
∗-ORDERABLE SEMIGROUPS

IGOR KLEP1 AND PRIMO� MORAVEC2

Abstract. Fix a ∗-orderable �eld k. We introduce the class of ∗-orderable
semigroups as those semigroups with involution S for which the semigroup
algebra kS endowed with the canonical involution admits a ∗-ordering. It is
shown that this class is a quasivariety that is locally and residually closed. A
cancellative nilpotent semigroup with involution is proved to be ∗-orderable
if and only if it has unique extraction of roots. In general this equivalence
fails, although every ∗-orderable semigroup has unique extraction of roots.

1. Introduction

It is well known and easy to see that a semigroup algebra kS admits a total
ordering if and only if the �eld k is formally real (i.e., admits a total ordering)
and S is a cancellative orderable semigroup. The case of ∗-orderability of kS is
much harder. The notion of a ∗-ordering has been extended from division rings
to general noncommutative rings in a series of papers by Marshall [10, 11] and
Craven [3]. Recently ∗-orderability of group algebras has been investigated in
[2, 7]; see also [6, Section 4.2]. The aim of this paper is to extend some of the
results from groups to semigroups. For this we introduce ∗-orderable semigroups
as those semigroups with involution S for which the semigroup algebra kS with
the induced involution admits a ∗-ordering. We show that being a ∗-orderable
semigroup is a local and residual property and deduce that the class of all ∗-
orderable semigroups is a quasivariety. All this is done in Section 2.

The third section contains some results on nilpotent semigroups, which are
used in Section 4 to give examples of ∗-orderable semigroups. Nilpotent semi-
groups were �rst introduced by Mal'cev [8], and later independently by Neumann
and Taylor [14]. This class of semigroups has been studied widely, including in
[13]. Our results give rise to another proof of the fact that free algebras admit
∗-orderings. This was �rst proved non-constructively in [3] and a nice, con-
structive proof was later given by Cimpri£ [1]. In Section 4 we also prove that
every ∗-orderable semigroup has unique extraction of roots. The last section
contains a discussion of the dependence on the base �eld. We show that the
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∗-orderability of kS essentially depends at most on the type of involution on the
∗-orderable �eld k, not on the �eld itself.

2. ∗-orderable semigroups form a quasivariety

De�nition. Let A be a domain with involution and SymA the set of its sym-
metric elements. A subset P ⊆ SymA is called a ∗-ordering if P + P ⊆ P , P
is closed under the Jordan multiplication {a, b} := ab + ba, P ∪ −P = SymA,
P ∩ −P = {0} and for every r ∈ A we have rPr∗ ⊆ P . In other words, P is a
total ordering of the Jordan algebra (SymA,+, { , }) closed under ∗-conjugation
for elements from A. (Note that our ∗-orderings are usually called �support {0}
∗-orderings�.)

The theory of ∗-ordered rings was started by Marshall [10, 11], connections
with ∗-ordered division rings were studied in [3] and a more detailed study of
the corresponding valuation theory and examples is given in [2, 1, 5, 6]. We
refer the reader to these papers and the references therein for more details on
∗-orderings.

Throughout the paper k will denote a ∗-orderable �eld with involution ∗.
As we will be dealing with unital semigroup algebras which are domains, unless
mentioned otherwise we assume that semigroups are cancellative and contain an

identity element denoted by 1. This element is preserved under subsemigroups
and homomorphic images.

De�nition. A semigroup S with involution σ (i.e., an antiautomorphism of
order 2) is ∗-orderable if the semigroup algebra kS with the induced involution(∑

s∈S
λss

)∗
=
∑
s∈S

λ∗sσ(s)

admits a ∗-ordering.

The aim of this section is to study the class of all ∗-orderable semigroups. We
show that this class is 1st-order axiomatizable and even a quasivariety (some-
times called a universal Horn class) in the language of semigroups with invo-
lution. Moreover, we show that being a ∗-orderable semigroup is a local and
residual property. All this generalizes our results for groups given in [7].

