertible matrices over R. Let
θ : T → (R∗)n be the projection of a matrix to its diagonal. So, this is an epimorphism
whose kernel is precisely equal to U and whose image is an abelian group. It follows that
T is solvable, with the derived length being no more than [log2(n− 1) + 2].

4.1.5 Properties of nilpotent groups
Lemma 4.1.5.1. If G is a nilpotent group and 1 6= N �G, then N ∩ Z(G) 6= 1.

Proof. Let i be the smallest natural number s.t. N ∩ Zi(G) 6= 1. Then, [N ∩ Zi(G), G] 6
N ∩ Zi−1(G) = 1, so that N ∩ Zi(G) 6 N ∩ Z1(G) 6= 1 implying equality.

Corollary 4.1.5.1. A minimal normal subgroup of a nilpotent group is contained in the
center.

Proposition 4.1.5.1. If A is a maximal normal abelian subgroup of the nilpotent group
G, then A = CG(A).

Proof. Clearly A 6 C = CG(A). Suppose that A 6= C. Then C/A is a nontrivial normal
subgroup of the nilpotent G/A. By Lemma 4.1.5.1 there is an A 6= Ax ∈ (C/A)∩Z(G/A).
Now 〈x,A〉 is abelian and normal leading to a contradiction.

Theorem 4.1.5.1. The following conditions are equivalent for a finite group G:

1. G is nilpotent;

2. every subgroup of G is subnormal;

3. Every proper subgroup H of G is properly contained in its normalizer;

4. Every maximal subgroup of G is normal;

5. G is the direct product of its Sylow subgroups.

Proof. (1)⇒ (2). Let G be nilpotent with class c. If H 6 G, then HZiG�HZi+1G since
Zi+1G/ZiG = Z(G/ZiG). So, HZiG is the series proving subnormality of H.

(2)⇒ (3). Let H = H0 �H1 � · · ·�Hn = G be the series proving subnormality of the
proper subgroup H. Let i be the smallest integer s.t. H 6= Hi. Then, H = Hi−1 �Hi 6
NG(H).

(3) ⇒ (4). If M < G is maximal, then M < NG(M) implying NG(M) = G.
(4) ⇒ (5). Assume P is a non-normal Sylow subgroup. Then NG(P ) is proper and

therefore contained in a maximal subgroupM . ThenM�G contradicting Lemma 1.4.2.2.
Thus, Sylow p-subgroup is normal and consequently unique for each p. Their product is
clearly direct and equal to G.

(5) ⇒ (1). This follows since every p-group is nilpotent and direct sum of nilpotent
groups is nilpotent.

In the case of infinite groups, properties (2) to (5) are weaker than (1). Using the
above result, one can refine Corollary 2.1.2.1 as follows:

Corollary 4.1.5.2. A maximal subgroupM of a finite nilpotent group G has prime index.

Proof. We known that M /G, and |G : M | = pk by Corollary 2.1.2.1. If k > 1, then there
exists H < G containing M such that |H : M | = p which is a contradiction.
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4.1.6 The Fitting Subgroup
Theorem 4.1.6.1 (Fitting). Let M and N be normal nilpotent subgroups of a group G.
If c and d are nilpotency classes of M and N , then L = MN is nilpotent of class ≤ c+d.

Proof. By induction on i we show that

γi(L) =
∏

Xj∈{M,N}

[X1, . . . , Xi].

Taking i = c + d + 1 and noting that [A,G] ≤ A for all A / G, we conclude that each
[X1, . . . , Xi] is contained in either γc+1(M) or γd+1(N), both of which equal to 1.

The subgroup Fit(G) generated by all the normal nilpotent subgroups of a group G
is called the Fitting subgroup of G. If the group G is finite, then Fit(G) is nilpotent. In
these cases, Fit(G) is the unique largest normal nilpotent subgroup of G. Note also that
Fit(G) = 1 if and only if G is semisimple.

Let N ≤ H ≤ G and N / G. Define CG(H/N) = {g ∈ G : [H, g] ≤ N}. Clearly
CG(H/N) ≤ G.

