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Abstract. We obtain new bounds for the exponent of the Schur multiplier of

a given p-group. We prove that the exponent of the Schur multiplier can be

bounded by a function depending only on the exponent of a given group. As a
consequence we show that the exponent of the Schur multiplier of any group of

exponent four divides eight, and that this bound is best possible. The notion

of the exponential rank of a p-group is introduced. We show that powerful
p-groups have exponential rank either zero or one.

1. Introduction

A group G is said to be n-abelian if the map x 7→ xn is an endomorphism of G.
The study of n-abelian groups was initiated by Levi in [19], and has been a topic of
several other papers, see, e.g., [2, 7, 11, 15, 23]. n-abelian groups are closely related
to n-central groups; here a group G is said to be n-central if G/Z(G) has exponent
dividing n. For instance, it is not difficult to prove that every n-abelian group is
n(n − 1)-central. On the other hand, Adjan [1] constructed examples of n-central
groups which are not m-abelian for any m 6= 0, 1. Nevertheless, some favorable
results in this direction are known. Gupta and Rhemtulla [11] proved that every
2-central group is 4-abelian, every 3-central group is 9-abelian, and every 4-central
groups is 32-abelian. This has been further improved in [23] where it has been
shown that for n ∈ {2, 3, 4, 6}, every n-central group is n2-abelian. Other questions
related to these classes groups and some generalisations have been considered in [7].

The purpose of this paper is to apply the theory of n-central groups in studying
Schur multipliers of groups. It turns out that n-central groups provide a natural
setting in which Schur multipliers can be studied. Namely, if G is a finite group
of exponent n, then its covering group is n-central. Thus several properties of the
Schur multiplier M(G) of G can be deduced from the structure of n-central groups.
We focus here on determining bounds for the exponent of M(G). For instance, it
follows from our previous work [7, 23] that if G is a locally finite group of finite
exponent, then the exponent of M(G) can be bounded in terms of expG only. Since
our proof is based on the solution of the Restricted Burnside Problem, it does not
provide any reasonable bound of expM(G). On the other hand, there is a known
result of Jones [14] saying that if G is finite p-group and c its nilpotency class
(c ≥ 2), then expM(G) divides (expG)c−1. This has been improved by Ellis [9]
who showed that expM(G) divides (expG)dc/2e. We show here that dc/2e can be
replaced by 2blog2 cc, which is an improvement if c ≥ 11. Beside that, we give an
explicit bound for the exponent of M(G) for a metabelian p-group G in terms of
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2 PRIMOŽ MORAVEC

expG only. As a consequence we prove that if G is a metabelian group of exponent
p, then expM(G) divides p.

We also apply our techniques to calculate expM(G) in the case when G is a
group of exponent 4. Note that if G is an infinite group of exponent 4, then G
may not be nilpotent. Thus the above mentioned results of Jones and Ellis do not
guarantee that expM(G) is finite. This is however ensured by the above mentioned
use of the solution of the Restricted Burnside Problem. Using information on the
structure of 4-central groups obtained in [23, Theorem 1.1], we prove that expM(G)
divides 8. We also show by an example that this result is best possible.

Another aspect of this paper is consideration of exponent semigroups of finite
p-groups. Given a group G, define E(G) = {n ∈ Z : (xy)n = xnyn for all x, y ∈
G} to be the exponent semigroup of G. F. W. Levi [20] obtained an arithmetic
characterisation of exponent semigroups of groups, and L.-C. Kappe [15] provided
further information on these sets. Based on her results we prove that if G is a finite
p-group and exp(G/Z(G)) = pe, then there exists r ≥ 0 such that E(G) = pe+rZ ∪
(pe+rZ+1). Since r is uniquely determined by G, we define r to be the exponential
rank of G. Clearly abelian p-groups have exponential rank zero, and the same is
true for regular p-groups. From our results it also follows that the exponential rank
of a given p-group does not exceed logp expM(G/Z(G)). Additionally we show that
the exponential rank is an invariant of powerful p-groups. More precisely, we prove
that if G is a powerful p-group, then its exponential rank is either 0 or 1, depending
on whether p is odd or not. This result therefore provides the complete picture of
exponent semigroups of powerful p-groups.

Finally we mention as a curiosity that the methods of this paper provide a rather
short proof of the fact that every 6-central group is 36-abelian. This has already
been proved in [23, Theorem 1.2] with the help of computer calculations. Our
present proof requires only some elementary theory of Schur multipliers.

2. Bounds for the exponent of the Schur multiplier

Although this section is primarily devoted to estimating the exponent of the
Schur multiplier of a given group, our first result can be proved in a more general
setting. LetG be a group and n an integer. For x, y ∈ G we define the n-commutator
of x and y by [x, y]n = (xy)ny−nx−n. Furthermore, let [G,G]n be the subgroup of
G generated by all n-commutators [x, y]n, where x, y ∈ G. We say that a group G
is n-nilpotent of class c if c is the smallest integer for which

[. . . [[G,G]n, G]n, . . . , G]n︸ ︷︷ ︸
c+1 copies of G

= 1.