Let us recall two notions usually used in group theory. If P is a property of
∗-semigroups, we say that a semigroup S is locally-P if every �nitely generated
∗-subsemigroup of S is in P. S is called residually-P if for every a, b ∈ S with
a 6= b there exists a ∗-invariant congruence ∼ such that a 6∼ b and S/∼ ∈ P.
Equivalently, there is a surjective ∗-homomorphism ϕ : S → T ∈ P such that
ϕ(a) 6= ϕ(b).

Lemma 1 (Lemma 3.1 in [7]). The class of ∗-orderable rings is 1st-order ax-

iomatizable in the language of ∗-rings.
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This lemma says that the class of all ∗-orderable rings can be described by a
set of 1st-order axioms in the language of rings with involution. It can be proved
using a suitable generalization of the Artin-Schreier theory for ∗-orderable rings:
Marshall [10] proved that a ring with involution A admits a ∗-ordering if and
only if T0 ∩ −T0 = {0}, where T0 denotes the smallest ∗-preordering of A. The
condition T0∩−T0 = {0} can be written as a countable set of 1st-order sentences
in the language of ∗-rings.
Theorem 2. The class of all ∗-orderable semigroups is 1st-order axiomatizable

in the language L∗ = ( · , ∗ ) of semigroups with involution.

Proof. Recall the following result from model theory: a class of structures is 1st-
order axiomatizable if and only if it is closed under ultraproducts, isomorphic
copies and substructures (cf. [9, IV.8.3 Corollary 5]). It is clear that the class of
all ∗-orderable semigroups is closed under isomorphic copies and substructures.
All we have to show is that the class is closed under ultraproducts.

Let Si (i ∈ I) be ∗-orderable semigroups and set S :=
∏
i∈I Si/U for some

ultra�lter U on I. This ultraproduct is taken in the language of ∗-semigroups.
We claim that S is ∗-orderable. Write Ai := kSi. As usual, we endow Ai with
the canonical involution. De�ne A :=

∏
i∈I Ai/U (in the language of rings

with involution). By Lemma 1, A is ∗-orderable. Clearly, S ↪→ A. We have
to prove more: kS embeds into A so as to extend the canonical embedding
S ↪→ A. As the possibility is only one, we denote this mapping kS → A by
Φ. Assume Φ(λ1s1 + · · · + λrsr) = 0 for some 0 6= λj ∈ k and sj ∈ S. We

may assume that sj 6= sk for j 6= k. Write sk =
[
(s(k)
i )i∈I

]
for k = 1, . . . , r.

Then the given equality implies
[
(λ1s

(1)
i )i∈I + · · · + (λrs

(r)
i )i∈I

]
= 0. Hence

J := {i ∈ I |
∑r

k=1 λks
(k)
i = 0} ∈ U . As all λk are nonzero, for all i ∈ J there

must be an index ` ∈ {1, . . . , r} such that s
(i)
1 = s

(i)
` . Hence

J ⊆ {i ∈ I | s(i)
1 = s

(i)
2 } ∪ · · · ∪ {i ∈ I | s

(i)
1 = s(i)

r }.

Since U is an ultra�lter, this implies {i ∈ I | s(i)
1 = s

(i)
2 } ∪ · · · ∪ {i ∈ I | s

(i)
1 =

s
(i)
r } ∈ U . Thus one of these sets must be in U , say {i ∈ I | s(i)

1 = s
(i)
2 } ∈ U .

But this implies s1 = s2, a contradiction.

Any axiomatization will necessarily consist of an in�nite number of axioms
as the class of not ∗-orderable semigroups is not elementary (cf. [6, Proposition
13]).

In order to prove that the class of ∗-orderable semigroups is a quasivariety, it
su�ces to show that this class is closed under direct products [9, V.11.1 The-
orem 2]. Unable to give a direct proof, we instead proceed to show that this
class is residually closed and then deduce the closedness under direct products.
In the course of the proof we reduce the problem to the �nitely generated case,
so we start by proving that the class of ∗-orderable semigroups is locally closed.