Theorem 4.1.6.2. Let G be a finite group. For a prime p let Op(G) be the largest normal
p-subgroup of G. The following groups are then equal to Fit(G):

(a) The direct product of all Op(G), where p divides |G|.

(b) The intersection of the centralizers of the chief factors of G.

Proof. (a) If N/G is nilpotent, then N = ×Op(N). As the group Op(N) is a characteristic
subgroup of N , it follows that Op(N) / G. Therefore Op(N) ≤ Op(G), and thus N ≤
×Op(G).

(b) Let 1 = G0 ≤ G1 ≤ · · · ≤ Gn = G be a chief series of G and denote

I =
⋂
i

CG(Gi+1/Gi).

Since [Gi+1, I] ≤ Gi for all i, we get γn+1(I) = 1, hence I ≤ Fit(G). Conversely, let
F = Fit(G). Since G1 is a minimal normal subgroup of G, we get either [G1, F ] = 1 or
[G1, F ] = G1. In the latter case, G1 ≤ γc+1(F ) = 1 for some c, a contradiction. Thus
[G1, F ] = 1. Induction on n shows that F ≤ CG(Gi+1/Gi) for all i.

gap> G := SmallGroup(96, 10);;
gap> IsNilpotent(G);
false
gap> F := FittingSubgroup(G);;
gap> Order(F);
48
gap> StructureDescription(F);
"C12 x C4"

4.1.7 The Frattini subgroup
The Frattini subgroup Frat(G) of G is the intersection of all maximal subgroups of G (if
G does not have maximal subgroups, then we define Frat(G) = G). Clearly Frat(G) is a
characteristic subgroup of G. We say that g ∈ G is a nongenerator of G if G = 〈g,X〉
implies G = 〈X〉 for every X ⊆ G.

Theorem 4.1.7.1. Frat(G) equals the set of nongenerators of G.
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Proof. Let g ∈ Frat(G), G = 〈g,X〉, but G 6= 〈X〉. There existsM ≤ G which is maximal
subject to 〈X〉 ≤ M and g /∈ M . M is a maximal subgroup of G, hence g ∈ M , a
contradiction.

Let g be a nongenerator and g /∈ Frat(G). Thus g /∈ M for some maximal subgroup
M . It follows 〈g,M〉 = G, hence G = M , a contradiction.

Proposition 4.1.7.1. Let G be a finite group.

(a) If N / G, H ≤ G and N ≤ Frat(H), then N ≤ Frat(G).

(b) If K / G, then Frat(K) ≤ Frat(G).

(c) If N / G, then Frat(G/N) ≥ Frat(G)N/N , with equality if N ≤ Frat(G).

(d) If A is an abelian normal subgroup of G such that Frat(G) ∩ A = 1, there exists
H ≤ G such that G = HA and H ∩A = 1.

Proof.

(a) If not, then there exists a maximal subgroup M such that N 6≤M . Then G = MN ,
H = (H ∩M)N , thus H ≤M , therefore N ≤M , a contradiction.

(b) Apply (a) with N = Frat(K) and H = K.

(c) By definition.

(d) Let H be minimal subject to G = HA. Then H ∩ A / G. If H ∩ A ≤ Frat(H),
then we claim that H ∩ A = 1 by (a). Namely, if this were false, there would exist
a maximal subgroup M of H such that H ∩ A 6≤ M . Then H = M(H ∩ A) and
G = MA, contrary to the minimality of H.

Theorem 4.1.7.2 (Gaschütz). Let G be a group.

(a) If Frat(G) ≤ H ≤ G, where H is finite and H/Frat(G) is nilpotent, then H is
nilpotent.

(b) If G is finite, Frat(G) is nilpotent.

(c) Define FFrat(G) by FFrat(G)/Frat(G) = Fit(G/Frat(G)). If G is finite, then
FFrat(G) = Fit(G).

(d) If G is finite, FFrat(G)/Frat(G) is the product of all the abelian minimal normal
subgroups of G/Frat(G).

Proof.