It is now clear that a group is n-nilpotent of class 1 if and only if it is n-abelian.
Additionally, it is not difficult to see that our definition agrees with the definition
of n-nilpotent groups given by Baer [3].

Our first aim is to show that n-nilpotent groups are closely related to the notion
of the nilpotent multiplier of a group. Let G be a group presented as the quotient
of a free group F by a normal subgroup R. Let c be a positive integer. Define a
series of groups γc(R,F ) as γ1(R,F ) = R and γc+1(R,F ) = [γc(R,F ), F ] for c ≥ 1.
The abelian group

M (c)(G) = (R ∩ γc+1(F ))/γc+1(R,F )

is said to be the c-nilpotent multiplier of G. The groups M (c)(G) are known to
be invariants of G (for a more general notion of a multiplier associated to a given
variety of groups see a paper of Leedham-Green and McKay [18]). The group
M(G) = M (1)(G) is more known as the Schur multiplier of G. When G is finite,
M(G) is isomorphic to the second cohomology group H2(G,C∗). For an excellent
account on the Schur multipliers see a book of Karpilovsky [16].
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Proposition 2.1. Let
1 −→ R −→ F −→ G −→ 1

be a free presentation of the group G. Suppose that expG = e and expM (c)(G) = f .
Then the group F/γc+1(R,F ) is (ef)-nilpotent of class ≤ c.

Proof. Let x1, x2, . . . , xc+1 ∈ F and put y = [. . . [[x1, x2]ef , x3]ef , . . . , xc]ef . Then
we have (see, e.g., the proof of Proposition 7.2 of [23])

[y, xc+1]ef = [[y, xc+1]e · ye, xec+1]f · [[y, xc+1]e, ye]f · ([y, xc+1]e)f .

Since y ∈ γc(F )∩R, we have [y, xc+1]e ∈ γc+1(F )∩R. As expM (c)(G) = f , it follows
that ([y, xc+1]e)f ∈ γc+1(R,F ). Consider now the f -commutator [[y, xc+1]e, ye]f .
The assumption F e ≤ R implies [x1, x2]ef ∈ R, whence y ∈ γc−1(R,F ). This shows
that [y, xc+1]e ∈ γc(R,F ), hence [[y, xc+1]e, ye]f ∈ γc+1(R,F ).

It remains to consider [[y, xc+1]e·ye, xec+1]f . Note that xec+1 ∈ R and [y, xc+1]eye ∈
γc(F ), hence [[y, xc+1]e · ye, xec+1]f ∈ [R, γc(F )]. We shall prove by induction on c
that [γc(F ), R] ≤ γc+1(R,F ) for every group F and R / F . For c = 1 this is
clear. Assume that this inclusion holds for some c and all F and R. Consider the
groups [F,R, γc(F )] and [R, γc(F ), F ]. By the induction assumption, [R, γc(F ), F ] ≤
[γc+1(R,F ), F ] = γc+2(R,F ) and [F,R, γc(F )] ≤ γc+1([R,F ], F ) = γc+2(R,F ). By
the Three Subgroup Lemma we have [γc+1(F ), R] = [γc(F ), F,R] ≤ γc+2(R,F ),
as required. Thus we have proved that [y, xc+1]ef ∈ γc+1(R,F ). This shows that
F/γc+1(R,F ) is (ef)-nilpotent of class ≤ c. �

We can also interpret Proposition 2.1 in the following way. Suppose that G is a
(c, n)-central group [23], that is, G/Zc(G) has exponent dividing n. Let G/Zc(G)
have a free presentation

1 −→ R −→ F
φ−−→ G/Zc(G) −→ 1

and suppose thatM (c)(G/Zc(G)) has exponent f . By Proposition 2.1, F/γc+1(R,F )
is (ef)-nilpotent of class ≤ c. We claim that G is also (ef)-nilpotent of class ≤ c.
Since F is free, there exists a homomorphism ψ : F → G such that ψι = φ, where
ι is the canonical homomorphism G → G/Zc(G). Clearly ψ is surjective. We
have that Rψ ≤ Zc(G) and γc+1(R,F ) ≤ kerψ, hence ψ induces a homomorphism
θ : F/γc+1(R,F ) → G such that κθ = ψ; here κ is the canonical homomorphism
F → F/γc+1(R,F ). It follows that G is a homomorphic image of F/γc+1(R,F ),
hence it is (ef)-nilpotent of class ≤ c. Note that this can be compared with [23,
Proposition 7.2].

As an application we reprove Theorem 1.2 of [23] which was proved there with the
help of extensive computer calculations. Our proof here is computer-free, moreover,
it does not require any profound commutator calculus.

Corollary 2.2 (cf. [23], Theorem 1.2). Every 6-central group is 36-abelian.