Proposition 3. A semigroup with involution S is ∗-orderable if and only if its

every �nitely generated ∗-subsemigroup is.
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Proof. It is clear that all ∗-subsemigroups of a ∗-orderable semigroup are ∗-
orderable. In particular, this holds for �nitely generated ∗-subsemigroups of
S.

For the converse implication let S denote the set of all �nitely generated
∗-subsemigroups of S. For every r ∈ N and x1, . . . , xr ∈ S we de�ne

Ix1,...,xr := {T ∈ S | x1, . . . , xr ∈ T}.
Obviously, Ix1,...,xr 6= ∅ and Ix1,...,xr ∩Iy1,...,ys = Ix1,...,xr,y1,...,ys . This shows that
the sets Ix1,...,xr form a �lter base. Let U denote an ultra�lter of S containing
Ix1,...,xr for every r ∈ N and x1, . . . , xr ∈ S.

We construct a mapping ϕ : S →
∏
T∈S T/U =: S? as follows. For s ∈ S let

sT denote s if s ∈ T and 1 otherwise (note that by our assumptions, 1 ∈ T ).
De�ne ϕ(s) := [sT ]T∈S . It is easy to see that ϕ is a semigroup ∗-homomorphism.
Moreover,

ϕ(s) = ϕ(t) ⇔ {T ∈ S | sT = tT } ∈ U ⇔ {T ∈ S | sT 6= tT } 6∈ U .

We have used the fact that U is an ultra�lter and �o±'s fundamental theorem
on ultraproducts [16, Theorem 4.3]. If s 6= t, then {T ∈ S | sT 6= tT } contains
Is,t ∈ U which contradicts the fact that U is a �lter. This shows that ϕ is
injective.

All this proves that S is a ∗-subsemigroup of S?. By Theorem 2 and our
assumption, S? is ∗-orderable. Hence so is S, as desired.

Again, this proposition can be proved using Marshall's extension of the clas-
sical Artin-Schreier theory to ∗-rings by observing that each of the axioms for
the ∗-orderability of kS involves only �nitely many elements from S.

Corollary 4. A residually ∗-orderable semigroup is ∗-orderable.

Proof. Let S be residually ∗-orderable. If S is not ∗-orderable, then by Propo-
sition 3 a �nitely generated ∗-subsemigroup T of S is not ∗-orderable although
it is residually ∗-orderable. In other words, we may assume that S is �nitely
generated.

Since S is residually ∗-orderable and �nitely generated, it is countable. Thus
we may choose countably many ∗-congruences ∼i (i ∈ N) such that S/∼i is
∗-orderable for every i ∈ N and

⋂
i∈N∼i = diag(S). Without loss of general-

ity, ∼i 6= diag(S) for every i. We have a canonical homomorphism ϕ : S →∏
i∈N S/∼i, mapping s 7→

(
[s]∼i

)
i∈N for s ∈ S. It is easy to see that ϕ is a

∗-embedding.

Let U be a nonprincipal ultra�lter on N and S? :=
∏
i∈N
(
S/∼i

)
/U . Let

Ψ denote the canonical homomorphism
∏
i∈N S/∼i → S? and Φ := Ψ ◦ ϕ. We

claim that Φ is a ∗-embedding. Obviously, Φ(x) = Φ(y) if and only if J := {i ∈
N | x ∼i y} ∈ U . Since U is nonprincipal, J is in�nite. So

⋂
i∈J ∼i = diag(S)

and thus x = y. As before this implies that S is ∗-orderable.

Corollary 5. The class of all ∗-orderable semigroups is closed under direct

products.
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Proof. Let Sλ for λ ∈ Λ be a set of ∗-orderable semigroups. By the preceding
corollary, it su�ces to prove that

∏
λ∈Λ Sλ is residually ∗-orderable. For this

let (xλ)λ∈Λ, (yλ)λ∈Λ ∈
∏
λ∈Λ Sλ be two di�erent elements. There is some µ ∈ Λ

with xµ 6= yµ. But then the canonical projection
∏
λ∈Λ Sλ → Sµ maps (xλ)λ∈Λ

and (yλ)λ∈Λ into di�erent elements, �nishing the proof.