(a) Let P be a Sylow subgroup of H, F = Frat(G), and K = PF ≤ H. K/F is a Sylow
subgroup of H/F , hence K/F is characteristic in H/F . Hence K is normal in G.
By the Frattini argument, G = NG(P )K = NG(P )F = NG(P ).

(b) Follows from (a).

(c) Denote H = FFrat(G). H is nilpotent by (a), thus H ≤ Fit(G).

(d) Taking quotients, we may assume that Frat(G) = 1. Write L = Fit(G). L/Frat(L)
is abelian, hence L′ ≤ Frat(L) ≤ Frat(G) = 1. Thus L is abelian. Let N be the
product of all the abelian minimal normal subgroups of G. Then N ≤ L. There
exists H ≤ G such that G = HN and N∩H = 1. H∩L is normal in HL = G. Since
H∩L∩N = 1, it follows thatH∩L = 1 by the minimality. Then L = L∩(HN) = N.
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Proposition 4.1.7.2. Let G be a finite group. Then G is nilpotent if and only if G′ ≤
Frat(G).

Proof. If G is nilpotent and M a maximal subgroup of G, then G′ ≤ M . Conversely, if
G′ ≤ Frat(G) then every maximal subgroup of G is normal.

gap> G := SmallGroup(96, 10);;
gap> F := FrattiniSubgroup(G);;
gap> StructureDescription(F);
"C4 x C2"

4.2 Finite p-groups
4.2.1 Basic properties
Proposition 4.2.1.1. Let G be a group of order pm+1.

(a) If G is nilpotent of class c > 1, then G/Zc−1(G) is not cyclic.

(b) c ≤ m.

(c) If 0 ≤ i ≤ j ≤ m + 1, every subgroup of order pi is contained in some subgroup of
order pj.

(d) G has subgroups of every order dividing pm+1.

Proof. (a) If G/Zc−1(G) were cyclic, G/Zc−2(G) would be abelian, hence Zc−1(G) = G,
a contradiction.

(b) |G : Zc−1(G)| ≥ p2 by (a), all upper central factors have order ≥ p.
(c) Let H be a subgrup of order pi. As H is subnormal in G, it is a part of a

composition series 1 = H0 ≤ · · · ≤ Hi = H ≤ · · · ≤ Hm+1 = G by Jordan-Hölder’s
theorem. All composition factors have order p, hence the assertion.

(d) Follows from (c).

Lemma 4.2.1.1. Let G be an elementary abelian p-group. Then Frat(G) = 1.

Proof. Let G = Cnp and letMi = {(x1, . . . xi−1, 1, xi+1, . . . , xn) : xj ∈ Cp} for i = 1, . . . , n.
Then Mi are maximal subgroups of G and

⋂n
i=1Mi = 1, hence Frat(G) = 1.

Theorem 4.2.1.1 (The Burnside Basis Theorem). Let G be a finite p-group. Then
Frat(G) = γ2(G)Gp, where Gp = 〈gp | g ∈ G〉. Also if |G : Frat(G)| = pr, then every set
of generators of G has a subset of r elements which also generates G.

Proof. Let M be a maximal subgroup of G. Then M / G and |G : M | = p. It follows
that γ2(G)Gp ≤ M , hence γ2(G)Gp ≤ Frat(G). On the other hand, G/γ2(G)Gp is an
elementary abelian p-group, hence Frat(G/γ2(G)Gp) = 1. It follows that Frat(G) ≤
γ2(G)Gp.

Let G = 〈x1, . . . , xs〉 and F = Frat(G). Then Ḡ = G/F = 〈Fx1, . . . , Fxs〉. The
group Ḡ is a vector space over GF(p), hence it has a basis {Fxi1 , . . . , Fxir}. Write Y =
〈xi1 , . . . , xir 〉. Then G = 〈Y, F 〉, hence G = 〈Y 〉.

Let G be a finite p-group. By the Burnside Basis Theorem, we can think of G/Frat(G)
as a vector space over GF(p).

Corollary 4.2.1.1. Let G be a finite p-group and d the minimal number of generators of
G. Then d = dimGF (p)G/Frat(G).
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4.2.2 Extraspecial p-groups
A finite p-group is said to be extraspecial if G′ = Z(G) ∼= Cp.