Proof. Clearly it suffices to prove this for 2-generator groups. Since every 2-generator
6-central group is a homomorphic image of F/[F 6, F ], where F is the free group of
rank two, it is enough to show that F/[F 6, F ] is 36-abelian. Let G = F/F 6. By
Proposition 2.1 this will follow at once, when we have proved that expM(G) divides
6. First note that G is a finite {2, 3}-group by the solution of the Burnside Problem
for exponent six (see, for instance, [25]). Let P be a Sylow 2-subgroup of G and Q
a Sylow 3-subgroup of G. For a prime p, denote by M(G)p the p-th component of
M(G). Clearly, if p /∈ {2, 3}, then M(G)p is trivial. By [16, Theorem 2.1.2], M(G)2
is isomorphic to a subgroup of M(P ). As P is elementary abelian 2-group, we have
that expM(P ) = 2, thus M(G)2 has exponent dividing 2. Similarly, M(G)3 embeds
into M(Q). As Q has exponent 3, it is 2-Engel [24, Theorem 7.14]. Thus the proof
of Lemma 2.5 of [14] shows that expM(Q) divides 3. We conclude that expM(G)
divides 6, hence the proof is finished. �
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In the case c = 1 we can prove a partial converse of Proposition 2.1. More
precisely, we have the following.

Proposition 2.3. Let G ∼= F/R be a free presentation of the group G. Let G have
exponent e and suppose that the group F/[R,F ] is (ef)-abelian. Then the exponent
of M(G) divides ef .

Proof. As F/[R,F ] is (ef)-abelian, we have (x1 · · ·xk)ef ≡ xef1 · · ·xefk mod [R,F ]
for all x1, . . . , xk ∈ F , k ≥ 1. Let z ∈ R∩F ′. Then we can write z as z =

∏
i[xi, yi],

where xi, yi ∈ F . We obtain

zef ≡
∏
i

[xi, yi]ef mod [R,F ]

≡
∏
i

(x−1
i xyi

i )ef mod [R,F ]

≡
∏
i

x−efi (xefi )yi mod [R,F ]

≡
∏
i

[xefi , yi] mod [R,F ].

Since xefi ∈ R, we get zef ∈ [R,F ], thus M(G) has exponent dividing ef . �

A well-known result of Schur [16, Theorem 2.1.5] says that if G is a finite group
and e is the exponent of M(G), then e2 divides the order of G. Suppose that n is
the exponent of G and d the minimal number of generators of G. Then the solution
of the Restricted Burnside Problem [25] shows that e can be bounded by a function
depending only on d and n. Our first application of Proposition 2.3 shows that we
can eliminate d from this bound.

Proposition 2.4. Let G be a locally finite group of exponent n. Then the exponent
of M(G) is bounded by a function f(n), depending on n only.

Proof. Let G be a locally finite group of exponent n. Suppose that G is presented as
a quotient of a free group F by a normal subgroup R. Then the group H = F/[F,R]
is a central extension of a locally finite group. Furthermore, since Fn ≤ R, we have
that [Fn, F ] ≤ [R,F ], hence it follows that H is n-central. By a remark from [23]
(see also [7]) there exists an integer m > 1 such that H is m-abelian. The argument
from [23] also shows that m depends only on n (here the solution of the Restricted
Burnside Problem is used), furthermore, it can be chosen to be divisible by n. By
Proposition 2.3 the exponent of M(G) divides m. This concludes the proof. �

For instance, if G is any group of exponent 4, then it is locally finite [25]. Thus
Proposition 2.4 implies that the exponent of M(G) is bounded by a fixed constant.
Using [23], it is rather straightforward to obtain an estimate for expM(G). Namely,
if G ∼= F/R is a group of exponent 4, then F/[F,R] is 4-central. By [23, Theorem
1.1], F/[F,R] is 16-abelian, hence Proposition 2.3 shows that expM(G) divides 16.
Yet this bound is not best possible. We are going to prove the following.

Theorem 2.5. Let G be a group of exponent 4. Then expM(G) divides 8.

Before embarking on the proof, recall that a groupH is said to be a covering group
of a group G if there exists M ≤ H isomorphic to M(G) such that M ≤ H ′ ∩Z(H)
and H/M ∼= G. Schur (1904) proved that covering groups of finite groups always
exist, although they need not be unique (see, e.g., [16, Theorem 2.1.4]). Covering
groups play a crucial role in studying the Schur multipliers of finite groups. Theorem
2.5 will follow from the following more general result.

Theorem 2.6. Let G be a finite group of exponent 4 and let H be its covering
group. Then H ′ has exponent dividing 8.
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We need a technical lemma which can be proved using the Hall-Petrescu formula
[12, pp. 65–66].

Lemma 2.7. Let G be a group, x, y ∈ G. Suppose p is a prime and k a positive
integer. Then

(a) (xy)p
k ≡ xp

k

yp
k
pk−1∏
i=1

[y, ix](
pk

i+1) mod Cp,k(x, y).

(b) (xy)p
k ≡ xp

k

yp
k

mod γ2(〈x, y〉)p
k

k∏
i=1

γpi(〈x, y〉)pk−i

.

(c) [xp
k

, y] ≡
pk−1∏
i=0

[x, y, ix](
pk

i+1) mod Cp,k(x, [x, y]).