By combining Theorem 2 and Corollary 5, we obtain:

Theorem 6. The class of all ∗-orderable groups is a quasivariety.

3. Nilpotent semigroups

In this section semigroups are not necessarily cancellative and need not con-
tain 1. Let x, y be elements of a semigroup S and let z0, z1, z2, . . . be elements
of S1 := S ∪ {1}. Put z = (z0, z1, z2, . . .) and let S1 be the direct product of
countably many copies of S1. Consider the sequence of elements of S de�ned
inductively as q0(x, y, z) = x and

qn+1(x, y,z) = qn(x, y, z)znqn(y, x,z).

A semigroup S is said to be nilpotent of class n if it satis�es the identity
qn(x, y, z) = qn(y, x,z) for all x, y ∈ S, z ∈ S1 and n is the least positive
integer with this property. S is nilpotent if it is nilpotent of class n for some
n ∈ N. The notion of a nilpotent semigroup was introduced by Neumann and
Taylor [14]. They showed that a group is nilpotent of class n in the classical
sense if and only if it satis�es the above identity. Additionally, it was proved
that n-nilpotency of a cancellative semigroup S implies that S has a group of
fractions SS−1 which is also nilpotent of class n.

In the cancellative case, there is an alternative way to de�ne nilpotent semi-
groups. Let S be a cancellative semigroup and de�ne a relation ζ on S by the
rule

(a, b) ∈ ζ ⇔ asb = bsa for all s ∈ S1.

Lemma 7. Let S be a cancellative semigroup and let ζ be as above. Then ζ is

a congruence on S and S/ζ is a cancellative semigroup.

Proof. It is clear that ζ is re�exive and symmetric. To prove that ζ is transitive,
let (a, b) ∈ ζ, (b, c) ∈ ζ and s ∈ S. Since b and c commute, we obtain b(as)c =
c(asb) = cbsa = bcsa, hence (a, c) ∈ ζ. To prove that ζ is invariant under
multiplication, let (a, b) ∈ ζ and c, s ∈ S. Then a(casc)b = (bca)sca = acbsca,
hence (ca, cb) ∈ ζ. Similarly we obtain (ac, bc) ∈ ζ, so ζ is a congruence on S.

Now, let a, b, c ∈ S and suppose (ac, bc) ∈ ζ. First of all, this implies that
ac and bc commute, hence acb = bca. Besides that, we have acsb = bcsa for
every s ∈ S. Replacing s by b, we obtain acb2 = bcba, hence bcab = bcba.
This implies that a and b commute. We get ac(as)b = (bca)sa = acbsa, hence
(a, b) ∈ ζ. Similarly we prove that (ca, cb) ∈ ζ implies (a, b) ∈ ζ. This concludes
the proof.
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We therefore de�ne a sequence of cancellative semigroups S0, S1, . . . induc-
tively by S0 = S and Si+1 = Si/ζ. Since every Si is a homomorphic im-
age of S, there exists a cancellative congruence ζi on S such that Si = S/ζi.
By induction on i we see that for a, b ∈ S we have (a, b) ∈ ζi if and only if
qi(a, b,z) = qi(b, a,z) for all z ∈ S1. It is now clear that S is nilpotent of class
n if and only if n is the least positive integer with the property ζn = S × S.
It is also clear that in the case when S embeds into its group of fractions
G, then (a, b) ∈ ζn if and only if ab−1 ∈ Zn(G), where Zn(G) is the n-th
term of the upper central series of G de�ned inductively by Z0(G) = 1 and
Zn+1(G)/Zn(G) = Z(G/Zn(G)) for n > 0.