Proposition 4.2.2.1. Let G be a nonabelian group of order p3. If p is odd, then G is
isomorphic with

〈x, y | xp = yp = 1, [x, y]x = [x, y]y = [x, y]〉

or
〈x, y | xp

2
= 1 = yp, xy = x1+p〉.

These groups have exponent p and p2 respectively. If p = 2, then G is isomorphic with D8
or quaternion group Q8. In particular, all non-abelian groups of order p3 are extraspecial.

Proof. All the groups given above have order p3. For p = 2, the assertion follows from
the description of all groups of order 8 (exercise).

Assume that p is odd. We consider two cases:
Case 1. All elements of G have order p. Let z ∈ Z(G)\{1} and let x /∈ Z(G). Then

〈z, x〉 = 〈z〉 × 〈x〉 is a subgroup of order p2, hence it is a maximal subgroup and thus
normal in G. Choose w /∈ 〈z, x〉. Then G = 〈z, x, w〉. We have that xw = xazb for some
0 ≤ a, b < p. If a = 0, then xy ∈ Z(G), hence x ∈ Z(G), a contradiction. Thus there
exists c such that ac ≡ 1 mod p. Let t = wc. We have that G = 〈z, x, t〉, and xt = xzb

′

for some 0 ≤ b′ < p. As G is nonabelian, b′ 6= 0, hence there exists d such that b′d ≡ 1
mod p. Put y = td. Then we get [x, y] = z and G = 〈x, y〉. We have

xp = yp = 1, [x, y]x = [x, y]y = [x, y],

as required.
Case 2. G contains an element x of order p2. Let N = 〈x〉. As N is a maximal

subgroup of G, N is normal in G. Choose z ∈ G\N of order p. There exists a ∈ Z
such that xz = xa. Since x = xz

p , it follows that ap ≡ 1 mod p2, hence a ≡ 1 mod p.
Write a = 1 + kp. Let l be such that kl ≡ 1 mod p. Let y = zl. Then xy = x1+p. Since
N ∩ 〈y〉 = 1, we have N〈y〉 = G.

All the groups above are clearly extraspecial.

A group G is said to be the central product of its normal subgroups G1, . . . , Gn if
G = G1 · · ·Gn, [Gi, Gj ] = 1 for i 6= j, and Gi ∩

∏
j 6=iGj = Z(G).

Theorem 4.2.2.1. An extraspecial p-group is a central product of n nonabelian subgroups
of order p3, and has order p2n+1. Conversely, a finite central product of nonabelian groups
of order p3 is an extraspecial p-group.

Proof. Let C = Z(G) = G′, and let c be a generator of C. The group V = G/C is
elementary abelian, hence a vector space over GF(p). We have a well defined skew-
symmetric bilinear form f : V × V → GF(p) induced by

[x, y] = c(Cx,Cy)f .

If (Cx,Cy)f = 0 for all y ∈ G, then x ∈ C, thus f is nondegenerate. Thus there exists
a decomposition V = V1 ⊕ · · · ⊕ Vn where Vi is a 2-dimensional space with basis {ui, vi},
such that

(ui, vi)f = 1,
(ui, vj)f = 0 for i 6= j,
(ui, uj)f = 0,
(vi, vj)f = 0.
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Write ui = Cxi, vi = Cyi. Then Gi = 〈xi, yi〉 is a nonabelian group of order p3. We have
that G is the central product of G1, . . . Gn. Clearly G/C = G1/C × · · · × Gn/C, hence
|G| = p2n+1.

Conversely, let G be the central product of G1, . . . , Gn, where each Gi is a nonabelian
group of order p3. Since Z(Gi) ≤ Z(G), it follows that Z(G) = Z(Gi) ∼= Cp. Beside that,
[Gi, Gj ] = 1 for i 6= j, and [Gi, Gi] = Z(Gi) = Z(G) for all i. Hence

[G,G] = [G1 · · ·Gn, G1 · · ·Gn] = Z(G),

therefore G is extraspecial.