(d) [xp
k

, y] ≡ [x, y]p
k

mod γ2(〈x, [x, y]〉)p
k

k∏
i=1

γpi(〈x, [x, y]〉)pk−i

.

Here Cp,k(a, b), where a, b ∈ 〈x, y〉, is defined to be the normal closure in 〈x, y〉 of
the set of all basic commutators in {a, b} of weight ≥ pk and of weight ≥ 2 in b,
together with the set of pk−j+1-th powers of all basic commutators in {a, b} of weight
< pj and of weight ≥ 2 in b, j = 1, . . . , k.

We will also use the following result on groups of exponent 4. It can be proved by
referring to power-commutator presentation of the group B(3, 4), the free Burnside
group of exponent 4 and rank 3. For details see [25].

Lemma 2.8. Let G be a group of exponent 4 and a, b, c ∈ G. Then we have:
(a) [a, b]2 = [a, b, b, b][a, b, a, b][a, b, a, a][a, b, b, b, b].
(b) [a, b, b, b]2 = [a, b, a, b]2 = [a, b, a, a]2 = 1.
(c) [a, b, c, c, c, c] = [c, a, b, c, c, c] = 1.

Proof of Theorem 2.6. Since G has exponent 4, H is a 4-central group. From the
proof of [23, Theorem 1.1] it follows that H satisfies the law [a, b]8 = 1. For z ∈ H ′

and x, y ∈ H we therefore obtain

(1) (z[x, y])8 ≡ z8[x, y, z](
8
2)[x, y, z, z, z](

8
4) mod C2,3(z, [x, y])

by Lemma 2.7. Now let a, b, c be arbitrary elements of H. From the proof of [23,
Theorem 1.1] we get γ5(〈a, b〉)2 = γ7(〈a, b〉) = 1 and γ9(〈a, b, c〉) = 1. This, together
with Lemma 2.8 (a), implies

(2) [[a, b]2, c] = [a, b, b, b, c][a, b, a, b, c][a, b, a, a, c][a, b, b, b, b, c].

As [c, [a, b]2] = [c, [a, b]]2[c, [a, b], [a, b]], we get [[a, b]2, c] = [a, b, [c, [a, b]]][a, b, c]2,
hence

(3) [a, b, c]2 = [c, [a, b], [a, b]][a, b, b, b, c][a, b, a, b, c][a, b, a, a, c][a, b, b, b, b, c].

Lifting the identities of Lemma 2.8 (b) to the groupH and using the class restriction,
we get [a, b, b, b, c]2 = [a, b, a, b, c]2 = [a, b, a, a, c]2 = [a, b, b, b, b, c]2 = 1, whence also
[[a, b]2, c]2 = 1 by (2). Now let xi ∈ {a, b, c}, i = 1, . . . , 5. Since 〈a, b, c〉 is nilpotent
of class ≤ 8, the equation (3) implies

[x1, x2, x3, x4, x5]2 = [x1, x2, x3, x4, x4, x4, x5][x1, x2, x3, x4, x4, x4, x4, x5].

Lifting the identities of Lemma 2.8 (c) to H, we observe that γ5(〈a, b, c〉)2 = 1. This,
together with (3), shows that [a, b, c]4 = 1. By definition we also get C2,3(z, [x, y]) =
1, hence we can rewrite (1) as (z[x, y])8 = z8. From here we conclude that expH ′

divides 8. �

Proof of Theorem 2.5. If G is finite, then the conclusion follows from Theorem 2.6.
Otherwise, let {Gi : i ∈ I} be the family of all finitely generated subgroups of G.
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Since each Gi has exponent 4, it is finite [25]. By the direct limit argument [5] we
get

M(G) = M(lim
→
Gi) ∼= lim

→
M(Gi),

hence expM(G) divides 8 by Theorem 2.6. �

Note that Theorem 2.5 provides best possible bound for the exponent of the Schur
multiplier of a group of exponent 4. Macdonald and Wamsley (see [4]) constructed
a group G of order 221 which has exponent 4 and multiplier of exponent 8. It is not
very difficult to find a similar example of order 2048. This is the smallest example
of a group G of exponent 4 with expM(G) = 8 we have been able to find, perhaps
one can find some even smaller examples using computational tools such as GAP
[10]. A brief search through the GAP library of groups of small size reveals that
the order of such a group has to be at least 256.

Example 2.9. LetD = Ao〈c1〉, where A = 〈c2〉×〈c3〉×〈c4〉×〈c5〉 ∼= C4×C4×C4×C2

and c1 is an automorphism of order 2 of A acting in the following way.

[c2, c1] = c22, [c3, c1] = c23, [c4, c1] = c24, [c5, c1] = 1.

There exists an automorphism a of D of order 4 acting on D as follows.

[c1, a] = c3, [c2, a] = c22c
2
3c

3
4, [c3, a] = c5, [c4, a] = c22, [c5, a] = c23.

Form H = D o 〈a〉 and put G = H o 〈b〉, where b2 = 1 and

[c1, b] = c2, [c2, b] = c22c
3
4c5, [c3, b] = c4, [c4, b] = c23c

2
4, [c5, b] = c22c

2
3c

2
4, [a, b] = c1.