We say that a semigroup S has unique extraction of roots if an = bn implies
a = b for all a, b ∈ S and n ∈ N. If this conclusion only holds if ab = ba, then S
is said to have unique extraction of roots for commuting elements. Furthermore,
we say that a semigroup S is torsion-free if all monogenic subsemigroups of S
generated by non-identity elements are in�nite. That is, if an = am for a ∈ S
and n,m ∈ N, then n = m. It is not di�cult to see that a cancellative semigroup
with unique extraction of roots is torsion-free. It is well known that at least
in the case of nilpotent groups the converse is true as well (this can be proved
by an easy induction argument). On the other hand, there exist cancellative
nilpotent torsion-free semigroups that do not have unique extraction of roots,
as the following example shows.

Example. Let G be the group generated by a and b, subject to the following
relations:

(ab−1)3 = [[a, b], a] = [[a, b], b] = 1.

Then G is nilpotent of class 2, and the relations imply that 1 = (ab−1)3 =
a3b−3[b−1, a]3, therefore [b, a]3 = a3b−3. As [a, b] is central in G, the latter
relation gives that b3[b3, a] = a3, which is equivalent to a3 = b3. Hence we
conclude that [a, b]3 = 1. This shows that a, b, [b, a] form a polycyclic generating
sequence (cf. [17, p. 394]) in G satisfying the following power relations:

a3 = b3 and [b, a]3 = 1.

Thus every element of G can be uniquely written in the form

akbm[b, a]n,

where k ∈ Z, m,n ∈ {0, 1, 2}. If t ∈ N, then

(akbm[b, a]n)t = aktbmt[b, a]mk(
t
2)+nt.

This shows that the torsion subgroup of G is given by

τ(G) = 〈ab−1〉 × 〈[a, b]〉 ∼= Z3 ⊕ Z3.

Now let S be the submonoid of G generated by a and b. Then S is nilpotent of
class 2, torsion-free, and G is its group of fractions. It is clear that S does not
have unique extraction of roots, since a3 = b3.
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A semigroup S is said to be orderable if there is a linear ordering on S which
is compatible with the multiplication on S:

∀a, b, c ∈ S : a < b⇒ ac < bc ∧ ca < cb.

It is clear that every orderable semigroup is cancellative. For cancellative nilpo-

tent semigroups we have the following characterizations of orderability:

Proposition 8 (cf. Proposition 9, Chapter 10 in [15]). Let S be a cancellative

nilpotent semigroup and let G be its group of fractions. The following assertions

are equivalent:

(i) S is an orderable semigroup.

(ii) G is an orderable group.

(iii) G is torsion-free.

(iv) S has unique extraction of roots.

(v) S has unique extraction of roots for commuting elements.

(vi) There exists an integer i such that the group Zi+1(G)/Zi(G) is torsion-free

and the semigroup S has unique extraction of roots for elements belonging

to the same ζi-classes.

Proof. We start by proving that the statements (i)-(v) are equivalent. By a well
known result of Mal'cev, (ii) and (iii) are equivalent. It is also straightforward to
see that (i) and (ii) are equivalent. Let us show that (ii) implies (iv). Let < be an
ordering on G and suppose there exist s, t ∈ S, s 6= t such that sn = tn for some
n > 1. We may assume that s < t. But then sn < tn, which is a contradiction.
As (iv) clearly implies (v), we are left with the proof of the fact that (v) implies
(iii). Suppose G is not torsion-free. Then Z(G) contains a nontrivial element
u = st−1 (s, t ∈ S) of �nite order n. Hence sn = (ut)n = untn = tn and clearly
st = ts, which leads to a contradiction. Thus G is torsion free.