4.3 Enumeration of finite p-groups
It turns out that most of the finite groups are p-groups. The proof is beyond the scope
of these notes. To illustrate this result, there are 49, 910, 529, 484 different isomorphism
classes of groups of order at most 2000, and 49, 487, 365, 422, or just over 99%, are groups
of order 1024. We mention here that Phillip Hall proved that the number of isomorphism
classes of groups of order pn is

p
2
27n

3+O(n8/3).

We will not prove this result. Instead we will derive some good upper and lower bounds
on the number of finite p-groups of given order. We refer to [2] for a wealth of further
estimates.

4.3.1 Preliminary results
Let r be a positive integer and Fr a free group on {x1, . . . , xr}. Denote

Gr = Fr/F
p2

r γ2(Fr)pγ3(F ).

We identify xi with their images in Gr, so x1, . . . , xr generate Gr.
A finite p-group G is said to have Φ-class 2 if there exists a central elementary abelian

subgroup H of G such that G/H is elementary abelian. In other words, G is a central
extension of an elementary abelian group by an elementary abelian group. Our first result
shows that every group of Φ-class 2 is a homomorphic image of some Gr:

Lemma 4.3.1.1. Let H be a group of Φ-class 2, and let y1, . . . , yr ∈ H. There is a
homomorphism φ : Gr → H such that xφi = yi for all i = 1, . . . , r.

Proof. As Fr is free there exists a unique homomorphism Fr → H with xi 7→ yi. As
F p

2

r γ2(Fr)pγ3(F ) is contained in the kernel of this map, we get the result.

Lemma 4.3.1.2. The group Gr is a finite p-group. The Frattini subgroup Frat(Gr) is
central of order pr(r+1)/2 and index pr. Moreover, any automorphism α ∈ Aut(Gr) that
induces an identity mapping on Gr/Frat(Gr) fixes Frat(Gr) pointwise.

Sketch of proof. The group Gprγ2(Gr) is a central elementary abelian p-subgroup of Gr,
and the quotient by it is also elementary abelian. Thus Gr is a p-group. Observe that
Frat(Gr) is generated by xpi and [xj , xi], where 1 ≤ i < j ≤ r. It is straightforward but
technical to prove that this generating set is a minimal one, we skip the details. It follows
that Frat(Gr) is central of order pr(r+1)/2 and index pr.

Now take α ∈ Aut(Gr) that induces an identity mapping on Gr/Frat(Gr). So
there exist h1, . . . , hr ∈ Frat(Gr) such that xαi = hixi. Since Frat(Gr) is central and
Frat(Gr)p = {1}, we have

(xpi )
α = (xαi )p = (hixi)p = hpi x

p
i = xpi
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and
[xj , xi]α = [xαj , xαi ] = [hjxj , hixi] = [xj , xi].

Thus α fixes every generator of FratGr and we are done.

Lemma 4.3.1.3. Let N1 and N2 be subgroups of FratGr. Then Gr/N1 ∼= Gr/N2 if and
only if there exists α ∈ AutGr such that Nα

1 = N2.

Proof. It is obvious that if there exists α ∈ AutGr such that Nα
1 = N2, then it in-

duces an isomorphism Gr/N1 → Gr/N2. Conversely, suppose there is an isomorphism
α′ : Gr/N1 → Gr/N2. Let y1, . . . , yr ∈ G be such that (N1xi)α

′ = N2yi. By Lemma
4.3.1.1 there exists a homomorphism α : Gr → Gr with xαi = yi. Since α′ is an isomor-
phism, Gr = 〈y1, . . . , yr〉N2. But N2 ≤ FratGr, therefore Gr = 〈y1, . . . , yr〉. Thus α is
surjective. Since Gr is finite, this implies that α is an isomorphism. It remains to show
that Nα

1 = N2. By definition, N2x
α = (N1x)α′ for all x ∈ Gr, and the result follows

easily from here.

4.3.2 A lower bound
A similar argument as in the proof of 1.2.4.1 shows the following:

Lemma 4.3.2.1. Let V be a vector space over GF(q) of dimension d. For 0 ≤ k ≤ d, let
nk,d be the number of subspaces of V of dimension k. Then

nk,d = (qd − 1)(qd − q) · · · (qd − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1) .