The group G is nilpotent of class 6, its order is 2048. Using techniques from [16,
Section 2.2], we get M(G) ∼= Z2 ⊕ Z4 ⊕ Z8.

Since the proof of Proposition 2.4 is based on the solution of the Restricted
Burnside Problem, it becomes evident that it provides only a very crude bound of
f(n). In some cases, better bounds of expM(G) can be achieved by allowing some
other invariants of G to appear in the estimate. In connection with this we mention
a result of Ellis [9]. For a real number α, let dαe be the smallest integer not less
than α. The result goes as follows.

Proposition 2.10. [9, Theorem B1] Let G be a finite p-group of nilpotency class
c ≥ 2. Then expM(G) divides (expG)dc/2e.

Our aim is to improve this result for large nilpotency classes. First we deal with
metabelian groups.

Theorem 2.11. Let p be a prime and let G be a metabelian group of exponent pe.
Denote q = (p− 1)pe−1. Then the exponent of M(G) divides pk, where

k = dmax{logp(1 + eq), e+ logp(q/ log p) + 1/q − 1/ log p}e

if p is odd, and k = dlog2(1 + e · 2e−1)e+ 1 if p = 2.

Proof. We prove our theorem only for p odd; if p = 2, then the proof follows the lines
of the odd case, thus we leave out the details. As in the proof of Theorem 2.5 we may
assume that G is finitely generated and therefore finite (in the infinite case we can
use the direct limit argument, since the exponents of finitely generated subgroups
are uniformly bounded by a constant). Let H be a covering group of G. Then H
is centre-by-metabelian and pe-central. Let x, y ∈ H and let x, y be their images in
H/Z(H). Put N = 〈x, y〉 and N = 〈x, y〉. By a result of Dark and Newell [6] we
have (γ(e−i)q+1(N))p

i

= 1 for 0 ≤ i < e, where q = (p− 1)pe−1. Taking preimages
in H, we conclude that (γ(e−i)q+1(N))p

i ≤ Z(H). For w ∈ γ(e−i)q+1(N) and h ∈ H
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we get 1 = [wp
i

, h] = [w, h]w
pi−1+···+w+1. Since we have [w, h]w

j

= [w, h][w, h,wj ]
and [w, h,wj ] ∈ Z(H), this can be rewritten as

1 = [w, h]p
i

·
pi∏
j=1

[w, h,wp
i−j ]

= [w, h]p
i

[w, h,
pi∏
j=1

wp
i−j ]

= [w, h]p
i

[w, h,w(pi

2 )],

hence [w, h]p
i

[w, h,w](
pi

2 ) = 1 for all h ∈ H and w ∈ γ(e−i)q+1(N). Replacing h by
some commutator [h1, h2] ∈ H ′, we get [w, [h1, h2]]p

i

= 1. Using linear expansion
of commutators in H, we conclude that [γ(e−i)q+1(N),H ′]p

i

= 1. In particular, we
get [w, h,w]p

i

= 1. As p is odd, this gives [w, h]p
i

= 1 for all w ∈ γ(e−i)q+1(N)
and h ∈ H. We claim that (γ(e−i)q+2(N))p

i

= 1. Let c be a commutator of length
(e − i)q + 2 in N and d ∈ γ(e−i)q+2(N). Then Lemma 2.7 (a), together with the
fact that H is centre-by-metabelian, implies

(dc)p
i

= dp
i

cp
i

[c, d](
pi

2 ) = dp
i

,

whence (γ(e−i)q+2(N))p
i

= 1 for 0 ≤ i < e. For a positive integer k we get

[xp
k

, y] ≡ [x, y]p
k

mod γ2(M)p
k

k∏
i=1

γpi(M)p
k−i

,

where M = 〈x, [x, y]〉, by Lemma 2.7. Note that γj(M) ≤ γj+1(N) for j ≥ 2, hence
we can rewrite the above equation as

(4) [xp
k

, y] ≡ [x, y]p
k

mod γ3(N)p
k

k∏
i=1

γpi+1(N)p
k−i

.

Let k = dmax{logp(1 + eq), e+ logp(q/ log p) + 1/q− 1/ log p}e and let z ∈ H. First
expand 1 = [[x, y]p

e

, z] in a similar way as above. We obtain

1 = [x, y, z]p
e

·
pe∏
i=1

[x, y, z, [x, y]p
e−i]

= [x, y, z]p
e

[x, y, z,
pe∏
i=1

[x, y]p
e−i]

= [x, y, z]p
e

[x, y, z, [x, y](
pe

2 )],

hence

(5) [x, y, z]p
e

[x, y, z, [x, y]](
pe

2 ) = 1.

Replacing (x, y, z) by ([x, y], z, [x, y]) in (5), we get

1 = [x, y, z, [x, y]]p
e

[x, y, z, [x, y], [x, y, z]](
pe

2 ) = [x, y, z, [x, y]]p
e

.