Now, it is clear that (iv) implies (vi). Suppose there is an integer i such that
S has unique extraction of roots for elements which are ζi-equivalent. We want
to show that S also has unique extraction of roots for ζj-equivalent elements for
all j ≥ i. We prove this by induction on j. For j = i this is our assumption, so
we may assume j > i. Let a, b ∈ S be such that (a, b) ∈ ζj and an = bn for some
positive integer n. Then we have ab−1 ∈ Zj(G), so a = bc for some c ∈ Zj(G).
Since we have [c, x] ∈ Zj−1(G) for all x ∈ G, we obtain an = (bc)n ≡ bncn

mod Zj−1(G), hence (ab−1)n ∈ Zj−1(G). But since Zi+1(G)/Zi(G) is torsion-
free, the same is true for Zj(G)/Zj−1(G), hence ab−1 ∈ Zj−1(G), or equivalently,
(a, b) ∈ ζj−1. By the induction hypothesis, a = b. Finally, taking j = c, where c
is the nilpotency class of S, we conclude that S has unique extraction of roots,
which proves our assertion.

Recall that a nilpotent group is orderable if and only if it is torsion-free.
Proposition 8 and the example preceding it show that there exist cancellative
torsion-free nilpotent semigroups that are not orderable.

For later use we record the following:
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Lemma 9. A free semigroup endowed with an involution is residually �cancella-

tive nilpotent ∗-semigroup with unique extraction of roots�.

Proof. Let S be a free semigroup with an involution. Note that the involu-
tion preserves lengths of words, so is essentially given by a permutation of a
free generating set. If G denotes the corresponding free group, then the in-
volution of S extends uniquely to G. Let a, b ∈ S be two di�erent elements.
Then ab−1 ∈ G \ {1} and since G is residually torsion-free nilpotent, there is

some k ∈ N such that ab−1 6∈
√
γk(G). Here γk denotes the k-th term of the

lower central series and
√
H := {g ∈ G | ∃n ∈ N : gn ∈ H} is the isola-

tor. It is easy to see that G/
√
γk(G) is torsion-free nilpotent and the image

of ab−1 in G/
√
γk(G) is not identity. Moreover, as the given involution of S

preserves lengths of words,
√
γk(G) is ∗-invariant. Hence G/

√
γk(G) can be

given the natural involution and the canonical projection G → G/
√
γk(G) is

a ∗-homomorphism. Composing this map with the natural embedding S → G
gives the desired map.

4. Examples and non-examples

For this section we assume that k = C, so we deal with semigroup algebras
over C endowed with the complex conjugation involution. The non-dependence
on the �eld chosen is discussed in the next section.

As mentioned in the introduction, every ∗-orderable semigroup is cancellative.
It is also easy to see that every ∗-orderable semigroup is torsion-free (we call a
semigroup S torsion-free if an = 1 implies a = 1 for every a ∈ S and n ∈ N).
It is known that every ∗-orderable group is orderable. It is not known whether
the same holds true for ∗-orderable semigroups. Therefore the following result
is of interest.

Theorem 10. Every ∗-orderable semigroup has unique extraction of roots.

In order to prove this, we need to recall the connection between ∗-orderings
and valuations.

De�nition. If A is a domain and Γ is an ordered cancellative abelian semigroup,
then an onto mapping v : A→ Γ ∪ {∞} is a valuation if:

(V1) v(x) =∞ if and only if x = 0,
(V2) v(xy) = v(x) + v(y) for all x, y ∈ A×,
(V3) v(x+ y) > min{v(x), v(y)} for all x, y ∈ A×.

Here A× := A \ {0}. The valuation v is called quasi-commutative if

v(ab− ba) > v(ab) for all a, b ∈ A×.

In this case v({a, b}) = v(ab+ ba) = v(ab) for all a, b ∈ A.

To each ∗-ordering P ⊆ A a natural valuation vP can be associated as fol-
lows. The ∗-ordering P gives an order relation 6 on SymA, which induces
the archimedean equivalence ≈ on SymA. We extend the latter to the whole
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A by declaring, for all 0 6= a, b ∈ A, that a ≺ b if aa∗ 6 nbb∗ for some in-
teger n, and a ≈ b if a ≺ b and b ≺ a. Denote by vP (a) the equivalence
class of 0 6= a ∈ A and vP (0) := ∞. Then the relation ≺ induces an order-
ing of the set ΓP = vP (R \ {0}). By [10, Theorem 3.3], the binary operation
vP (a)+vP (b) := vP (ab) is well-de�ned on ΓP , so ΓP becomes an ordered abelian
semigroup. Marshall [10, Theorem 3.3] proved that vP is a valuation that is ∗-
invariant, i.e., vP (a∗) = vP (a) for every a ∈ A. Furthermore, if A contains a
central skew element i satisfying i2 = −1, then by a result of the �rst author [5,
Theorem 2], vP is quasi-commutative. For more on classical valuation theory
we refer the reader to [4].