In particular, qk(d−k) ≤ nk,d ≤ qk(d−k+1).

Proposition 4.3.2.1. Let r be a positive integer, and s an integer such that 1 ≤ s ≤
r(r+1)/2. Then there are at least prs(r+1)/2−r2−s2 isomorphism classes of groups of order
pr+s.

Proof. Let Gr be as above. Let X be the set of subgroups N ≤ FratGr of index ps in
FratGr. Each N ∈ X gives rise to a group Gr/N of order pr+s. Furthermore, Lemma
4.3.1.3 implies that the set of isomorphism classes of these groups is in 1-1 correspondence
with the set of orbits of AutGr acting on X.

Let θ : AutGr → Aut(Gr/FratGr) be the natural homomorphism. By Lemma 4.3.1.2
every α ∈ ker θ fixes FratGr pointwise and so acts trivially on X. Therefore ker θ is
contained in the stabilizer of every element of X, and so the length of any orbit of AutGr
acting on X is at most

|AutGr|/| ker θ| ≤ |Aut(Gr/FratGr)| = |AutCrp | = |GL(r, p)| ≤ pr
2
.

From Lemma 4.3.2.1 we conclude that |X| ≥ ps(r(r+1)/2−s, therefore there are at least

ps(r(r+1)/2−s/pr
2

orbits of AutGr on X. This gives the desired bound.

Proposition 4.3.2.1 yields roughly px2yn3/2 groups with Frattini subgroup of index pxn
and order pyn. Maximizing the function z = x2y/2 under the constraint x+ y = 1 yields
the maximum value z = 2/27.

Theorem 4.3.2.1. The number f(pn) of groups of order pn is at least

p
2
27n

2(n−6).

Proof. We may assume n > 6. Define s = (n + 2(n mod 3))/3 and r = n − s. Then
Proposition 4.3.2.1 gives f(pn) ≥ prs(r+1)/2−r2−s2 ≥ p2n2(n−6)/27.
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4.3.3 An elementary upper bound
Let G be a group of order pn and let

G = G0 ≥ G1 ≥ · · · ≥ Gn−1 ≥ Gn = {1}

be its chief series. For each i choose gi ∈ Gi−1 − Gi. Then every g ∈ G may be written
uniquely in normal form g = gα1

1 · · · gαnn , where αi ∈ {0, 1, . . . , p−1}. Furthermore, g ∈ Gi
iff α1 = · · · = αi = 0.

Observe that, given 1 ≤ i < j ≤ n, we have that gpi ∈ Gi and [gj , gi] ∈ Gj . Hence we
may write these elements in normal form, that is,

gpi = g
βi,i+1
i+1 · · · gβi,nn (4.3.3.1)

and
[gj , gi] = g

γi,j,j+1
j+1 · · · gγi,j,nn (4.3.3.2)

for some βi,j , γi,j,k ∈ {0, 1, . . . , p − 1}. It is easy to see that the generators g1, . . . , gn
and all the relations of the form (4.3.3.1) and (4.3.3.2) form a presentation for G (called
a power commutator presentation or polycyclic presentation). One has to prove that a
product of two elements in normal form can again be written in normal form. This can
be done using collection process described in [9].

We remark that GAP calls the groups given by power-commutator presentations pc
groups. Here is an example of how GAP prints out presentations of pc groups:

gap> PrintPcpPresentation(PcGroupToPcpGroup(DihedralGroup(16)));
g1^2 = id
g2^2 = g3
g3^2 = g4
g4^2 = id
g2 ^ g1 = g2 * g3 * g4
g3 ^ g1 = g3 * g4

Note that the conjugation relations can be rewritten into commutator ones using the
identity xy = x[x, y], and that the trivial commutator relations are left out.

The above discussion leads to the following:

Theorem 4.3.3.1. We have that

f(pn) ≤ p 1
6 (n3−n).

Proof. Let G be as above. The isomorphism class of G is determined by the values of βi,j
and γi,j,k. There are at most p choices for each of these (n3− n)/6 elements, so there are
at most p 1

6 (n3−n) isomorphism classes of groups of order pn.