Since p is odd, this implies [x, y, z]p
e

= 1. Using Lemma 2.7 (a), we get that
exp γ3(H) divides pe. Since k ≥ e, we obtain that γ3(N)p

k

= 1. Consider the real
functions α, β : [0, logp(eq+1)] → R defined by α(x) = px and β(x) = (e−k+x)q+1.
Clearly α(0) ≥ β(0), since k ≥ e. Additionally, α(logp(eq + 1)) = eq + 1 ≥ (e− k+
logp(eq + 1))q + 1 = β(logp(eq + 1)). The function α − β has a local minimum at
x0 = logp(q/ log p). It is clear that x0 ∈ (0, logp(eq + 1)). A short calculation gives
α(x0)−β(x0) = q(1/ log p−e+k− logp(q/ ln p)−1/q), which is nonnegative by the
choice of k. Hence pi ≥ (e−k+ i)q+1 for all i with the property pi ≤ 1+ eq. Thus
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γpi+1(N)p
k−i ≤ γ(e−k+i)q+2(N)p

k−i

= 1. For i ≥ logp(1 + eq) we get γpi+1(N) = 1
because of the nilpotency class restriction. Hence the equation (4) implies [x, y]p

k

=
1 for all x, y ∈ H. Since H is centre-by-metabelian, H ′ is nilpotent of class ≤ 2.

Let c ∈ H ′ and x, y ∈ H. Then (c[x, y])p
k

= cp
k

[x, y]p
k

[x, y, c](
pk

2 ) = cp
k

, since p is
odd. This shows that (H ′)p

k

= 1, which concludes the proof. �

Close inspection of the bound for the exponent of the Schur multiplier in Theorem
2.11 shows that k ≤ 2e; if p is large enough, then we actually get k = 2e, so the
bound is probably not best possible. For instance, our theorem implies that if G
is a metabelian group of exponent p (p odd), then expM(G) divides p2. However,
this can be improved.

Proposition 2.12. Let G be a metabelian group of exponent p. Then M(G) is an
elementary abelian p-group.

Proof. We can evidently assume that p is odd and that G is finite. Our claim
follows then directly from equation (4) and from the fact that every two-generator
metabelian group of exponent p is nilpotent of class ≤ p− 1, see e.g. [6]. �

With the help of Theorem 2.11 we can improve the bound given by Proposition
2.10. Here we use the notation bαc for the greatest integer less than or equal to
α ∈ R.

Theorem 2.13. Let G be a finite p-group and let c be its nilpotency class. Suppose
c ≥ 2 and let H be a covering group of G. If expG = pe, then the exponent of H ′

(and hence also expM(G)) divides pkblog2 cc, where k is as in Theorem 2.11.

Proof. Let d be the derived length of G and expG = pe. Suppose k is as in Theorem
2.11. Let H be any covering group of G. Then H is pe-central and centre-by-
(solvable with derived length ≤ d). We claim that for every such group H, expH ′

divides pk(d−1), and prove this by induction on d. For d = 2 this follows from the
proof of Theorem 2.11. Assume that d > 2. ThenH(d−2) is pe-central and centre-by-
metabelian, thus it follows from the proof of Theorem 2.11 that expH(d−1) divides
pk. The factor group H/H(d−1) is pe-central and solvable of derived length ≤ d−1,
whence the induction assumption implies that the group (H/H(d−1))′ = H ′/H(d−1)

has exponent dividing pk(d−2). From here we get that the exponent of H ′ divides
pk(d−1), as required. To conclude the proof, note that d ≤ blog2 cc+ 1, which gives
the result. �

Note that pkblog2 cc ≤ p2eblog2 cc and that 2blog2 cc ≤ dc/2e for c ≥ 11, so this
result definitely improves a related result of Ellis ([9], see also Proposition 2.10) for
p-groups having nilpotency class at least 11. It also improves the bound given by
Jones [14] for c ≥ 5. At the other end of the scale, if c ≤ 2, then expM(G) divides
expG by [14]. From the same paper it follows that a similar conclusion holds for
p-groups of class 3 when p 6= 3. Results of this kind have also been proved by
Kayvanfar and Sanati [17] for c = 4, 5.

3. Exponent semigroups of finite p-groups

Given a group G, define

E(G) = {n ∈ Z : (xy)n = xnyn for all x, y ∈ G}.
It is clear that E(G) is always a multiplicative subsemigroup of Z containing 0 and
1. Following [15], we say that E(G) is the exponent semigroup of G. One of the
main results of [15] is a number-theoretic characterisation of E(G) for an arbitrary
group G. More precisely, let q1, q2, . . . , qt be integers, qi > 1 and gcd(qi, qj) = 1 for
i 6= j. Let B(q1, q2, . . . , qt) be the set of integers which is the union of 2t residue
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classes modulo qi satisfying each a system of congruences m ≡ δi mod qi, where
i = 1, . . . , t and δi ∈ {0, 1}. Then we can summarize relevant results of [15] as
follows.