Proof of Theorem 10. Let S be a ∗-orderable semigroup and let s, t ∈ S satisfy
sn = tn for some n > 2. Take a ∗-ordering of CS and let v denote the natural
valuation associated to it. By the above, v is quasi-commutative. We make use
of the following identity:

2ak+1 − 2bk+1 = {ak − bk, a+ b}+ (bka− abk) + (bak − akb), (?)

which holds for all a, b ∈ CS and k ∈ N.
As sn = tn, nv(s) = v(sn) = v(tn) = nv(t) and so v(s) = v(t). Here we

distinguish two cases. If n = 2, then from s2 = t2 it follows that s and t2

commute. Thus

0 = st2 − t2s = (st− ts)t+ tst− t2s = (st− ts)t+ t(st− ts)

and hence

∞ = v(0) = v(st2 − t2s) = v
(
(st− ts)t+ t(st− ts)

)
= v(st− ts) + v(t).

This gives st = ts and 0 = s2 − t2 = (s− t)(s+ t), so s = t.
Now let n > 3. By replacing t with ξnt or ξ2

nt (where ξn is a primitive
n-th root of unity), we may assume that v(s) = v(t) = v(s − t) = v(s + t).
By induction on k we prove that v(sk − tk) = kv(t). This obviously holds
for k = 1. Assume that it holds up to k and use (?) for a = s and b = t.
Since v(tks − stk) > (k + 1)v(t) and v(tsk − skt) > (k + 1)v(t), we obtain
v(sk+1− tk+1) = v

(
{sk− tk, s+ t}

)
= v(sk− tk) + v(t) = (t+ 1)v(k), as desired.

But now ∞ = v(sn − tn) = nv(t), hence t = 0 and also s = 0 �nishing the
proof.

To give examples of ∗-orderable semigroups, we use results from Section 3.

Example. A cancellative nilpotent semigroup S with involution σ is ∗-orderable
if and only if it has unique extraction of roots (for commuting elements). By
Proposition 8 this is the case if and only if S is orderable.

Proof. Assume S has unique extraction of roots for commuting elements. Since
S is nilpotent, it has a group of right fractions G. If the involution σ extends
to G, then σ(st−1) = σ(t)−1σ(s). So we must check that this is well de�ned.
Suppose st−1 = uv−1. Then there exist a, b ∈ S satisfying sa = ub and ta = vb.
Applying σ we obtain σ(a)σ(s) = σ(b)σ(u) and σ(a)σ(t) = σ(b)σ(v). Since G is
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also a group of left fractions of S, we have σ(t)−1σ(s) = σ−1(v)σ(u). Thus σ is
an involution of G. By Proposition 8, G is a torsion-free nilpotent group and for
such groups it is shown in [2] that the corresponding group algebra CG admits
∗-orderings independent of the involution chosen. This proves one directions,
and the reverse implication follows from Theorem 10.

From Proposition 3 it follows that a cancellative locally nilpotent ∗-semigroup
with unique extraction of roots is ∗-orderable. Similarly, Corollary 4 shows that
every residually �cancellative nilpotent ∗-semigroup with unique extraction of
roots� is ∗-orderable. In particular, by Lemma 9 this applies to free semigroups
endowed with an involution and gives a new proof of the fact that free algebras
over C admit ∗-orderings as observed �rst in [3].

In general, a cancellative ∗-semigroup with unique extraction of roots need
not be ∗-orderable. This is shown even for the group case in [2, 7], where
examples of metabelian orderable groups that are not ∗-orderable are given.