4.4 Coclass
As we have seen so far, there are many p-groups of given order, too many to classify them
all up to isomorphism. In recent years there has been an idea to clasify p-groups according
to coclass. This has lead to coclass theory which has produced some fascinating results.
In this section we will briefly describe some of the main features of the theory, omitting
almost all details. We refer to [7] for proofs and further results.

Let G be a group of order pn. Then its nilpotency class c is strictly smaller of n
by Proposition 4.2.1.1. The difference n − c is called the coclass of G. Finite p-groups
of coclass 1 are also known as p-groups of maximal class. An example of a p-group of
maximal class is Cp oCp; its order is pp+1 and the nilpotency class is precisely p (exercise).
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Example 4.4.0.1. Define

Q2n = 〈x, y | y2n−1
= 1, x2 = y2n−2

, yx = y−1〉

to be the generalized quaternion group of order 2n (check that this is indeed its order).
The group Q8 is known as the quaternion group. Similarly, the group

SD2n = 〈x, y | y2n−1
= 1, x2 = 1, yx = y2n−2−1〉

is said to be the semi-dihedral group of order 2n. A classical result of the coclass theory
is that 2-groups of maximal class are precisely dihedral, semi-dihedral, and generalized
quaternion 2-groups.

The goal of coclass theory is to study common properties of finite p-groups of fixed
coclass. To this purpose we study the so-called coclass graph G(p, r) whose vertices corre-
spond to the isomorphism types of p-groups of coclass r. Two vertices G and H are joined
by a directed edge from G to H if and only if G ∼= H/γc(H), where c is the nilpotency
class of H. In order to understand this graph, we need a notion of pro-p-groups:

Definition. A topological group G is a pro-p group if it is compact and has a basis of
open neighborhoods of the identity consisting of normal subgroups of G of p-power index.

Definition. An inductively ordered set is a partially ordered set I with the property that
for all i, j ∈ I there exists k ∈ I with k > i and k > j. An inverse system of groups is
a family {Gi | i ∈ I} of groups, where I is an inductively ordered set, with surjections
θij : Gi → Gj whenever i > j, satisfying θijθjk = θik for all i > j > k.

Definition. Let {Gi | i ∈ I} be an inverse system of groups. The inverse limit of this
system is

proj limGi =
{

(gi) ∈
∏
i∈I

Gi | giθij = gj for all i > j

}
,

equipped with the product topology.

If G is a pro-p group and N the set of all normal subgroups of G of p-power index,
then Q = {G/N | N ∈ N} forms an inverse system, where the homomorphisms are the
natural ones. We have that G is the inverse limit of Q. This property in fact characterizes
pro-p groups.

Definition. If a group is an inverse limit of p-groups of coclass r, then it said to be a
pro-p group of coclass r.

It turns out [7] that every infinite pro-p group S of coclass r determines a maximal
coclass tree T (S) in G(p, r), namely, the subtree of G(p, r) consisting of all descendants of
S/γi(S), where i is minimal such that S/γi(S) has coclass r and S/γi(S) is not a quotient
of another infinite pro-p group R of coclass r not isomorphic to S.

In 1980, Leedham-Green and Newman posed five conjectures (A–E) about the sturuc-
ture of the coclass graph. These are now all theorems [7]. We state them as follows:

Theorem 4.4.0.2.

E Given p and r, there are only finitely many isomorphism types of infinite solvable
pro-p groups of coclass r.

D Given p and r, there are only finitely many isomorphism types of infinite pro-p
groups of coclass r.

C Pro-p groups of finite coclass are solvable.
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B For some function g, every finite p-group of coclass r has derived length bounded by
g(p, r).

A For some function f , every finite p-group of coclass r has a normal subgroup N of
class 2 (1 if p = 2) whose index is bounded by f(p, r).

The coclass theorems in particular imply that G(p, r) consists of finitely many maximal
coclass trees and finitely many groups lying outside these trees.