Proposition 3.1 (cf. Theorem 1 and Corollary 1 in [15]). Let W be a nonempty
set of integers. Then W = E(G) for some group G if and only if either W = {0, 1},
Z or B(q1, . . . , qt) with qi > 2 for all i. Furthermore, there exists a non-negative
integer ε = ε(G) such that ε ∈ E(G) and n2 ≡ n mod ε for all n ∈ E(G). If
E(G) = {0, 1}, then ε = 0. Otherwise ε is positive and ε = min{n ∈ E(G) : n >
0, exp(G/Z(G)) | n}.

Let G be a finite p-group and suppose G is n-abelian for some n 6= 0, 1. Propo-
sition 3.1 implies that G is (1− n)-abelian, hence it is also n(1− n)-abelian. Thus
[xn(1−n), y] = [x, y]n(1−n) = [xn, y1−n] = x−ny−1ynxny−ny = x−ny−1(yxy−1)ny =
x−ny−1(xn)y

−1
y = 1 for all x, y ∈ G, hence G is n(n− 1)-central. Write n(n− 1) =

pkq where q is not divisible by p. Since G is a p-group, it follows that G is also
pk-central. Let E0(G) = {n ∈ E(G) : n > 0, exp(G/Z(G)) | n}. By Proposition 3.1,
E0(G) is an ideal in E(G). Since n(1 − n) ∈ E0(G), we conclude that pk ∈ E0(G),
hence E0(G) is generated by some pt, where t is a nonnegative integer not exceeding
k. By Proposition 3.1 we now obtain the following result.

Proposition 3.2. Let G be a finite p-group and let exp(G/Z(G)) = pe. Then there
exists a nonnegative integer r such that E(G) = B(pe+r) = pe+rZ ∪ (pe+rZ + 1).

Note that r in Proposition 3.2 is uniquely determined. This leads to the following
definition:

Definition. Let G be a finite p-group and let r be as in Proposition 3.2. Then we
say that r is the exponential rank of G. We use the notation r = exprank(G).

If G is a finite p-group, then Proposition 2.1 implies that 0 ≤ exprank(G) ≤
logp expM(G/Z(G)). In general, these bounds are best possible, as the following
example shows.

Example 3.3. Let p be a prime. A finite p-group G is said to be generalised ex-
traspecial if Z(G) is cyclic and G′ has order p. In this case, G/Z(G) is elementary
abelian p-group and expM(G/Z(G)) = p. G is clearly nilpotent of class two, hence
(xy)p = xpyp[y, x]p(p−1)/2 for all x, y ∈ G. Thus exprank(G) = 0 in case p is odd,
and exprank(G) = 1 for p = 2.

The definition of the exponential rank indicates that the p-groups which are
in a certain sense close to being abelian, have a small exponential rank. Let us
illustrate this by an example. For a finite p-group G and a positive integer k define
0k(G) = Gp

k

. A p-group G is said to be regular [13] if for all x, y ∈ G we have that
(xy)p ≡ xpyp mod 01(γ2(〈x, y〉)). If G is a regular p-group and expG/Z(G) = pe,
then Satz 10.8 in [13] implies that exp γ2(G) = pe. From here we conclude that G
is pe-abelian, hence exprank(G) = 0. In fact, almost the same phenomenon occurs
with powerful p-groups. Here a finite p-group G is said to be powerful [21] if p
is odd and G′ ≤ 01(G), or p = 2 and G′ ≤ 02(G). More generally, a normal
subgroup N of a finite p-group G is said to be powerfully embedded in G if p is odd
and [N,G] ≤ 01(N), or p = 2 and [N,G] ≤ 02(N). Note that every quotient of
a powerful p-group is again powerful. On the other hand, subgroups of powerful
p-groups need not be powerful. For other basic properties of powerful p-groups we
refer to [8] or [21].

In connection with exponent semigroups we mention here two known results. The
first one is a theorem due to Lubotzky and Mann [21] stating that if G is a powerful
p-group then expM(G) divides expG. A direct consequence of this result is that
if G is a powerful p-group, then exprank(G) ≤ logp exp(G/Z(G)). The other one



10 PRIMOŽ MORAVEC

appears as Exercise 2.5 in [8]. We omit its proof, as it follows easily from Lemma
2.7.

Proposition 3.4 (cf. [8], p. 45). Let G be a powerful p-group and let expG = pe.
Then G is pe−1-abelian.

Theorem 3.5. Let G be a powerful p-group.

(a) If p is odd, then exprank(G) = 0.
(b) If p = 2 and G is not abelian, then exprank(G) = 1.

Proof. Let c be the nilpotency class of G. We may assume that c > 1. First we
want to prove that

(6) exp γk(G) = exp(G/Zk−1(G))

for each k ∈ {1, . . . , c+ 1}. To this end, we need the following auxiliary result.

Claim. Let N be powerfully embedded in G. Then 0i([N,G]) = [0i(N), G].