5. (Non-)Dependence on the base field

We de�ned a semigroup S to be ∗-orderable if the semigroup algebra kS
allowed a ∗-ordering for a �xed ∗-orderable �eld k. In fact, this notion is under
mild additional assumptions independent of the �eld k chosen and depends only
on the type of involution on k. Recall that an involution on a �eld is of the
2nd-kind if it is nontrivial and of the 1st-kind otherwise.

Theorem 11. Let k be a formally real �eld with an involution of the 1st-kind.

Then for a semigroup S the following are equivalent:

(i) kS admits a ∗-ordering.
(ii) RS admits a ∗-ordering.

Proof. (i) ⇒ (ii): Fix a ∗-ordering of kS. Since the involution on k is of the
1st-kind, the ∗-ordering on kS induces a total ordering of k.

Pick a nontrivial ultra�lter U on N and form the ultrapower

R1 := (kS)N/U ⊇ (kN/U )S.

By de�nition, R1 comes equipped with a ∗-ordering. Let v1 denote the natural
∗-valuation of R1. Clearly, QN/U ⊆ kN/U . Thus the residue division ring
kv1 contains R [12, Theorem II]. (This is even true for the restriction of v1 to
kN/U .) kv1 admits an archimedean ∗-ordering, so is either R or C or H [5,
Proposition 3].

We continue by forming the completion (R2, v2) := (R̃1, ṽ2). By the Krull-
Baer theorem [5, Theorem 7] (or a lengthy straightforward computation), the
∗-ordering extends from R1 to R2 (essentially via density) and v2 is the corre-

sponding natural valuation. Clearly, (k̃N/U )S ⊆ R2. By construction, the

residue division ring of v2 is kv1 . Moreover, (k̃N/U , v2) is immediate over
(kN/U , v1), so the corresponding residue �elds coincide.
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We claim that the real algebraic numbersQalg are contained in k̃N/U . Choose
an arbitrary real algebraic number r and let p ∈ Q[X] be its minimal polyno-

mial. Then p̄ ∈ kv2 [X] has a root r = x̄ ∈ kv2 for some x ∈ k̃N/U . Let us form

the �eld Q(x) ⊆ k̃N/U and denote u := v2|Q(x). By the dimension inequality,

u is of rank 1. Moreover, the completion (Q̃(x), ũ) of (Q(x), u) is contained

in (k̃N/U , v2). ũ is complete of rank 1, hence henselian by Hensel's lemma [4,

Theorem 1.3.1]. So p has a root ρ ∈ Q̃(x) ⊆ k̃N/U satisfying ρ̄ = r. This shows

that Qalg ⊆ k̃N/U .
The �eldQalg is real closed and hence elementarily equivalent toR by Tarski's

transfer principle [16, Section 6.6]. Hence by Frayne's lemma [16, Lemma 4.12]
there exists a nonempty set I, an ultra�lter W on I and an embedding R ↪→
QI

alg/W . So R can be embedded in the ultrapower RI2/W . This shows that RS

embeds into (RI2/W )S and thus admits a ∗-ordering.
(ii)⇒ (i): If a semigroup algebra kS admits a ∗-ordering andK is a ∗-sub�eld

of k, then KS also admits a ∗-ordering. Hence we may assume k is real closed.
SupposeRG admits a ∗-ordering. We can embed k into an ultrapower ofR by

Frayne's lemma, and this in turn yields an embedding of kS into an ultrapower
of the semigroup algebra RS. Hence kS embeds into a ∗-orderable domain, so
is ∗-orderable itself.

As a corollary (of the proof) we obtain:

Corollary 12. Let K be a formally real �eld with the trivial involution and

let k = K(
√
−1) be endowed with the involution

√
−1 ∗ = −

√
−1. Then for a

semigroup S the following are equivalent:

(i) kS admits a ∗-ordering.
(ii) CS admits a ∗-ordering.

We do not know whether ∗-orderability of CS is equivalent to that of RS.
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