The next results shows that there is a certain kind of periodicity within coclass graphs.
Let S be an infinite pro-p group of coclass r. The subtree T (S, k) of T (S) containing all
groups of distance at most k from the main line is called a shaved tree. We denote its
branches by Bj(S, k).

Theorem 4.4.0.3 (Theorem P (du Sautoy, 2001)). Let S be an infinite pro-p group of
coclass r. Then there exist integers d = d(T (S, k)) and f = f(T (S, k)) such that Bj(S, k)
and Bj+d(S, k) are isomorphic as rooted trees for all j ≥ f .

The simplest case are 2-groups of coclass 1. The graph G(2, 1) has an isolated vertex
C4 and one infinite tree:

V4

Q8 D8

Q16 SD16 D16

Q32 SD32 D32

...
...

...

The periodicity in this tree is self-evident, even without shaving the tree.

Problems
1. Prove that the Pauli spin matrices

i =
(√
−1 0
0 −

√
−1

)
, j =

(
0 1
−1 0

)
, k =

(
0

√
−1√

−1 0

)
generate a subgroup of GL(2,C) that is isomorphic to Q8.

2. Let a group G be generated by a1, . . . , ad. Show that γi(G) is the normal closure in
G of the set {[xj1 , . . . , xji ] | 1 ≤ jk ≤ i}.

3. Let G = 〈a1, . . . , ad〉 be a nilpotent group. Then every element of G′ can be written
as [x1, a1] · · · [xd, ad] for some x1, . . . , xd ∈ G.

4. Suppose that G = HN ′, where H ≤ G and N / G. Prove that G = Hγi(N) for all
i.
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5. Prove that the group Cp o Cpn is nilpotent of class precisely pn.

6. Let G be a group of order pn. If G has a unique subgroup of order pm for all
1 < m < n, prove that G is cyclic.

7. Let G be a group of order pn, wher n ≥ 3, and of maximal class. Prove the following:

(a) Gab is an elementary abelian p-group of order p2 and |γi(G) : γi+1(G)| = p for
2 ≤ i ≤ n− 1. The group G can be generated by two elements.

(b) For every i ≥ 2 we have that γi(G) is the only normal subgroup of G of index
pi.

(c) Zi(G) = γn−i(G) for all i = 0, . . . , n− 1.

8. Let G be a group in which x2 ∈ Z(G) for every x ∈ G. Prove the following:

(a) G is nilpotent of class ≤ 2.
(b) Every element of G′ has order at most 2.
(c) For all x, y ∈ G, the element (xy)2y−2x−2 belongs to G′.
(d) For every x, y ∈ G we have that (xy)4 = x4y4.

9. Let G be a metabelian group and x, y, z, z1, . . . , zn ∈ G. Prove:

(a) [x, y, z1, . . . , zn] = [x, y, zπ(1), . . . , zπ(n)] for every π ∈ Sn.
(b) [x, y, z][y, z, x][z, x, y] = 1.

10. Let G be a group in which x3 = 1 for all x ∈ G. Prove that [x, y, y] = 1 for all
x, y ∈ G.

11. Let G be a finite group and F its Fitting subgroup.

(a) Let N/F be an abelian normal subgroup of G/F such that N ≤ CG(F )F .
Prove that N = F (N ∩ CG(F )).

(b) Let N be as in (a). Prove that N/(N ∩ CG(F )) is nilpotent.
(c) Let c be the nilpotency class of N/(N ∩ CG(F )), where N is as above. Show

that N is nilpotent of class ≤ c+ 1.
(d) Conclude that CG(F )F/F contains no non-trivial abelian normal subgroup.
(e) If G is solvable, show that CG(F ) ≤ F .

12. Let G be a finite nilpotent group and N a non-trivial normal subgroup of G. Show
the following:

(a) [N,G] is a proper subgroup of N .
(b) Some maximal proper subgroup of N is normal in G.
(c) Suppose thatG is a p-group andM andN normal subgroups ofG withN < M .

Prove that there exists K / G such that N ≤ K < M and |M : K| = p.

13. Supply a proof of Lemma 4.3.2.1.

14. Use GAP to explore the number f(m) of groups of order m for small m, and in the
case when m = pn for small primes p and integers n.
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