Proof of Claim. For the simplicity assume that p is odd; the proof for p =
2 is similar. We prove our claim by induction on i. First we deal with the
case i = 1. By [21, Corollary 1.2], [N,G] is powerfully embedded in G. Thus
[N,G,G] = [[N,G], G] ≤ 01([N,G]). Similarly, [N,G,G] ≤ [01(N)), G]. Factoring
with [N,G,G], we may assume that N ≤ Z2(G). But in this case we clearly ob-
tain 01([N,G]) = [01(N), G], as the elements of [N,G] commute with those from
N . Suppose now that 0i([N,G]) = [0i(N), G] holds true for some i ≥ 1 and for
every N powerfully embedded in G. Since the groups N , [N,G] and [0i(N), G]
are powerfully embedded in G (see [21]), we get 0i+1([N,G]) = 01(0i([N,G])) =
01([0i(N), G]) = [01(0i(N)), G] = [0i+1(N), G].

To prove (6), observe that γj(G) is powerfully embedded in G for each j ∈ N; see
[21]. Using the above Claim and induction on j, we get 0i(γj(G)) = γj(0i(G), G)
for all i, j ∈ N. From here (6) readily follows.

Denote exp(G/Zk(G)) = pek . By [21, Proposition 2.5] we have that c − k ≤ ek,
hence ek > 1 for k = 0, . . . , c − 2. Since G is pe0−1-abelian by Proposition 3.4, we
infer from Proposition 3.2 that e1 < e0. Since G/Z(G) is also powerful, a similar
conclusion yields e2 < e1. Continuing with this process, we obtain a chain

e0 > e1 > e2 > · · · > ec−1 > ec = 0.

This shows that if 0 ≤ i ≤ j ≤ c, then ei ≥ ej + j − i. Now assume that p is odd.
Let x, y ∈ G. Then Lemma 2.7 gives

(xy)p
e1 ≡ xp

e1
yp

e1 mod 0e1(γ2(〈x, y〉))
e1∏
i=1

0e1−i(γpi(〈x, y〉)).

We have 0e1(γ2(〈x, y〉)) = 1. Besides, if pi ≥ c + 1, then γpi(〈x, y〉)) = 1. For
pi < c + 1 we have epi−1 > 0. Furthermore, e1 ≥ epi−1 + pi − 2 ≥ epi−1 + i, since
pi ≥ i + 2. From here it follows that 0e1−i(γpi(〈x, y〉)) ≤ 0epi−1

(γpi(〈x, y〉)) = 1,
hence G is pe1-abelian.

For the rest of the proof assume p = 2. Then a similar approach as above yields
that G is 2e1+1-abelian, hence exprank(G) ≤ 1. Suppose there exists a nonabelian
powerful 2-group G with exprank(G) = 0. If G is nilpotent of class two, then
(xy)2

e1 = x2e1
y2e1 [y, x]2

e1−1(2e1−1) for any x, y ∈ G. Since G is 2e1-abelian, this
implies that expG′ divides 2e1−1, which is a contradiction. Thus c > 2. As 2i ≥ i+2
for i ≥ 2, we obtain 0e1−i(γ2i(〈x, y〉)) = 1 for 2 ≤ i ≤ e1, hence

(xy)2
e1 ≡ x2e1

y2e1 mod 0e1−1(γ2(〈x, y〉)).
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The corresponding terms in 0e1−1(γ2(〈x, y〉)) can be computed using the commu-
tator collection process described in [12, pp. 65–66]. We obtain

(xy)2
e1 = x2e1

y2e1 [y, x](
2e1
2 )[y, x, x](

2e1
3 )[y, x, y](

2e1
2 )+2(2e1

3 ),

hence G satisfies the law

[y, x](
2e1
2 )[y, x, x](

2e1
3 )[y, x, y](

2e1
2 )+2(2e1

3 ) = 1.

Since expG′ = 2e1 , this gives

(7) [y, x](
2e1
2 )[y, x, y](

2e1
2 ) = 1.

Note that e1 − 1 ≥ e2, whence [y, x]2
e1−1 ∈ Z2(G). Thus [y, x]2

e1−1
commutes with

[y, x, y]2
e1−1

, hence we can rewrite (7) as ([y, x]2
e1−1

[y, x, y]2
e1−1

)2
e1−1 = 1. Since

G is a 2-group, we obtain [y, x]2
e1−1

[y, x, y]2
e1−1

= 1. This gives

[y, x, y]2[y, x]2 = [y, x, y]2[y, x, y]2
e1−1

[y, x]2
e1−1

[y, x]2 = [y, x, y]2
e1 [y, x]2

e1 = 1.

Replacing y by [x, y] in this equation, we get [[x, y], x, [x, y]]−2 = [x, y, x]2 = [x, y]−2,
hence [x, y]2 = [[x, y], x, [x, y]]2. Further replacement of x by [y, x] yields [x, y]2 =
[[y, x, y], [y, x], [y, x, y]]2. Since G is nilpotent, repeated use of this process shows
that G satisfies the law [x, y]2 = 1. By a result of Macdonald [22], G is centre-
by-metabelian and expG′ divides 4. Since G′ is powerful, we get G′′ ≤ (G′)4 = 1,
hence G′ is abelian. We conclude that expG′ = 2, but this immediately implies that
the nilpotency class of G does not exceed 2. This gives the final contradiction. �
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